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Abstract— This paper studies the asymptotic optimality of
discrete-time Markov Decision Processes (MDP’s in short) with
general state space and action space and having weak and
strong interactions. By using a similar approach as developed
in [1], the idea in this paper is to consider a MDP with general
state and action spaces and to reduce the dimension of the state
space by considering an averaged model. This formulation is
often described by introducing a small parameter ε > 0 in
the definition of the transition kernel, leading to a singularly
perturbed Markov model with two time scales. First it is shown
that the value function of the control problem for the perturbed
system converges to the value function of a limit averaged
control problem as ε goes to zero. In the sequel it is shown that a
feedback control policy for the original control problem defined
by using an optimal feedback policy for the limit problem is
asymptotically optimal.

I. INTRODUCTION

The objective of this work is to study the asymptotic opti-
mality of discrete-time Markov Decision Processes (MDP’s
in short) with general state space and action space and having
weak and strong interactions. We suppose that the state space
X of the controlled Markov chain can be written as the
union of different ergodic classes Xi for i ∈ I, where
I a countable (finite or infinite) set, and a transient part
X∗. It is assumed that the transitions within each class Xi

occur much more frequently than transitions among different
classes. This formulation is often described by introducing
a small parameter ε > 0 in the definition of the transition
kernel, leading to a singularly perturbed Markov model with
two time scales.

There exists an extensive literature on singularly perturbed
discrete-time stochastic control problems. Without attempt-
ing to present an exhaustive panorama of this vast field of
research, the interested reader may consult the references [2],
[3], [4], [5], [1] and the survey [6] and the book [7] to get
a rather complete view on this research field. By using a
similar approach as developed in [1], the idea in this paper
is to consider a MDP with general state space and control
space and to reduce the dimension of the state space by
considering an averaged model. Indeed, for such MDP’s, an
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inherent problem is the dimension of the state space, which
makes the model difficult to be handled. Our objective is
twofold. First it is shown that the value function of the
control problem for the perturbed system converges to the
value function of a limit averaged control problem as ε goes
to zero. In the second part of the paper, it is proved that
a feedback control policy for the original control problem
defined by using an optimal feedback policy for the limit
problem is asymptotically optimal.

The paper is organized as follows. In section II we present
some general definitions and main assumptions, and in
section III some auxiliary results regarding the compactness
and convergence properties of the relaxed action space. In
section IV we present several important results dealing with
the convergence of the value function for the original MDP
as the small parameter ε > 0 goes to zero, and showing
that the limit function satisfies an optimality equation. It
will be also shown the existence of deterministic δ-optimal
solutions for this optimality equation. In section V the limit
control problem is formulated and the convergence result is
established. Section VI shows that a feedback control policy
for the original control problem defined by using an optimal
feedback policy for the limit problem is asymptotically
optimal.

II. DEFINITIONS AND ASSUMPTIONS

The main goal of this section is to introduce the notation,
definitions and the main assumptions that will be used
throughout the paper. In particular we will introduce the class
of relaxed controls, which will allow us to get a compactness
property for the action space.

In this work we follow closely the notation used in [8]. Let
X be a set and v be a mapping from X to R; then for A ⊂ X ,
vA denotes the restriction of v to the set A. Moreover, 1X
is the R-valued function defined on X by 1X(x) = 1 for
all x ∈ X . We recall that X is a Borel space if it is a
Borel subset of a complete and separable metric space, and
its Borel σ-algebra is denoted by B(X). For X , Y Borel
spaces, the family of all stochastic kernels on X given Y is
denoted by P(X|Y ). M(X) (respectively, P(X)) denotes
the set of all finite (respectively probability) measures on
(X,B(X)). Moreover, P(X) is considered as a topological
space equipped with the weak topology. For B ∈ B(X), IB
denotes the indicator function of the set B, δx is the Dirac
measure centered on a fixed point x ∈ X and IB denotes the
Markov kernel defined by IB(C|x) = IB(x)δx(C) for any
(x,C) ∈ X × B(X).
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Consider w : X → [1,∞) a measurable function, that will
be referred to as weight function. If u is a real valued func-
tion on X we define its w-norm as: ‖u‖w = supx∈X

|u(x)|
w(x) .

A function u is said to be w-bounded if ‖u‖w <∞ (bounded
if ‖u‖ < ∞ where ‖.‖ is the sup-norm). The set of w-
bounded (bounded) measurable functions defined on X is
denoted by Bw(X) (B(X) respectively). For a Borel set
A ∈ B(X), Cw(A) (Cb(A) respectively) denotes the set of
continuous and w-bounded (bounded) functions from A to
R. For a sequence {µn} ∈ P(X) and µ ∈ P(X), µn ⇒ µ
means that the sequence {µn} converges to µ in the weak
sense, that is,

∫
X
v(x)µn(dx) →

∫
X
v(x)µ(dx) for every

v ∈ Cb(X). For Banach spaces X and Y , B(X ,Y) denotes
the space of bounded linear operators from X to Y and, for
simplicity, we set B(X ) = B(X ,X ). For T ∈ B(X ), we
denote by rσ(T ) the spectral radius of the operator T . We
recall that Cw(X) (Cb(X) respectively) with the w-norm
(sup-norm) is a Banach space.

As in Definition 2.2.1 of [8] we consider for ε > 0, a
five-tuple for a Markov control model(

X,A, {A(x)|x ∈ X}, P ε, c
)

(1)

consisting of
(a) a Borel space X, representing the state space.
(b) a Borel space A, representing the control or action set.
(c) a family {A(x)|x ∈ X} of non-empty measurable

subsets A(x) of A, where A(x) denotes the set of
feasible controls or actions when the system is in state
x ∈ X , and with the property that

K := {(x, a)|x ∈ X, a ∈ A(x)} (2)

is a measurable subset of X ×A.
(d) stochastic kernels P and P on X given K, and the

perturbed stochastic kernel P ε defined as follows:

P ε = P + εG with G = P − I. (3)

It is assumed that for some ε0 > 0 and every 0 < ε ≤
ε0, P ε defined in (3) is a stochastic kernel on X given
K.

(e) a measurable function c : K→ R.
(f) a constant β > 0 such that βε0 < 1.
Definition 2.1: The set of all stochastic kernels ϕ in

P(A|X) such that ϕ(A(x)|x) = 1 for all x ∈ X is denoted
by Φ, and F stands for the set of all measurable functions
f : X → A, satisfying that f(x) ∈ A(x) for all x ∈ X .
We use the notation Pϕ to denote the stochastic kernel
Pϕ(C|x) =

∫
A(x)

P (C|x, a)ϕ(da|x), similarly for P
ϕ

and
Pϕ,ε. It is assumed that the set F is nonempty.

To introduce the optimal control problem we are con-
cerned with, it is necessary to introduce different classes of
control policy.

Definition 2.2: Define H0 = X and Hn = K × Hn−1

for n ≥ 1. A control policy is a sequence π = {πn} of
stochastic kernels πn on A given Hn satisfying the following
constraint: for all hn ∈ Hn and n ≥ 1, πn(A(xn)|hn) = 1,
where hn = (x0, a0, . . . , xn−1, an−1, xn). Let Π be the class

of all policies. A policy π = {πn} is said to be a relaxed
policy if there exists φ ∈ Φ such that πn(.|hn) = φ(.|xn).
A policy π = {πn} is said to be a stationary policy if there
exists f ∈ F such that πn(.|hn) = δf(xn)(.).
According to a standard convention, we identify F (re-
spectively, Φ) with the class of all stationary (respectively,
relaxed) policies. Therefore, we have F ⊂ Φ ⊂ Π. Let
(Ω,F) be the canonical space consisting of the sample path
Ω = (X × A)∞ and the associated σ-algebra F . For any
policy π ∈ Π and any initial distribution ν on X , it can be
defined a probability, labeled Pπν , and a stochastic processes
{(xt, at)}t∈N where {xt}t∈N is the state process and {at}t∈N
is the control process satisfying for any B ∈ B(X), C ∈
B(A) and ht ∈ Ht with t ∈ N, Pπν (x0 ∈ B) = ν(B),
Pπν (at ∈ C|ht) = πt(C|ht), and Pπν (xt+1 ∈ B|ht, at) =
P ε(B|xt, at), see for example [8, Chapter 2] for such a
construction. The expectation with respect to Pπν is denoted
by Eπν . If ν = δx for x ∈ X , we write Pπx for Pπν and
Eπx for Eπν . We consider the following expected discounted
Markov control problem:

V ε(x) = inf
π∈Π

V ε(x, π), (4)

V ε(x, π) = εEπx

( ∞∑
t=0

(1− βε)tc(xt, at)
)

(5)

We make the following assumptions on the parameters
of the MDP. These assumptions are similar to those in
Assumption 2.7 of [9]. In section 5 of [10] it is presented
an example of a MDP satisfying these assumptions. Let
d1 and d2 be the metrics on X and A respectively, and
let d be the metric on K defined as d((x, a), (y, a′)) :=
max{d1(x, y), d2(a, a′)}, for all (x, a) and (y, a′) in K. We
shall suppose the following:
H1) For each x ∈ X , A(x) is compact.
H2) The compact-valued multifunction Ψ : X → A defined

by Ψ(x) = A(x) is continuous with respect to the
Hausdorff metric (see [11]).

H3) There exists a [1,+∞)-valued continuous function w
defined on X satisfying
a) for all x ∈ X

sup
a∈A(x)

|c(x, a)| ≤ c0w(x), (6)

where c0 is a constant.
b) for all x ∈ X and for any ε ≤ ε0,

sup
a∈A(x)

P εw(x, a) ≤ w(x). (7)

H4) For each x ∈ X there exists a positive nondecreasing
function ψcx with lim

t↓0
ψcx(t) = 0 such that for all a ∈

A(x) and (y, a′) ∈ K,

|c(x, a)− c(y, a′)| ≤ ψcx(d((x, a), (y, a′))). (8)

H5) For each x ∈ X there exists a positive nondecreasing
function ψGx with lim

t↓0
ψGx (t) = 0 such that for all a ∈
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A(x) and (y, a′) ∈ K,∥∥G(., (x, a))−G(., (y, a′))
∥∥
w
≤

ψGx (d((x, a), (y, a′))), (9)

where ‖.‖w is the w-norm.
H6) For each x ∈ X there exists a positive nondecreasing

function ψPx with lim
t↓0

ψPx (t) = 0 such that for every

v ∈ Cw(X), and all a ∈ A(x), (y, a′) ∈ K

|Pv(x, a)− Pv(y, a′)| ≤
max{|v(x)− v(y)|, ‖v‖wψPx (d((x, a), (y, a′)))}.

(10)

H7) There exist a countable (finite or infinite) set I and
Borel disjoint sets {Xi}i∈I and X∗ such that X =
∪
i∈I

Xi ∪X∗ and

H7.i) for any ϕ ∈ Φ, Pϕ restricted to Xi is a w-
ergodic kernel with unique invariant probability
measure on Xi denoted by πϕi , i ∈ I. Therefore,
πϕi (Xi) = 1 and Xi is an absorbing set for
Pϕ. Moreover, assume that there exist moments
Mi ≥ 1 defined on Xi for i ∈ I such that for all
i ∈ I

sup
ϕ∈Φ

∫
Xi

Mi(x)πϕi (dx) <∞. (11)

H7.ii) there exists operators S∗ ∈ B(Cw(X∗)) and Si ∈
B(Cw(Xi),Cw(X∗)), i ∈ I, with S∗ invertible,
and for each f ∈ F there exists an operator Rf ∈
B(Cw(X∗)) with Rf invertible, such that

rσ(RfS∗ + I) < 1 (12)

and for any function v ∈ Bw(X), we have for
every x ∈ X∗ that

P f IXi
v(x) = RfSivXi

(x), (13)

P f IX∗v(x) = (RfS∗ + I)vX∗(x). (14)

H8) For each i ∈ I, Ki := {(x, a)|x ∈ Xi, a ∈ A(x)} is a
measurable set of X×A and if Di is a compact subset
of Xi then

Di := {(x, a)|x ∈ Di, a ∈ A(x)} (15)

is a relatively compact set of Ki.
H9) For each i ∈ I, introduce the real-valued mapping ai

defined on X∗ by

ai(x) = −S−1
∗ Si1Xi

(x). (16)

We assume that for each i ∈ I the functions Fi(x, a)
defined as

Fi(x, a) := P (Xi|x, a) +

∫
X∗

ai(y)P (dy|x, a) (17)

are continuous on K and the mapping defined on K by
(x, a) →

∑
j∈I

Fj(x, a)w(j) is upper semicontinuous

on K where w(i) = inf
x∈Xi

w(x). Furthermore we

assume that for every (x, a) ∈ K,∑
j∈I

Fj(x, a)w(j) ≤ w(x). (18)

Remark 2.3: If the cost function c is bounded by a con-
stant then we can set w = 1X and (18) is automatically
satisfied.

Remark 2.4: From (7) it is easy to see, by taking ε = 0,
that

sup
a∈A(x)

Pw(x, a) ≤ w(x) (19)

and, from (3), that

sup
a∈A(x)

Pw(x, a) ≤
(

1 +
1

ε0

)
w(x). (20)

Remark 2.5: From hypothesis H3) it follows that∥∥V ε∥∥
w
≤ c0

β since that

|V ε(x, π)| ≤ ε
∞∑
t=0

(1− βε)tc0w(x) =
c0
β
w(x).

Remark 2.6: From assumption H6) it follows that the
transition law P is weakly continuous on K, that is, for
every v ∈ Cw(X) the function Pv(x, a) is continuous in K.
Similarly from assumption H5) we have that Pv is weakly
continuous on K.

Definition 2.7: For each i ∈ I, Φi denotes the set of all
stochastic kernels ϕ in P(A|Xi) such that ϕ(A(x)|x) = 1 for
all x ∈ Xi. Similarly Fi stands for the set of all measurable
functions f : Xi → A, satisfying that f(x) ∈ A(x) for all
x ∈ Xi.

Definition 2.8: For i ∈ I, Pi(K) denotes the set of
probability measures µϕ ∈ P(K) such that for B ∈ B(K)

µϕ(B) =

∫
Ki ∩B

ϕ(da|x)πϕi (dx) (21)

for some ϕ ∈ Φi (notice that according to assumption H7),
πϕi is uniquely defined by ϕ).
For i ∈ I, the set of the restrictions of probability measures
of Pi(K) to B(Ki) is denoted by Pi.

Definition 2.9: For each i ∈ I, consider a sequence
{ϕn} in Φi. Then, {ϕn} converges to ϕ if the sequence
of probability measures {µϕn} in P(Ki) converges weakly
to µϕ.

III. AUXILIARY RESULTS

Related to the definitions in the previous section, we have
the following proposition showing the compact property of
the relaxed control set.

Proposition 3.1: For each i ∈ I, Pi (respectively, Pi(K))
is a compact set of P(Ki) (respectively, P(K)) in the
topology of the weak convergence of measures.
Proof: See [12]. 2

An important corollary from the previous proposition is as
follows.

Corollary 3.2: Consider a sequence {ϕn} in Φi for i ∈ I.
Then there exists a subsequence of {ϕn} that converges in
Φi.
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Proof: It follows from Proposition 3.1. 2

Throughout the paper whenever we consider a sequence
{ϕn} in Φi we set the sequence µn(B × C) =∫
B
ϕn(C|x)πϕn(dx), so that µn ∈ Pi. From Corollary

3.2 there exists a subsequence of {µn}, still denoted by
{µn}, and some µ ∈ Pi, such that µn ⇒ µ. We write
µ(B × C) =

∫
B
ϕ(C|x)πϕ(dx) for some ϕ ∈ Φi.

Proposition 3.3: For any i ∈ I and {ϕ} in Φi, π
ϕ
i w =

w(i) and w = w(i), πϕi − a.s. on Xi. Consider a sequence
{ϕn} in Φi. Then there exists a subsequence still denoted
by {ϕn} and ϕ ∈ Φi such that {ϕn} converges to ϕ and
limn→∞ πϕn

i cϕn = πϕi c
ϕ.

Proof: See [12]. 2

The next technical result characterizes some properties of the
mappings ai for i ∈ I defined in equation (16) that will be
used to prove the main results of the paper.

Proposition 3.4: The mappings ai for i ∈ I defined in
(16) are positive and belong to Cw(X∗), and for any x ∈ X∗,∑
i∈I ai(x) = 1.

Proof: See [12]. 2

IV. PROPERTIES OF THE VALUE FUNCTION FOR THE
PERTURBED MDP

From Theorem 8.3.6 in [13] V ε is the unique solution
vε ∈ Bw(X) satisfying

vε(x) = min
a∈A(x)

(
εc(x, a) + (1− βε)P εvε(x, a)

)
(22)

and moreover there is a measurable selector f ε ∈ F such
that f ε(x) ∈ A(x) attains the minimum in (22) for every
x ∈ X . Thus for any sequence {εn}, there is for each n a
measurable selector fn ∈ F such that

vεn(x) = εn

(
cfn(x) + (1− βεn)Gfnvεn(x)

)
+ (1− βεn)P fnvεn(x). (23)

This section is devoted to show some crucial convergence
results of {V ε} as ε ↓ 0 and that the limit function will
satisfy an optimality equation. We start with Proposition 4.1,
showing the equicontinuity of the family {V ε} in Cw(X),
and Proposition 4.2, which states that the infimum and
supremum of {V ε} are also in Cw(X). In Proposition 4.3
we have an important result showing that, for a sequence
{εn} ↓ 0, we have the convergence of V εn(x) to a constant
value for x ∈ Xi and a linear combination of ai(x) for x ∈
X∗. The section is concluded with the crucial Propositions
4.4 and 4.5 which show that the limit of the value function
satisfy an optimality equation that will be used in the next
section for the limit control problem. It is also shown the
existence of deterministic δ-optimal solutions. We begin with
the equicontinuity result.

Proposition 4.1: For 0 < ε ≤ ε0, the family {V ε} in
Cw(X) is equicontinuous and ‖V ε‖w ≤ c0

β .
Proof: See [12]. 2

The following auxiliary result states that the infimum and
supremum of the value functions of the perturbed MDP are
in Cw(X).

Proposition 4.2: Consider a sequence {εn} ↓ 0 and set
Uk(x) = infn≥k v

εn(x), Vk(x) = supn≥k v
εn(x). Then

Uk ∈ Cw(X) and Vk ∈ Cw(X).
Proof: See [12]. 2

From the previous propositions we have the following impor-
tant result, showing the convergence of V εn(x) to constant
values for x ∈ Xi and a linear combination of ai(x) for
x ∈ X∗.

Proposition 4.3: For any sequence {γn} ↓ 0, there
exists a subsequence {εn} ↓ 0 and constants v0

i such
that limn→∞ V εn(x) = v0

i for each x ∈ Xi, and
limn→∞ V εn(x) =

∑
i∈I v

0
i ai(x) for each x ∈ X∗, where

the mappings ai(x) are defined in equation (16).
Proof: See [12]. 2

From the previous propositions we have the following in-
equality.

Proposition 4.4: For any sequence {γn} ↓ 0, the constants
{v0
i }i∈I associated to a subsequence {εn} as defined in

Proposition 4.3 satisfy

(1 + β)v0
i ≤

inf
ϕ∈Φi

(
πϕi c

ϕ +

∫
Xi

∫
A(x)

Pv0(x, a)ϕ(da|x)πϕi (dx)
)

(24)

Proof: See [12]. 2

The reverse inequality and the existence of δ-optimal deter-
ministic controls is established in the next proposition.

Proposition 4.5: For any sequence {γn} ↓ 0, consider the
subsequence {εn} ↓ 0 as defined in Proposition 4.3 and
the associated constants {v0

i }i∈I . For each n let fn ∈ F
be a measurable selector such that (23) is satisfied and set
ϕn ∈ Φi such that ϕn(fn(x)|x) = 1 and µn(B × C) =∫
B
ϕn(C|x)πϕn(dx). Then for some subsequence of {µn},

still denoted by {µn}, and some µ̂ ∈ Pi, we have that
µn ⇒ µ̂, where µ̂(B × C) =

∫
B
ϕ̂(C|x)πϕ̂(dx) for some

ϕ̂ ∈ Φi and the following results hold:

a) lim
n→∞

∫
Xi

∫
A(x)

PV εn(x, a)ϕn(da|x)πϕn

i (dx) =∫
Xi

∫
A(x)

Pv0(x, a)ϕ̂(da|x)πϕ̂i (dx), (25)

b) lim
n→∞

∫
Xi

∫
A(x)

Pv0(x, a)ϕn(da|x)πϕn

i (dx) =∫
Xi

∫
A(x)

Pv0(x, a)ϕ̂(da|x)πϕ̂i (dx), (26)

c) (1 + β)v0
i = πϕ̂i c

ϕ̂

+

∫
Xi

∫
A(x)

Pv0(x, a)ϕ̂(da|x)πϕ̂i (dx), (27)

d) (1 + β)v0
i =

min
ϕ∈Φi

(
πϕi c

ϕ +

∫
Xi

∫
A(x)

Pv0(x, a)ϕ(da|x)πϕi (dx)
)

=

inf
f∈Fi

(
πfi c

f +

∫
Xi

∫
A(x)

Pv0(x, f(x))πfi (dx)
)

(28)

where the real mapping v0 defined on X is given by v0(x) =
v0
i if x ∈ Xi, and v0(x) =

∑
j∈I aj(x)v0

j if x ∈ X∗.
Proof: See [12]. 2
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V. THE LIMIT CONTROL PROBLEM

The goal of this section is to formulate the limit control
problem and to show that its value function coincides with
v0. We first present the limit control problem. Let us define

pµij =∫
Ki

[
P (Xj |x, a) +

∫
X∗

aj(y)P (dy|x, a)
]
µ(dx, da), (29)

for all (i, j) ∈ I2, µ ∈ Pi(K). From Proposition 3.4, pµij ≥ 0
and

∑
j∈I p

µ
ij = 1. Moreover, by using Assumption H9),

the function µ→ pµij defined on Pi(K) is continuous for all
(i, j) ∈ I2. Therefore, the mapping p :

(
∪
j∈I
{j}×Pj(K)

)
×

2I → [0, 1] defined by

p(i, µ,B) =
∑
j∈B

pµij (30)

for i ∈ I, µ ∈ Pi(K) and B ∈ 2I is a stochastic kernel on
I given ∪

j∈I
{j} × Pj(K).

Introduce now the following parameters of the limit MDP:
• the state space is defined by I equipped with the

discrete topology,
• the action set is given by P(K) equipped with the

topology of weak convergence,
• the set of feasible actions in the state i ∈ I is Pi(K) ⊂
P(K),

• the transition law is given by the stochastic kernel p
defined in (30),

• the cost is defined by

g(i, µ) =
1

1 + β

∫
Ki

c(x, a)µ(dx, da), (31)

for i ∈ I and µ ∈ Pi(K).
Note that for the limit control problem the set of feasible
actions in the state i ∈ I is defined by Pi(K) while
for the original control problem it is defined by Φi. The
reason for such definition is mainly technical, in particular
for ensuring the measurability of the transition kernel and
the cost function with respect to the control. We have the
following remarks, collecting some properties on the limit
MDP.

Remark 5.1: i) From Proposition 3.1, Pi(K) is a compact
set of P(K). ii) Since c is continuous on K, the cost g is
continuous on ∪

j∈I
{j}×Pj(K). iii) For every u ∈ B(I) and

i ∈ I, the mapping µ →
∑
j∈I

ujp
µ
ij defined on Pi(K) is

continuous (see the remark on page 44 in [13])).
Remark 5.2: From (6), (18) and Assumption H9) we have

that the mapping µ →
∑
j∈I

pµijw(i) defined on Pi(K) is

continuous.
Definition 5.3: The set of all measurable functions λ :

I → P(K), satisfying that λi ∈ Pi(K) for every i ∈ I
is denoted by Λ. Define E0 = X and En =

(
∪
j∈I
{j} ×

Pj(K)
)
× En−1 for n ≥ 1. Let (Ω0,F0) be the canonical

space consisting of the sample path Ω = (I × P(K))∞ and
the associated σ-algebra F0. Consequently, for any control
λ ∈ Λ and any i ∈ I, it can be defined a probability,
labeled Pλi , and a stochastic processes {(yt, γt)}t∈N where
{yt}t∈N is the state process and {γt}t∈N is the control
process satisfying for any B ∈ 2I , C ∈ B(P(K)), et =
(y0, γ0, . . . , yt−1, γt−1, yt) ∈ Et with t ∈ N, Pλi (y0 ∈
B) = δi(B), Pλi (γt ∈ C|et) = δλyt

(C), and Pλi (yt+1 ∈
B|et, γt) = p

λyt
ytyt+1 . The expectation with respect to Pλi is

denoted by Eλi .
Consider the following countable MDP problem:

Vi(λ) =

∞∑
k=0

αkEλi
[
g(yk, λyk)

]
, (32)

Vi = inf
λ∈Λ

Vi(λ). (33)

where α = 1
1+β < 1.

We have the following theorem.
Theorem 5.4: For any y ∈ X , lim

ε→0
V ε(y) = V 0(y) where

V 0(x) = V 0
i for x ∈ Xi and V 0(x) =

∑
i∈I

V 0
i ai(x) for

x ∈ X∗ and the constants {V 0
i }i∈I are the unique solution

of the optimality equation

V 0
i = min

µ∈Pi

(
g(i, µ) + α

∑
j∈I

pµijV
0
j

)
(34)

associated to the MDP problem defined in equations (32)-
(33).
Proof: See [12]. 2

VI. ASYMPTOTIC CONTROL

The goal of this section is to develop a feedback control
policy for the original problem using the optimal feedback
control policy for the limit problem, and show that this
control policy is asymptotically optimal. This result is in
the same spirit as Theorem 9.9 of [7], although the tools for
deriving it are different. According to Theorem 8.3.6 in [13]
we can find an optimal selector for the problem (34), that
is a measurable mapping µ̂ : I → P(K) such that for all
i ∈ I, µ̂i ∈ Pi(K) and

V 0
i = g(i, µ̂i) + α

∑
j∈I

pµ̂i

ij V
0
j . (35)

Since, µ̂i ∈ Pi(K), there exists ϕ̂i ∈ Φi such that
µ̂i(B) =

∫
Ki ∩B ϕ̂i(da|x)πϕ̂i

i (dx). Let Φ∗ denote the set of
all stochastic kernels ϕ in P(A|X∗) such that ϕ(A(x)|x) = 1
for all x ∈ X∗. Choose an arbitrary ϕ̂∗ ∈ Φ∗ and define the
stochastic kernel ϕ̂ ∈ Φ as follows:

ϕ̂(.|x) =
∑
i∈I

ϕ̂i(.|x)1Xi
(x) + ϕ̂∗(.|x)1X∗(x).

Define also ĉ(x) = cϕ̂(x), P̂ v(x) = P
ϕ̂
v(x), Ĝv(x) =

Gϕ̂v(x), P̂ v(x) = P ϕ̂v(x), π̂i = πϕ̂i . We need 2 assump-
tions. The first one assumes that P̂ restricted to Xi is an
wXi

-geometric ergodic kernel, instead of just w-ergodic as it
was supposed in H7.i). The second one assumes that H7.ii)
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holds also for ϕ̂ (if ϕ̂ is deterministic then it is automati-
cally satisfied by assumption H7.ii)). More specifically, the
assumptions are:

HC1) For each i ∈ I there exists χi > 0 and 0 < %i < 1
such that

‖P̂ k − π̂i‖wXi
≤ χi%ki , ∀k = 0, 1, . . . . (36)

HC2) Consider the operators S∗ ∈ B(Cw(X∗)) and Si ∈
B(Cw(Xi),Cw(X∗)), i ∈ I, as in assumption H7.ii).
We suppose that there exists an operator R̂ ∈
B(Cw(X∗)) with R̂ invertible, such that

rσ(R̂S∗ + I) < 1 (37)

and for any function v ∈ Bw(X), we have for every
x ∈ X∗ that

P̂ IXiv(x) = R̂SivXi(x), (38)

P̂ IX∗v(x) = (R̂S∗ + I)vX∗(x). (39)

For 0 < ε < ε0 fixed denote by V̂ ε the cost (5) associated
to the strategy ϕ̂. Define P̂ ε = P̂ +εĜ. From Theorem 8.3.6
in [13], V̂ ε is the unique solution v̂ε ∈ Bw(X) satisfying

v̂ε(x) = εĉ(x) + (1− βε)P̂ εv̂ε(x). (40)

Set for each i ∈ I,

V̂sup = lim sup
ε↓0

V̂ ε, V̂inf = lim
ε↓0

V̂ ε, (41)

V̂sup,i = sup
z∈Xi

V̂sup(z). (42)

We want to show next that V̂sup(x) = V̂inf(x) = V 0
i (x)

for all x ∈ X , where V 0(x) is as defined in Theorem 5.4.
In order to do that we need the following auxiliary results.

Proposition 6.1: For each i ∈ I,

V̂sup = V̂sup,i, π̂i − a.s. on Xi, (43)

V̂sup(x) ≤
∑
i∈I

V̂sup,iai(x), for x ∈ X∗. (44)

Proof: See [12]. 2

In the next proposition we set `ε(x) = ĉ(x) +(1 −
βε)ĜV̂ ε(x). From (6), Remarks 2.4 and 2.5, we get that
|`ε(x)| ≤ ĉ0w(x) where we have defined ĉ0 = c0 + c0

β

(
2 +

1
ε0

)
. Thus we can conclude that ‖`ε‖w ≤ ĉ0. We have the

following result.
Proposition 6.2: Fix i ∈ I and z ∈ Xi. We have for every

x ∈ Xi and k = 0, 1, . . . that,

|P̂ k`ε(x)− P̂ k`ε(z)| ≤ ĉ0χi%ki (w(x) + w(z)). (45)
Proof: See [12]. 2

For each i ∈ I choose zi ∈ Xi such that V̂sup(zi) = V̂sup,i

(this is possible as seen in (43)). Define now for 0 < ε < ε0
the functions hε on Xi as follows: hε(x) = 1

ε

(
V̂ ε(x) −

V̂ ε(zi)
)

. We have the following result:
Proposition 6.3: For every x ∈ Xi,

|hε(x)| ≤ ĉ0χi
1− %i

(
w(x) + w(zi)

)
. (46)

Proof: See [12]. 2

The next result shows that in fact the equality in (43) holds
for every x ∈ Xi and, moreover, lim supε↓0 π̂iV̂

ε = V̂sup,i.
Proposition 6.4: Consider i ∈ I and x ∈ Xi. The

following assertions hold: a) V̂sup(x) = V̂sup,i and b)
lim supε↓0 π̂iV̂

ε = V̂sup,i.
Proof: See [12]. 2

Finally we have the next result which shows that
V̂sup(x) = V̂inf(x) = V 0

i (x) for all x ∈ X , where V 0(x)
is as defined in Theorem 5.4.

Proposition 6.5: Consider V 0(x) as defined in Theorem
5.4. We have that for all x ∈ X ,

V̂sup(x) = V̂inf(x) = V 0(x). (47)
Proof: See [12]. 2

Combining Proposition 6.5 and Theorem 5.4 we have the
following theorem, showing that ϕ̂ is asymptotically optimal.

Theorem 6.6: For each x ∈ X , lim
ε↓0
|V̂ ε(x)− V ε(x)| = 0.

Proof: See [12]. 2
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