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Abstract— We consider LQR control for a scalar system when
the sensor, controller, and actuator all have their own clocks that
may drift apart from each other. We consider both an affine
and a quadratic clock model. For a quadratic cost function,
we analyze the loss of performance incurred as a function of
how asynchronous the clocks are. This also allows us to obtain
guidelines on how often to utilize the communication resources
to synchronize the clocks.

I. INTRODUCTION

Synchronicity is a basic assumption in most control liter-
ature. As networked and embedded control systems become
more popular, this assumption may no longer hold. Clocks
on different microprocessors seldom agree with each other.
If sensors, controllers and actuators are time driven, this
difference may significantly impact performance, or even
lead to instability. In both distributed systems studied in com-
puter science, and in communication networks, asynchronous
clocks have long been identified as a major research issue.

Much of the work in distributed processing literature on
asynchronous systems has focused on partial ordering of
events (see, e.g., [15]). In control, such solutions may not be
enough since precise timing is usually required [8]. Event
driven paradigms in control such as petri nets (e.g., [21]
and the references therein) explicitly include asynchrony.
However, for time-driven systems, such modeling may not
always be possible. For communication networks, protocols
such as the network time protocol (NTP) have been devel-
oped to maintain clock synchronization. Similar protocols
have also been developed using public transmitted signals,
such as GPS. However, such solutions are expensive, incur
communication overheads especially in distributed systems,
and can only maintain limited accuracy (e.g., up to 10 ms
mean accuracy for GPS based clocks as reported in [17]),
that may not be enough for complex dynamical systems.

In works such as [4], [20], it was experimentally demon-
strated that a higher precision in time-synchrony of GPS re-
ceiver and satellite clocks leads to better vertical estimates at
the receiver. Control performance can be similarly expected
to improve with better accuracy in clock synchronisation.
Complementarily, the work in [18] demonstrated that asyn-
chrony can lead to instability of an otherwise stable system.
That work considered an affine model of the clock in which
the time displayed by the clock reads as

τ(t) = at+ b, (1)

where t can be the time read from any other clock, and
need not be assumed to be some ‘true’ time. The parameter

Department of Electrical Engineering, University of Notre Dame, Notre
Dame, IN, 46556. {rsingh1,vgupta2}@nd.edu.

a is due to the frequency mismatch of the two clocks,
and b is due to the initial phase offset. The work in [18]
also showed that for such affine clocks and with rational
a, the system evolves as a periodic system, and in general,
there is no explicit criterion for checking the asymptotic
stability other than computing the spectral radius over one
period. Similarly, the work in [16] showed that some basic
control results fall apart when time cannot be perfectly
measured. Stability of asynchronous systems is not trivial
and interesting problems remain [1], [14]. [26] proves a
stronger version of the necessity part of the classical Chazan-
Miranker theorem. The work in [11] introduces a Lyapunov-
based theory for asynchronous dynamical systems and LMI
and BMI formulations to construct Lyapunov functions and
controllers for asynchronous systems. The work in [7] studies
passivity properties of asynchronously non-uniformly sam-
pled systems, and uses the concept of Maximum Sampling
time preserving Passivity (MASP) to design controllers for
feedback systems that are interconnected via time-varying
and asynchronous sampling. Recent advances in the field in-
clude the works [8], [9], which studied the fundamental limits
on synchronization of networked affine clocks and showed
that even for the most favorable case of noiseless sampling,
it is impossible to synchronize affine clocks precisely. Many
clock synchronization algorithms have been proposed in
the robotics literature, e.g., [10], [25], [5], [27]. However,
an analysis of how much synchronization is required to
guarantee specified control performance is still missing. We
should also mention the works on multi-rate sampling, which
considers the related problem when different components of
the control loop are sampled at different (although usually
both constant and known) rates, possibly not at the same
time [24], [3], [12] (see also related works in [13], [2]).

Inspite of these significant works, a full understanding
of the impact of asynchrony on performance achievable
from a control loop is lacking. In particular, since synchro-
nization consumes system resources that may be otherwise
utilized for control, the frequency and accuracy of clock
synchronization needs to be adjusted to optimize the overall
system performance. In this paper, we analytically charac-
terize the performance loss that asynchrony may induce for
a basic LQR problem. We also consider the question of
how accurately do the clock parameters need to be known
to limit the performance degradation to a desired level.
For a given synchronization algorithm, such relations may
provide guidelines on how much resources to devote to
synchronization, as opposed to controlling the system with
asynchronous clocks.

The paper is organized as follows. We begin by formu-
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lating the problem and stating our assumptions. In Sec-
tion III-A, we characterize the performance degradation
due to asynchrony for the affine clock model. Section III-
B introduces the notion of “asynchronous sequence”, and
shows that infinite horizon performance for certain class of
systems continuously degrades with increasing asynchrony.
In section IV, we characterize the performance degradation
for the infinite horizon LQR cost for various clock models.

II. PROBLEM FORMULATION

Process Model and Cost: Consider a discrete time pro-
cess evolving as

xk+1 = Axk +Buk, k ≥ 0, (2)

where the state xk ∈ R, the control input uk ∈ R, and B 6= 0.
In the synchronous case, the sensor measures and transmits
xk at times kTs, where k ≥ 0 and Ts is a known sampling
time. The controller calculates the control input at times
kTs using the latest value of the state. Finally, the actuator
applies this control value at times (k + 1)Ts to enable the
process to evolve according to (2). In the asynchronous case,
the control uk is generated by a remote controller whose
clock Cc may differ from the clock Cp that is shared by the
sensor and the actuator. The sensor and the actuator act at
times given by kTs according to Cp, while the controller
updates its inputs at times kTs according to Cc. We use
the term “cycle” to denote the intervals (kTs, (k + 1)Ts) for
either clock. Both the controller and actuator are modeled as
maintaining a buffer of unit length that is used to store the
latest measurement that was received from the sensor, or the
latest control input received from the controller, respectively.
Thus, e.g., if the sensor generates two measurements in
one cycle of the controller’s clock, then only the second
measurement is stored and used by the controller, and the first
measurement is deleted. Once a buffer input is used by the
controller or the actuator, it is deleted from the corresponding
buffer. An empty buffer when queried returns the value 0,
which is indistinguishable from an actual measurement or
control with value 0. We assume that the controller is not
able to change the clock of process, or its own clock. The
control input is calculated to minimize the cost

J∞(x0) =
∞∑
k=0

(
x2
kQ+ u2

kR)
)
. (3)

Clock Model: We consider two clock models in this work.
- Affine Clocks: The simplest model of clocks (e.g., [9],
[18]) is an affine clock, in which each clock is described
by (1). We will write the sensor (or actuator) clock in
terms of the controller clock, so that the relation between
the two clocks is given by

tsensor = atcontroller + b. (4)

The parameter a is time-invariant and is called the skew
or relative frequency. The skew a may be lesser than or
greater than 1 (corresponding to a slower or a faster sensor
clock), but is positive. In this work, we assume that a

is rational. The parameter b is called the phase offset or
the initial phase. For a < 1

2 , the controller calculates two
control inputs per system transition. Thus, in keeping with
the assumptions stated earlier, for the second control input,
since no new sensor measurement has been received, the
control input calculated is 0. Thus, the process evolves
open-loop forever. Accordingly, we assume a > 0.5.
- Quadratic Clocks: In this model, the relation between the
two clocks is given by

tsensor = at2controller + btcontroller + c, (5)

where c is the initial phase of the sensor clock with respect
to Cc, while a and b are sensor clock parameters.

Although we focus on a quadratic clock model in this work,
similar arguments can be carried out for higher order models.
In general, the controller may not be aware of the exact order
of the clock. A reasonable policy in that case is to assume
that Cp is affine and try to estimate its parameters periodically
via exchange of time stamps.

Notation: We define {l, r} = {x|x ∈ Z+, r ≥ x ≥ l} .
The set of positive integers is denoted by Z+ and the set of
reals by R.

III. PRELIMINARY RESULTS

A. Performance with affine clocks

We begin by characterizing the performance degradation
that is suffered when the clocks are affine and the con-
troller has been designed assuming synchronous operation.
The skew and the phase offset degrade the performance in
different ways. If the phase offset b 6= 0, then the process
and the controller begin at different times. In particular, if
b > 0, then the process begins before the controller. In this
case, if we express b = (l + b?)Ts, where l ∈ Z+ and
0 ≤ b? < 1, the process evolves without any control input for
l+ 1 steps. Similarly, if b < 0, then the process begins after
the controller. In this case, if we express b = a(l? + b?)Ts,
where −l? ∈ N and 0 < b? < 1, then the controller does not
apply any control in its first l? time steps. On the other hand,
if the skew parameter a 6= 1, then the number of control
inputs generated is different from the number of control
inputs applied to the process. In particular, if a > 1, then
there will be transitions of the process where the actuator
finds an empty buffer and applies the control input zero.
On the other hand, if a < 1, then the controller will send
more than one control input during some cycles according
to Cp. For pedagogical ease, we will assume that if a > 1,
it can be written as a = Na

Na−1 for an appropriate Na ∈ N.
Similarly if a < 1, we will assume that a can be written as
a = Na

Na+1 for an appropriate Na ∈ N. Thus, the sensor clock
will either gain (a > 1) or lose (a < 1) a time equal to Ts
after every Na steps according to Cp. The general case of a
being any other rational number is conceptually similar, but
notationally more difficult. Combining the above arguments,
we obtain the following result.

Theorem 3.1: Consider the process (2) with the associated
cost function (3), the sensor clock modeled as (4), and where
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the controller is designed assuming perfect synchronization.
The resulting cost can be expressed as x2(0)P̃0, where P̃0

can be computed as a solution of a Lyapunov equation.

B. Asynchronous Sequences

Theorem 3.1 is not very convenient to answer ques-
tions such as does the performance loss increase with the
asynchrony level. Since increasing delay can, e.g., improve
transient performance, the effect of increasing levels of
asynchrony are not trivial. We now develop an alternate
technique to this end. We assume that the control law F
is given and make the following additional assumption:

Assumption A1: A2
c ≤ A2, where Ac , A+BF.

Note that, unless otherwise stated, we make no assumption
about the clock model.

Asynchrony degrades performance since it leads to the
process evolving in open loop at some instances. If we
consider the clocks to evolve from the time when Cp reads
0, then all instances when Cp completes its one cycle without
any occurence of Cc completing its cycle, or vice versa, are
instances at which the process evolves open-loop. We collect
the times at which such transitions occur, as displayed by Cp,
in a sequence that we term an asynchronous sequence.

Definition 3.1: Consider a sequence S = {Sk}Nk=1 where
Sk ∈ N denotes the k-th element of the sequence, and Sk <
Sk+1. For the process in (2) and a given control law F , let
the system evolve as

xk+1 =

{
(A+BF )xk k ∈ N \ S
Axk k ∈ S.

(6)

If the number of steps in which process evolves without
a control input is finite (say N − 1), then let SN = ∞.
Then, S is an asynchronous sequence corresponding to the
process (2).

To compare two clocks, we will compare asynchronous
sequences that arise due to these clocks for the same process.
To this end, use the controller clock as the reference and
write the sensor clocks in terms of the controller clock.
For the i-th sensor clock, denote Si = {Sik} to be the
corresponding asynchronous sequence.

Definition 3.2: Define two asynchronous sequences S1

and S2. We denote S1 ≤ S2 if S1
k ≤ S2

k, ∀k ∈ N. Moreover,
we say that S1 < S2 if S1 ≤ S2 and S1

k < S2
k, for at least

one k ∈ N.
For two asynchronous sequences S1 and S2, S1 ≤ S2

implies that the process evolves open loop for at least the
same number of time steps with sequence S2 as with S1.

Definition 3.3: Given two asynchronous sequences S1

and S2, we say that S1 and S2 are alternating sequences
with S1 ≤ S2 if ∀k ∈ N, S1

k ≤ S2
k ≤ S1

k+1. If, in addition,
S1
k < S2

k < S1
k+1 for at least one k, then we say that S1 and

S2 alternate with S1 < S2.
Consider two sequences S1 < S2 such that S1 and S2

alternate. Let N be the cardinality of S1 (possibly N →∞).
Then, for any k < N , one and only one of the following must
be true:
• S1

k+1 > S2
k

• S2
p = S1

p+1, k ≤ p < k + l, l ≤ L for some L ∈ N
• S1

k+1 − 1 ≥ S2
k + 1

Definition 3.4: Consider two given sequences S1 < S2

such that S1 and S2 alternate. We construct three types of
sets in the following manner.

1) Initialize with k = 1 and iγ = iλ = iψ = 0.
2) If S1

k+1 > S2
k , then

• Define Γiγ+1 =
{
S1
k, S

2
k

}
.

• Increment iγ and k by 1, i.e. iγ −→ iγ + 1, and
k −→ k + 1.
else if S2

p = S1
p+1, k ≤ p < k + l, l ≤

L for some L ∈ N, then
• Set Λiλ+1 =

{
S1
k, S

2
k+L

}
.

• Increment iλ and k by 1, i.e. iλ −→ iλ + 1, and
k −→ k + 1.

else if S1
k+1 − 1 ≥ S2

k + 1, then
• Define Ψiψ+1 =

{
S2
k + 1, S1

k+1 − 1
}
.

• Increment iψ and k by 1, i.e. iψ −→ iψ + 1, and
k −→ k + 1.

3) If k = N then terminate, else repeat step 2.
These indexed sets may be empty, have finite cardinality,
or infinite cardinality. Let there be λ number of indexed
sets Λi, γ of Γi, and ψ number of Ψi sets for a given
pair of alternating sequences S1 < S2. Then, we define the
following ‘index-sets’:
• Cλ = {1, 2, . . . , λ} .
• Cγ = {1, 2, . . . , γ} .
• Cψ = {1, 2, . . . , ψ} .

Note that if the process evolves open-loop for finite number
of times in the systems, then the cardinality of sets Cλ, Cγ ,
and Cψ would be finite and the cardinality of one of the sets
Λλ, Γγ , or Ψψ would be infinity.

For the process (2) that evolves with the control sequences
that are determined by the control law F and the sensor
clock i, denote the control input applied at time k by uik
and the state value at time k by xik. With a slight abuse of
terminology, we will denote the system as it evolves with the
i-th sensor clock by system i. Define the following terms for
the system i:

- Denote by pkis the state cost at time k, pkis = (xik)2Q.
- Denote by pkic the control cost at time k, pkic = (uik)2R.
- Denote by PNis the state cost upto time N , PNis =∑N

k=0 p
k
is.

- Denote by PNic the control cost upto time N , PNic =∑N
k=0 p

k
ic.

- Denote by PNi the total cost upto time N , PNi = PNis +
PNic .
- Denote by P∞i the infinite horizon cost P∞i =
limN→∞ PNi .

Finally, denote the total control cost incurred in steps from
N1 to N2 as Pic(N2, N1) =

∑N2
k=N1

pkic.
Lemma 3.2: Consider the process (2) with the associated

cost function (3), the sensor clock modeled as (4), and where
the controller is designed assuming perfect synchronization.
Let the process evolve with two different clocks from the
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same initial condition. Let the asynchronous sequences for
the two clocks be denoted by S1 and S2 respectively, and
let the control and state values at time k for the two cases
be denoted by (u1

k, x
1
k) and (u2

k, x
2
k) respectively. Denote

by Φi(k) the transition matrix for system i till time k, so
that xik = Φi(k)x0, i = 1, 2. Let S1 and S2 alternate with
S1 < S2. Finally, define for all L ≥ 1, Λi =

[
S1
k, S

2
k+L

]
,

and S2
k+p − S1

k+p = lp+1, ∀1 ≤ p ≤ L. Then the following
statements are true:

- Claim B1: Φ2
1(i) ≥ Φ2

2(i), ∀i ∈ Z+,
- Claim B2: P1c(Γi) ≥ P2c(Γi) ,∀i ∈ Cγ ,
- Claim B3: Φ2

1(S1
k+p+1) ≥ A

2lp
c Φ2

1(S1
k+p−1), ∀L ≥ p ≥

1.
- Claim B4: A2q+1

c Φ2
1(S1

k+p+1) ≥ A2q
c Φ2

2(S1
k+p+1) for all

p and q such that lp − 1 ≥ q ≥ 0, L ≥ p ≥ 1,
- Claim B5: P1c(Λi) > P2c(Λi) ,∀i ∈ Cλ,
- Claim B6: P1c(Ψi) ≥ P2c(Ψi) ,∀i ∈ Cψ.

Proof: Omitted for space constraints.
We begin with the case when the sequences are alternating.

Lemma 3.3: Consider the process (2) with the associated
cost function (3), the sensor clock modeled as (4), and where
the controller is designed assuming perfect synchronization.
Let the process evolve with two different clocks from the
same initial condition. Let the asynchronous sequences for
the two clocks be denoted by S1 and S2 respectively, and
let the control and state values at time k for the two cases
be denoted by (u1

k, x
1
k) and (u2

k, x
2
k) respectively. If S1 and

S2 alternate with S1 < S2, then the following are true:
1) pk1s ≥ pk1s, ∀k > 0.
2) PN1s ≥ PN2s , ∀N > 0. In particular, P∞1s ≥ P∞2s .
3) P∞1c > P∞2c .
4) Assume that the process is stable under case 1. Then

P∞1 > P∞2 .
Proof:

1) Using B1, we obtain

pk1s = (x1
k)2Q = x2

0Φ2
1(k)Q ≥ x2

0Φ2
2(k)Q

= (x2
k)2Q = pk2s. (7)

2) From the first part, PN1s =
∑N
i=0 p

i
1s ≥

∑N
i=0 p

i
2s =

PN2s . Since the inequality holds for every N , taking
limits as N →∞, we obtain P∞1s ≥ P∞2s .

3) Using B2,B5 and B6, we have

P∞1c =
∑
k∈Cλ

P1c(Λk)+
∑
k∈Cγ

P1c(Γk)+
∑
k∈Cψ

P1c(Ψk)

≥
∑
k∈Cλ

P2c(Λk)+
∑
k∈Cγ

P2c(Γk)+
∑
k∈Cψ

P2c(Ψk) = P∞2c .

4) Using the second and third part of this lemma, we
obtain P∞1 = P∞1c + P∞1s ≥ P∞2c + P∞2s = P∞2 .

Remark 1: Although we have concentrated on the infinite
horizon cost, similar arguments can be made for finite
horizon costs, as long as the horizon is long enough. In fact,
given the sequences S1 and S2, one can determine the value
N? such that ∀N > N?, N ∈ N, PN1 > PN2 holds.

We can now compare the performance of the process with
any two asynchronous sequences that can be ordered, even
if they are not alternating. If S1 < S2, then the sequences
must belong to exactly one of the following cases:

- Type T1: S1, S2 alternate with S1 < S2.
- Type T2: The sequences are not alternating, but there is
atleast one element of S1 between any two consecutive
elements of S2, i.e. ∃ at least one j ≥ k such that S2

k ≤
S1
j ≤ S2

k+1, ∀k ∈ N.
- Type T3: There is at least one k ∈ N such that S1

j <
S2
k ≤ S2

k+1 < S1
j+1 with j ≥ k + 1.

For sequences of type T2, consider the following algorithm
to generate an additional sequence Ṽ .

Algorithm 3.1: 1) Initialize with k = 1.
2) Let H =

{
S1
j , . . . , S

1
j+p

}
, where S2

k ≤ S1
j < S1

j+p ≤
S2
k+1. Set Ṽk = S1

j and k = k + 1.
3) Repeat step 2 ∀k ∈ N.
Lemma 3.4: Algorithm 3.1 guarantees P∞1 ≥ Pṽ ≥ P∞2 .

Proof: By construction, Ṽ and S2 are alternating
sequences with Ṽ ≤ S2. Thus, Lemma 3.3 yields P∞ṽ ≥
P∞2 . Moreover, by construction, Ṽ ⊆ S1. Thus, Assumption
A2 yields P∞1 ≥ P∞ṽ . Thus, P∞1 ≥ P∞2 .
For sequences of type T3, consider the following algorithm
to generate an additional sequence V .

Algorithm 3.2: 1) Initialize V = S1.
2) Pick the smallest k for which Vj < S2

k, j > k holds.
Set K = k. Furthermore, for this K pick the largest j
satisfying Vj < S2

k . Set J = j.
3) Set Wi = Vi, ∀i < J.
4) Identify the set B =

{
S2
l , S

2
l+1

}
, B ⊂ N, where l

is the smallest natural satisfying Vi < S2
l ≤ S2

l+1 <
Vi+1, for some i ∈ N. Set I = i. Pick any b ∈ B.

5) Set Wi = Vi+1, ∀J ≤ i < I . Set WI = b.
6) Set Wi = Vi,∀i > I
7) Set V = W , W = φ (the empty set).
8) Repeat above steps till V and S2 are related with each

other in type T2.
Lemma 3.5: Algorithm 3.2 guarantees that V and S2 are

of Type T2 with V < S2, and S1 and V alternate with
S1 < V .

Proof: The proof follows simply by construction since
after each iteration V is alternating with respect to the output
of the previous iteration.

Remark 2: Algorithm 3.2 is illustrated with an example.
Let S1 = {2, 3,∞} and S2 = {4, 5,∞}, so that they belong
to T3. In the first iteration of the algorithm, we set V = S1,
K = 1, J = 2. Thus, W1 = V1 = 2 leading to B = {4, 5}.
This in turn implies that I = 2. We choose b = 4. Thus,
W2 = 4 (case of I = J) and W3 = ∞. At the end of the
iteration, we set V = W .
Hence we obtain V = {2, 4} which clearly is of type T2 with
respect to S2. Also note that in each iteration, the algorithm
generates a sequence which is alternating with respect to the
previous output of iteration. Hence P∞1 ≥ Pv .

Theorem 3.6: Consider the process (2) with the associated
cost function (3), the sensor clock modeled as (4), and where
the controller is designed assuming perfect synchronization.

3151



Let the process evolve with two different clocks from the
same initial condition. Let the asynchronous sequences for
the two clocks be denoted by S1 and S2 respectively. If
S1 < S2, then P∞1 ≥ P∞2 .

Proof: If S1 < S2, then the sequences must belong to
exactly one of the following cases:

- Type T1: In this case, application of Lemma 3.3 directly
yields P∞1 ≥ P∞2 .
- Type T2: In this case, we can generate a sequence Ṽ using
Algorithm 3.1 such that P∞1 ≥ Pṽ ≥ P∞2 .
- Type T3: In this case, we generate a sequence V using
Algorithm 3.2. Since V and S2 are of Type T2, Pv ≥
P∞2 . Since V and S1 alternate with S1 < V , P∞1 ≥ Pv.
Combining the two, we obtain P∞1 ≥ P∞2 .

In the next section, we apply the concept of asynchronous
sequences to compare the performance of systems with
different asynchronous clocks.

IV. PERFORMANCE COMPARISON

A. Affine Clocks

In this section, we focus on affine clocks of the form (4).
With a rational skew a, the process evolves as a periodic
system. Thus, e.g., if a = Na

Na−1 (and b = 0), the system
evolves as

xk+1 =

{
Axk k = lNa − 1, l ∈ N
Acxk otherwise.

Stability conditions of periodic systems cannot usually be
written in terms of individual matrices separately. However,
in our case, we have the following result.

Theorem 4.1: Consider a process of the form (2) with an
LQR control law designed assuming synchrony and where
the sensor clock is affine modeled as in (4) with rational a.
Then the stability of the system depends only on the value of
the skew a, and is independent of any finite phase parameter
b. Moreover, if the process is stable with skew a1, then it
remains stable with skew a2 if either a1 ≥ a2 ≥ 1 or a1 ≤
a2 ≤ 1.

Proof: Omitted for space constraints.
While the above result implies that the stability of the process
does not depend on the value of b, the performance does
depend on the parameter. To compare the performance with
two different clocks, we proceed as follows. We introduce
the following notation

b =

{
−aTs(γ − ϕ), γ ∈ N, 0 < ϕ < 1, if b < 0,
Ts(l + b?), l ∈ Z+, 0 < b? < 1, if b ≥ 0.

When b ≥ 0, for all l ∈ Z+, define the sets bl =
{lTs, (l + 1)Ts} . Finally, denote by P∞(a, b), the infinite
horizon LQR cost achieved with a system in which the sensor
clock has skew a and initial phase b.

Theorem 4.2: Consider two systems with affine clocks of
the form (4), with rational skews a1 and a2, and initial phases
b1 and b2, respectively. Let bi = −aiTs(γi − ϕi) if bi < 0
and bi = Ts(li+b?i ) if bi ≥ 0. Then, the following hold true:

1) ResultR1: P∞(a1, b) > P∞(a2, b), ∀b, if either a1 >
a2 ≥ 1, or a1 < a2 ≤ 1.

2) Result R2: P∞(a, b1) ≥ P∞(a, b2), if
a) (a > 1) and ((b1 > b2 ≥ 0,) or (b1, b2 < 0 and

ϕ1 > ϕ2)). Also, the relation holds with equality
if ϕ1 = ϕ2.

b) (a < 1) and ((b1, b2 > 0 and l1 > l2,) or (b1, b2 >
0 and b?1 < b?2 and b1, b2 ∈ bl for some l ∈ N,)
or (if b1, b2 < 0, ϕ1 < ϕ2)).

3) Result R3: When ϕ1 = ϕ2 = 0, then P∞(a, b1) =
P∞(a, b2) = P∞(a, 0).

Proof: Omitted for space constraints.

B. Performance Bounds Under Uncertainity
Various synchronization algorithms may yield not the

exact values of the parameters a and b, but rather a range of
values for them. It may even be the case that the ranges
progressively decrease as more communication resources
are spent on synchronization. It is thus of interest to find
conditions under which knowing the parameter within a
given range can yield acceptable control performance, and
thus, further synchronization need not be performed.

We begin when the clocks are affine in reality and the
controller knows that the true values of the parameters a
and b satisfy a?1 ≤ a ≤ a?2 and b?1 ≤ b ≤ b?2, respectively.
The controller can correct for a specific skew â and phase b̂
in this range. The performance of the system is then identical
to the case when the controller assumes the skew to be unity
and the phase parameter to be zero, while the true skew and
phase lie in the sets [a

?
1
â ,

a?2
â ] and [b?1 − b̂, b?2 − b̂] respec-

tively. Thus, the characterization of how much accuracy is
needed in knowing the parameters of the clocks, and the
decision of which parameter values the controller should
correct for, can be answered by characterizing the worst
performance realized by the system when the control law
is designed assumed synchrony, and the true values of the
clock parameters a and b lie in the uncertainity set U , i.e.
U = {(a, b) |a ∈ [a1, a2] , b ∈ [b1, b2]} . Accordingly, denote
by P∞(a, b) the infinite horizon cost realized when the clock
skew is a and the initial phase offset is b, which can be
computed using Lemma 3.1. We denote the upper-bound
on performance associated with an uncertainty set U by
P∞ (U), i.e.,

P∞(U) = maxa∈[a1,a2],b∈[b1,b2]P
∞ (a, b) .

Theorem 4.3: Consider a process of the form (2) with an
affine clock with skew a and offset b that satisfy a1 < a < a2

and b1 < b < b2, respectively.
- If a1 > 1, then P∞ (U) = P∞(a2, b2).
- If a2 < 1 then

P∞ (U) =
P∞(a1, b1) b1, b2 ∈ bl, l ∈ N
P∞(a1, l2Ts) b1, b2 > 0 and l1 6= l2

P∞(a1,−a2Ts) −a1Ts ≥ b1, b1, b2 < 0
P∞(a1, b1) b1 ≥ −a1Ts, b1, b2 < 0
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- If a2 ≥ 1 ≥ a1, then

P∞ (U) =

max {P∞(a2, b2), P∞(a1, b1)}
if
(
b1, b2 ∈ bl, l ∈ N

)
or (b1 ≥ −a1Ts, b1, b2 < 0)

max {P∞(a2, b2), P∞(a1, l2Ts)}
if b1, b2 > 0 and l1 6= l2

max {P∞(a2, b2), P∞(a1,−a2Ts)}
if − a1Ts ≥ b1, and b1, b2 < 0
Proof: The proof follows directly from results R1 and

R2 as applied for the three cases mentioned in the statement
of the result.

Our next result considers the case when Cp is quadratic
according to (5), while the controller assumes Cp to be affine
with a time-varying skew. Thus, the controller estimates the
parameters of an affine model of the sensor clock periodically
every N steps (as measured according to Cc). Over the next
N steps, the assumed affine model gradually diverges more
and more from the actual clock model. Denote the estimate
of sensor clock by Ĉ(t). Denote the instantaneous skew of
sensor clock, as measured by controller clock via exchange
of time-stamp by â. We assume that the skew is estimated
accurately. Denote the infinite horizon performance cost thus
achieved by P∞. As discussed in the case of affine clocks,
when the controller corrects for a given model of an affine
clock, the situation is the same as if the controller is designed
assuming synchrony and the clocks drift apart. For simplicity
we assume that for the clock model in (5), 1 < a < au and
|c| < cu.

Definition 4.1: Consider a system in which the process
• evolves open-loop for c steps in the beginning
• and thereafter evolves as periodic process with a tran-

sition matrix Φ(n,N) = AN−nc An.
The performance of such a system is denoted as B(c, n,N).

Theorem 4.4: For the system described above, the perfor-
mance cost is bounded as P∞ < P (N), where

P (N) = B(
cu
Ts
, auN

2Ts, N)

is increasing in N .
Proof: Omitted for space constraints.

Remark 3: The above result states that synchronizing
more often, i.e. smaller N would yield a lower bound on
performance cost. Hence more synchronization would ensure
maintaining some predefined performance criteria, denote by
C. An appropriate N? can be found out so that P (N) <
C, ∀N < N?, and hence P∞ < C.

V. CONCLUSIONS

We consider LQR control of a scalar system when the
sensor, controller, and actuator all have their own clocks that
may drift apart from each other. We consider both an affine
and a quadratic clock model. For a quadratic cost function,
we analyze the loss of performance incurred as a function
of how asynchronous the clocks are. This also allows us to
obtain guidelines on how often to utilize the communication
resources to synchronize the clocks.
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