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Abstract— This paper presents an output feedback Distributed
Predictive Control (DPC) algorithm for interconnected systems
based on neighbor-to-neighbor communication. The algorithm,
based on the joint use of a distributed feedback control law and
decoupled Luenberger estimators, does not require an iterative
exchange of information among neighbors and can be also used
for control of independent systems with coupled constraints.
Convergence results are proven and a simulation example is
reported to illustrate the performance of the algorithm.

I. INTRODUCTION

The ever increasing complexity of industrial systems and in-
frastructures, as well as safety and reliability considerations,
make the development of new distributed control algorithms
an active field of research. Among the many approaches
proposed in the literature, those based on Model Predictive
Control (MPC) are particularly promising [1], [6], [11],
[12]. A new state feedback Distributed Predictive Control
(DPC) algorithm has recently been proposed in [3]: it is
based on a non iterative scheme with neighbor-to-neighbor
communication among the subsystems, and is inspired to the
robust state feedback MPC approach first introduced in [9]
and later extended to the output feedback case in [8].
The main rationale behind DPC is to transmit among the
neighbors the future reference trajectories and to interpret
the difference between these trajectories and the true ones as
disturbances to be rejected by a proper robust MPC method.
Therefore in DPC it is not necessary for each subsystem
to know the dynamical models governing the trajectories of
the other subsystems and the transmission of information is
limited; moreover joint constraints between the subsystems
can be included.
In this paper, the state feedback DPC algorithm presented
in [3] is extended to the output feedback case by the use of
Luenberger observers for the estimation of the subsystems’
states. It is proven that, under standard assumptions in MPC,
the subsystems’ state trajectories starting from given sets
in the state space converge to the origin. This result is
achieved by considering the state estimation error as a further
disturbance to be rejected by the control system. Notably,
the same considerations developed in this paper can be used
to show the robustness of the proposed approach also with
respect to exogenous unknown (but bounded) disturbances.
The paper is organized as follows. In Section II the parti-
tioned system is introduced, while the output feedback DPC
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algorithm is defined in Section III. The main convergence
results are presented in Section IV, while Section V deals
with the decentralized Luenberger observer design prob-
lem. Section VI illustrates a simulation example, and some
conclusions are drawn in Section VII. All the proofs are
postponed to the Appendix.
Notation. We say that a matrix is Schur if all its eigenvalues
lie in the interior of the unit circle. We use the short-
hand v = (v1, . . . ,vs) to denote a column vector with s (not
necessarily scalar) components v1, . . . , vs. The symbol ⊕
denotes the Minkowski sum, namely C = A⊕B if and only
if C = {c : c = a+ b, for all a ∈ A,b ∈ B}. We also denote⊕M

i=1 Ai = A1 ⊕ ·· · ⊕AM . For a discrete-time signal st and
a,b ∈ N, a ≤ b, we denote (sa,sa+1, . . . ,sb) with s[a:b].

II. PARTITIONED SYSTEMS

Consider a large-scale system model

xt+1 = Axt +But
yt = Cxt

(1)

where xt ∈ Rn is the state vector, and ut ∈ Rm and yt ∈ Rp

are the input variable and the output variable, respectively.
Let the system (1) be partitioned in M low order intercon-
nected non overlapping subsystems, where a generic sub-
model has x[i]t ∈ Rni as state vector, i.e., xt = (x[1]t , . . . ,x[M]

t )
and ∑M

i=1 ni = n. According to this decomposition, the state
transition matrices A11 ∈ Rn1×n1 , . . . , AMM ∈ RnM×nM of
the M subsystems are diagonal blocks of A, whereas the
non-diagonal blocks of A (i.e., Ai j, with i ̸= j) define the
dynamic coupling between subsystems. Namely, we say that
subsystem j is a dynamic neighbor of subsystem i if Ai j ̸= 0.
The set of dynamic neighbors of i is denoted Ni (i ̸∈ Ni).
Furthermore, we assume that the input ut and the output yt

can be partitioned into M input and output vectors u[i]t ∈Rmi

and y[i]t ∈Rpi , respectively, i = 1, . . . ,M. We assume that u[i]t
directly affects only the state of the i-th subsystem x[i]t and
y[i]t only depends on x[i]t , for all i = 1, . . . ,M. This implies
that B =diag(B1, . . . ,BM) and C =diag(C1, . . . ,CM), where
Bi ∈ Rni×mi and Ci ∈ Rpi×ni , i = 1, . . . ,M. It results that the
i-th subprocess obeys to the linear dynamics

x[i]t+1 = Aii x[i]t +Biu
[i]
t +∑ j∈Ni Ai jx

[ j]
t

y[i]t = Ci x[i]t
(2)

The local states and inputs are possibly constrained, i.e., x[i]t ∈
Xi ⊆ Rni and u[i]t ∈ Ui ⊆ Rmi , where the sets Xi and Ui are
convex neighborhoods of the origin. Furthermore we define
X = ∏M

i=1Xi ⊆ Rn and U = ∏M
i=1Ui, which are convex by

convexity of Xi and Ui, respectively, for i = 1, . . . ,M. We
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also introduce the collective state constraints, involving more
than one subsystem’s state

Hs(xt)≤ 0 (3)

where s = 1, . . . ,nc. We say that Hs is a constraint on
subsystem i if x[i] is an argument of Hs. We denote by
Ci = {s ∈ {1, . . . ,nc}: Hs is a constraint on i} the set of
constraints on subsystem i. We say that subsystem j is a
constraint neighbor of subsystem i if there exists s̄ ∈Ci such
that x[ j] is an argument of Hs̄, and we let Hi denote the set
of the constraint neighbors of subsystem i. Finally we define,
for all s ∈ Ci, a function h[i]s (x[i],x) = Hs(x), where x[i], the
i-th vector component of x, is not an argument of Hs(a, ·).
Note that, if subsystems i and j are constraint neighbors,
there exists s̄ ∈ Ci ∩C j such that h[i]s̄ and h[ j]s̄ are equivalent,
in the sense that they represent the same constraint Hs̄.

III. THE OUTPUT FEEDBACK DPC ALGORITHM

Our aim is to design, for each subsystem i, an algorithm for
computing a control input u[i]t based on the output y[i]t and
some information which is transmitted by its neighbors Ni∪
Hi, which guarantees closed loop asymptotic convergence
to the origin of the state of the large scale system (1), the
minimization of a given local cost function and constraint
satisfaction. Given (2), for a given subsystem i we define a
local Luenberger observer, which provides an estimate x̄[i]t
of the state x[i]t , based on the local measurement y[i]t , and the
state estimates provided by i-th dynamic neighbors, i.e., x̄[ j]t ,
j ∈ N j. Namely

x̄[i]t+1 = Aii x̄[i]t +Biu
[i]
t + ∑

j∈Ni

Ai j x̄
[ j]
t −Li(y

[i]
t −Cix̄

[i]
t ) (4)

Assuming that the estimator (4) enjoys the stability prop-
erties specified in the following, given the system state
initial conditions x0 and the observer initial conditions x̄0 =
(x̄[1]0 , . . . , x̄[M]

0 ), we require that there exist, for all i= 1, . . . ,M,
sets Σi ⊆ Rni such that, for all t ≥ 0, σσσ t = xt − x̄t ∈ ΣΣΣ =

∏M
i=1 Σi, i.e., σ [i]

t = x[i]t − x̄[i]t ∈ Σi for all i = 1, . . . ,M.
Furthermore we set, for each subsystem, a reference trajec-
tory x̃[i]t which is transmitted to the subsystems which have i
as neighbor. Through suitable constraints, we guarantee that
x̄[i]t lies in a specified time-invariant neighborhood of x̃[i]t i.e,
x̄[i]t ∈ x̃[i]t ⊕ Ei, where 0 ∈ Ei. This, in turn, implies that x[i]t
is also guaranteed to lie in a given neighborhood of x̃[i]t , i.e,
x[i]t ∈ x̃[i]t ⊕Ei ⊕Σi for all i = 1, . . . ,M.
Letting w[i]

t = ∑ j∈Ni Ai j(x̄
[ j]
t − x̃[ j]t )−Li(y

[i]
t −Cix̄

[i]
t ), the i-th

observer equation (4) can be written as follows

x̄[i]t+1 = Aii x̄[i]t +Biu
[i]
t +∑ j∈Ni Ai j x̃

[ j]
t +w[i]

t (5)

where the term w[i]
t ∈ Wi =

⊕
j∈Ni

Ai jE j ⊕ (−LiCi)Σi rep-
resents a bounded disturbance affecting equation (5) and
∑ j∈Ni Ai j x̃

[ j]
t is as a known input. Provided that, for all

i = 1, . . . ,M, the constraint x̄[i]t − x̃[i]t ∈ Ei is satisfied for all
t ≥ 0, we cast the problem of designing an output-feedback
distributed controller for (2) as the problem of designing a

robust state-feedback control law for (5), for all i = 1, . . . ,M.
For the statement of the local MPC sub-problems (i-DPC
problems) we rely on a robust MPC algorithm presented
in [8]. The i-th subsystem nominal model associated to (5)
is

x̂[i]t+1 = Aii x̂[i]t +Biû
[i]
t +∑ j∈Ni Ai j x̃

[ j]
t (6)

The control law, both for the i-th subsystem (2) and for the
equation (5) is assigned, for all t ≥ 0, according to

u[i]t = û[i]t +Kaux
i (x̄[i]t − x̂[i]t ) (7)

where Kaux
i is a suitable control gain. Letting z[i]t = x̄[i]t − x̂[i]t ,

from (5) and (7) we obtain

z[i]t+1 = (Aii +BiKaux
i )z[i]t +w[i]

t (8)

where w[i]
t ∈ Wi. Since Wi is bounded, if (Aii +BiKaux

i ) is
Schur, then there exists a robust positively invariant (RPI)
set Zi for (8) such that, for all z[i]t ∈ Zi, then z[i]t+1 ∈ Zi. In
view of (8), if u[i]k is computed as in (7) for all k ≥ t, then

x̄[i]t − x̂[i]t ∈ Zi (9)

implies that x̄[i]k − x̂[i]k ∈ Zi for all k ≥ t.
Now write x̄[i]t − x̃[i]t = (x̄[i]t − x̂[i]t )+(x̂[i]t − x̃[i]t ) and define the
set Ei for all i = 1, . . . ,M as a set containing the origin and
satisfying Ei ⊕Zi ⊆ Ei. Since, in view of (9), x̄[i]k − x̂[i]k ∈ Zi
for all k ≥ t, if we also satisfy the constraint

x̂[i]k − x̃[i]k ∈ Ei (10)

for all k ≥ t, then x̄[i]k − x̃[i]k ∈ Ei for all k ≥ t as required.
We are now in the position to state the local minimization
problem for all subsystems at instant t. Given the future
reference trajectories of i and its neighbors x̃[ j]k , k = t, . . . , t+
N −1, j ∈ Ni ∪Hi ∪{i}, the i-DPC problem consists in

min
x̂[i]t ,û[i]

[t:t+N−1]

V N
i (x̂[i]t , û[i]

[t:t+N−1]) (11)

subject to the dynamic and static constraints
(6), (4), (7), (9), (10), to the local state and input
constraints

x̂[i]k ∈ X̂i (12)

û[i]k ∈ Ûi (13)

where X̂i ⊕ Zi ⊕ Σi ⊆ Xi and Ûi ⊕Kaux
i Zi ⊆ Ui and to the

regional state constraints

ĥ[i]s (x̂
[i]
k , x̃k)≤ 0 (14)

for k = t, . . . , t +N − 1, for all s ∈ Ci, where the function
ĥ[i]s is defined in such a way that ĥ[i]s (x̂

[i]
k , x̃k)≤ 0 guarantees

that h[i]s (x
[i]
k ,x

∗
k) ≤ 0 for all x[i]k ∈ x̂[i]k ⊕Zi ⊕Σi and x∗k ∈ x̃k ⊕

∏M
i=1 Ei ⊕ΣΣΣ. Furthermore, the nominal state trajectory must

satisfy the following terminal constraint

x̂[i]t+N ∈ X̂F
i (15)
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where X̂F
i is the i-th nominal subsystem terminal set, whose

properties will be specified in the following. The cost V N
i is

V N
i =

t+N−1

∑
k=t

(∥x̂[i]k ∥
2
Qi
+∥û[i]k ∥

2
Ri
)+∥x̂[i]t+N∥

2
Pi

(16)

where Qi, Ri, and Pi are suitably-defined symmetric and
positive definite matrices.
In the stated problem, minimization is performed with re-
spect both to the nominal system state x̂[i]t and to the nominal
input trajectory û[i]

[t:t+N−1], [9]. Letting the pair x̂[i]t/t , û
[i]
[t:t+N−1]/t

be the solution to the i-DPC problem (11) at time t, we set the
input to the nominal system (6), at time t, as û[i]t/t . According
to (7), the input to the real system (2), at instant t, is

u[i]t = û[i]t/t +Kaux
i (x̄[i]t − x̂[i]t/t) (17)

Furthermore, let us define as x̂[i]k/t the trajectory stemming

from x̂[i]t/t and û[i]
[t:t+N−1]/t , in view of equation (6). The value

of the reference state variable x̃[i]t+N is set to

x̃[i]t+N = x̂[i]t+N/t (18)

We stress that we do not define, at each instant t, a new
reference trajectory x̃[i]k , k = t + 1, . . . , t +N, but we append
the value x̃[i]t+N to the reference trajectory which has been
already defined for k ≤ t +N −1.
At instant t, the information that must be transmitted between
neighboring agents consists in the currently computed values
of x̄[i]t and x̃[i]t+N .

IV. CONVERGENCE RESULTS

The following definitions and assumptions are needed to state
the main result of the paper. The sets of admissible initial
conditions x0, x̄0, and x̃[ j]

[0:N−1], for all j = 1 . . . ,M are defined.
Definition 1: Letting x = (x[1], . . . ,x[M]), we denote the fea-
sibility region XN for all the i-DPC problems as the set

XN := {x : if x[i]0 = x[i] for all i = 1, . . . ,M
then ∃x̄0,(x̃

[1]
[0:N−1], . . . , x̃

[M]
[0:N−1]),(x̂

[1]
0/0, . . . , x̂

[M]
0/0),

(û[1]
[0:N−1], . . . , û

[M]
[0:N−1]) such that (2), (9), (10),

(12)-(15) are satisfied for all i = 1, . . . ,M}

We denote, for each x ∈ XN , the region of feasible initial
state estimates. Letting x̄ = (x̄[1], . . . , x̄[M])

X̄N
x := {x̄ : if x[i]0 = x[i] and x̄[i]0 = x̄i for all i = 1, . . . ,M

then ∃(x̃[1]
[0:N−1], . . . , x̃

[M]
[0:N−1]),(x̂

[1]
0/0, . . . , x̂

[M]
0/0),

(û[1]
[0:N−1], . . . , û

[M]
[0:N−1]) such that (2), (9), (10),

(12)-(15) are satisfied for all i = 1, . . . ,M}

Also, given x ∈XN and x̄ ∈ X̄N
x , the region of feasible initial

reference trajectories is

X̃N
x,x̄ := {(x̃[1]

[0:N−1], . . . , x̃
[M]
[0:N−1]) : if x[i]0 = xi and x̄[i]0 = x̄i

for all i = 1, . . . ,M then ∃(x̂[1]0/0, . . . , x̂
[M]
0/0),

(û[1]
[0:N−1], . . . , û

[M]
[0:N−1]) such that (2), (9), (10),

(12)-(15) are satisfied for all i = 1, . . . ,M}

Assumption 1: Letting L =diag(L1, . . . ,LM), the matrix A+
LC is Schur. Furthermore, there exist, for all i = 1, . . . ,M,
sets Σi ⊂Rni such that ΣΣΣ is a positively invariant set for the
system σσσ t+1 = (A+LC)σσσ t .
Assumption 2: The matrix Aii +BiKaux

i is Schur, for all i =
1, . . . ,M.
Assumption 3: Letting Kaux =diag(Kaux

1 , . . . ,Kaux
M ), X̂ =

∏M
i=1 X̂i, Û= ∏M

i=1 Ûi and X̂F = ∏M
i=1 X̂F

i , it holds that:
(i) The matrix A+BKaux is Schur;

(ii) Ĥ [i]
s (x̂) ≤ 0 for all x̂ ∈ X̂F , for all s ∈ Ci, for all

i = 1, . . . ,M, where Ĥ [i] is defined in such a way that
Ĥ [i]

s (x̂) = ĥ[i]s (x̂[i], x̂) for all s ∈ Ci, for all i = 1, . . . ,M.
(iii) X̂F ⊆ X̂ is an invariant set for x̂+ = (A+BKaux)x̂;
(iv) û = Kauxx̂ ∈ Û for any x̂ ∈ X̂F ;
(v) for all x̂ ∈ X̂F

∥x̂+∥2
P −∥x̂∥2

P ≤−(∥x̂∥2
Q +∥û∥2

R) (19)

where Q =diag(Q1, . . . ,QM), R =diag(R1, . . . ,RM),
P =diag(P1, . . . ,PM).

Assumption 4: Given the sets Ei and the RPI sets Zi for
equations (8), there exists a real positive constant ρ̄E > 0
such that Zi⊕Bρ̄E (0)⊆ Ei for all i= 1, . . . ,M, where Bρ̄E (0)
is a ball of radius ρ̄E > 0 centered at the origin.
Proper ways to select the design parameters fulfilling As-
sumptions 2-4 are discussed in [4]. Conditions for guaran-
teeing Assumption 1 are provided in the following Section V.
Now we are in the position to state the main result.
Theorem 1: Let Assumptions 1-4 be satisfied and let Ei be
a neighborhood of the origin satisfying Ei ⊕Zi ⊆ Ei. Then,
for any initial reference trajectory in X̃N

x0,x̄0
, the trajectory

xt , starting from any initial condition x0 ∈ XN , x̄0 ∈ X̄N
x0

,
asymptotically converges to the origin.
A main issue of the off-line design phase of DPC is the
solution of a suitable reference trajectory. It is a critical
tuning parameter, since its choice strongly affects the initial
feasibility. Generally speaking, the feasibility region can
be enhanced by setting sufficiently high N. An empirical
algorithm for the selection of the reference trajectory based
on this principle has been proposed in [4].

V. COMPUTATION OF THE POSITIVE INVARIANT SETS Σi

The DPC algorithm requires the computation of the sets Ei,
Zi, Ei, and Σi. A viable way to compute Ei, Zi and Ei has
been proposed in [4]. In this section we provide conditions
guaranteeing that Assumption 1 is fulfilled and propose a
constructive method for setting suitable sets Σi.
Define Gi = Aii + LiCi and Ãi j = Ai j for all i, j = 1, . . . ,M
such that i ̸= j, and Ãii = 0. From (4), we write

σ [i]
t+1 = Gi σ [i]

t + v[i]t (20)

where v[i]t = ∑M
j=1 Ãi jσ

[ j]
t . A given zonotope EΣi , centered at

the origin and containing σ [i], i = 1 . . . ,M, can be equiva-
lently represented in two ways:

EΣi = {σ [i] ∈ Rni |σ [i] = ΞΣidi where ∥di∥∞ ≤ lΣi} (21a)

= {σ [i] ∈ Rni | f T
Σi,rσ [i] ≤ lΣi for all r} (21b)
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where di ∈ Rndi , ΞΣi ∈ Rni×ndi , fΣi,r ∈ Rni , and r = 1, . . . , r̄i
for all i= 1, . . . ,M. The constants lΣi ∈R+ can be regarded as
scaling factors. Assuming that σ [ j]

t ∈ EΣ j for all j ∈Ni, then
v[i]t ∈ Vi =

⊕M
j=1 Ãi jEΣi . The minimal RPI set (mRPI) [10]

ZΣi of (20) is given by

ZΣi =
∞⊕

k=0

Gk
i Vi (22)

It is generally impossible to obtain an explicit characteriza-
tion of ZΣi, and also ZΣi is not a polytope [10]. However,
given a scalar δ > 0, if Vi is a neighbor of the origin, there
exist αi ∈ R, si ∈ I such that the set

Zδ
Σi = (1−αi)

−1
si−1⊕
k=0

Gk
i Vi (23)

is a polytopic RPI outer δ -approximation of the mRPI set
for (20)1. A condition allowing the existence of sets Σi satis-
fying Assumption 1 is that Zδ

Σi ⊂ EΣi , for all i = 1, . . . ,M. If
this holds, we set Σi =Zδ

Σi. Consequently, if, for a given k≥ 0,
σ [i]

k ∈ Zδ
Σi = Σi for all i= 1, . . . ,M, then v[i]k ∈

⊕M
j=1 Ãi jΣi ⊂Vi

and σ [i]
k+1 ∈ Zδ

Σi, being Zδ
Σi RPI for (20). Since we assume

that σ [i]
0 ∈ Σi for all i = 1, . . . ,M, by induction we obtain that

σ [i]
t ∈ Σi for all i and for all t ≥ 0.

In the remainder of the section we provide a sufficient
condition for guaranteeing that Zδ

Σi ⊂ EΣi is verified for at
least a combination of values of lΣi , once the “shape” of EΣi

is defined i.e., ΞΣi and fΣi,r are given.
We define the matrices T (k)

Σi j , i, j = 1, . . . ,M, j ̸= i, as

(T (k)
Σi j )

T =

 f T
Σi,1
...

f T
Σi,r̄i

Gk
i Ãi j

and M Σ ∈ RM×M such that its entries µΣ
i j are

µΣ
ii =−1, i = 1, . . . ,M (24a)

µΣ
i j =

∞

∑
k=0

∥(T (k)
Σi j )

T ΞΣ j∥∞, i, j = 1, . . . ,M with i ̸= j (24b)

Proposition 1: If Gi are Schur, and if M Σ is Hurwitz, then
Assumption 1 is satisfied for a sufficiently small value of
δ if lΣi, i = 1, . . . ,M, are the entries of the strictly positive
vector lΣ satisfying M ΣlΣ < 0.
If M Σ is Hurwitz, the existence of lΣ satisfying M ΣlΣ < 0
is guaranteed [7]. If the system is irreducible [2], lΣ is the
Frobenius eigenvector of matrix M Σ, otherwise see [4].

VI. EXAMPLE

Consider the example illustrated in Figure 1 consisting in
four trucks with masses m1 = 12, m2 = 10, m3 = 8, m4 = 6,
each endowed with an engine (exerting the force 100u[i]t ,
i = 1, . . . ,4). Trucks 1 and 2 (resp. 3 and 4) are dynamically
coupled through a spring and a damper with coefficients

1if Vi is not a neighbor of the origin, an outer δo-approximation of Vi
can be considered for the computation of the outer δ -approximation of ZΣi

k12 = 0.5 and h12 = 0.2 (k34 = 1 and h34 = 0.3), respectively.
The components of the 2-dimensional state vector x[i]t of truck

x
[1];1
k x

[2];1
k x

[3];1
k x

[4];1
k

k12 k34

h12 h34

m1 m2 m3 m4

Fig. 1. Illustration of the example.

i are its displacement with respect to a given equilibrium
position (i.e., x[i],1k ) and the absolute velocity of the truck.
For all i = 1, . . . ,4, positions are measured, i.e., y[i]k = x[i],1k .
Constraints to the inputs |u[i]k | ≤ 2 and coupled constraints
|x[i],1k − x[i−1],1

k | ≤ 14 are set for for all i. The model is
discretized with sampling interval τ = 0.1 s. We set the
observer’s initial conditions to x̄[i]0 = [50 , 0]T and the real
system initial conditions are randomly generated in such a
way that x[i]0 − x̄[i]0 ∈ Σi, where Σi satisfy Assumption 1. Gains
Li and Ki are defined by pole assignment such that both
Gi and Fi have eigenvalues 0.5 and 0.6 ∀i. We properly

0 2 4 6
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2
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0 2 4 6
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0
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u
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u
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Fig. 2. Left: u[i]t (black line: DPC; grey line: centralized MPC),
thresholds for u[i]t (dotted lines). Right: û[i]t (solid line), thresholds
for û[i]t/t (dotted lines).

define quadratic weighting functions and we set sets Ei, Zi
and Ei (for details see [4]). The initial reference trajectories
are defined through an iterative procedure, [4], with N = 59.
In Fig. 2 the plots of the optimal input trajectories obtained
with DPC are shown, in Fig. 3 we show the obtained optimal
trajectories of the state, and in Fig. 4 we show the trajectory
x[4],1k −x[3],1k , to emphasize the effect and the conservativeness
of the coupling constraints (14).

VII. CONCLUSIONS

The output feedback DPC algorithm presented in this paper
has many features which make it suited for practical appli-
cations, such as the limited mutual knowledge and exchange
of information among neighbors, the possibility to handle
local and global state and control constraints, and guaranteed
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centralized MPC) and constraint (3) (dotted lines); below: x̂[4],1k −
x̃[3],1k (solid line) and constraint (14) (dotted lines).

convergence properties.
However, a number of significant developments are required
to completely exploit the potentialities of the approach in
many significant practical cases. Among them, the solution
of the tracking problem for constant reference signals and the
possibility to include in the problem formulation cooperative
goals for the subsystems will be considered.

APPENDIX

A. Proof of Theorem 1

The collective problem. Define the collective vectors x̂t =

(x̂[1]t , . . . , x̂[M]
t ), x̃t = (x̃[1]t , . . . , x̃[M]

t ), ût = (û[1]t , . . . , û[M]
t ), wt =

(w[1]
t , . . . ,w[M]

t ) and zt = (z[1]t , . . . ,z[M]
t ). Furthermore, define

the matrices A∗ =diag(A11, . . . ,AMM), Ã = A−A∗. Collec-
tively, we write equations (4), (5), (6), (7), and (8) as

x̄t+1 = Ax̄t +But −L(yt −Cx̄t) (25)

= A∗x̄t +But + Ãx̃t +wt (26)

x̂t+1 = A∗x̂t +Bût + Ãx̃t (27)
ut = ût +Kaux(x̄t − x̂t) (28)

zt+1 = (A∗+BKaux)zt +wt (29)

Since each i-DPC problem depends upon local variables
(the coupling terms x̃[i]k are fixed for k = t, . . . , t +N − 1),
minimizing (11) for all i= 1, . . . ,M is equivalent to minimize

VN∗(x̄t) = min
x̂t ,û[t:t+N−1]

VN(x̂t , û[t:t+N−1]) (30)

subject to the constraints (27), (25), (28),

x̄t − x̂t ∈ Z=
M

∏
i=1

Zi (31a)

x̂k − x̃k ∈ E=
M

∏
i=1

Ei (31b)

x̂k ∈ X̂ (31c)

ûk ∈ Û (31d)
H(x̂k,x̃k)≤ 0 (31e)

for k = t, . . . , t +N −1, and the terminal constraint

x̂t+N ∈ X̂F (32)

In (31), H collects all the constraints (14) and note that,
by (ii) in Assumption 3, H(x̂, x̂) ≤ 0 for all x̂ ∈ X̂F . The
collective cost function VN is

VN(x̂t , û[t:t+N−1]) =
t+N−1

∑
k=t

(∥x̂k∥2
Q +∥ûk∥2

R)+∥x̂t+N∥2
P (33)

We also define

VN,0(x̂t) = min
û[t:t+N−1]

VN(x̂t , û[t:t+N−1]) (34)

subject to the constraints (27), (31b)-(32).

Feasibility. From Definition 1, it collectively holds that

XN = {x : if x0 = x then ∃x̄0, x̃[0:N−1], x̂0/0, û[0,N−1]
such that (27), (31) and (32) are satisfied}

For each point of the feasibility set x ∈ XN

X̄N
x := {x̄0 : if x0 = x and x̄0 = x̄ then

∃x̃[0:N−1], x̂0/0, û[0,N−1] such that (27), (31),
and (32) are satisfied}

Finally, if x ∈ XN , x̄ ∈ X̄N
x

X̃N
x,x̄ := {x̃[0:N−1] : if x0 = x and x̄0 = x̄ then

∃x̂0/0, û[0,N−1] such that (27), (31),
and (32) are satisfied}

Assume that, at instant t, xt ∈ XN , x̄t ∈ X̄N
xt

, and that
x̃[t:t+N−1] ∈ X̃N

xt ,x̄t
. The optimal nominal input and state

sequences obtained by minimizing the collective MPC prob-
lem are û[t:t+N−1]/t = {ût/t , . . . , ût+N−1/t} and x̂[t:t+N]/t =
{x̂t/t , . . . , x̂t+N/t}, respectively. Finally, recall that it is set
x̃t+N = x̂t+N/t . Denote ût+N/t = Kauxx̂t+N/t and x̂t+N+1/t =

A∗x̂t+N/t +Bût+N/t + Ãx̃t+N . Since x̃t+N = x̂t+N/t , the latter
is equivalent to x̂t+N+1/t = (A + BKaux)x̂t+N/t . Note that,
in view of constraint (32) and Assumption 3, ût+N/t ∈ Û
and x̂t+N+1/t ∈ X̂F . Therefore, they satisfy constraints (31c),
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(31d) and (32). Also, according to Assumption 3, (19) holds.
We also define the input sequence

û[t+1:t+N]/t = {ût+1/t , . . . , ût+N−1/t , ût+N/t}

and the state sequence stemming from the initial condition
x̂t+1/t and the input sequence û[t+1:t+N]/t i.e.,

x̂[t+1:t+N+1]/t = {x̂t+1/t , . . . , x̂t+N/t , x̂t+N+1/t}

Notice that xk − x̄k ∈ ΣΣΣ for all k = t, . . . , t + N − 1 from
Assumption 1, and that, in view of (31a)-(31b), wk ∈∏M

i=1Wi
for all k = t, . . . , t + N − 1. In view of the feasibility of
the i-DPC problem at time t, we have that x̄t+1 − x̂t+1/t ∈
Z and x̂k/t − x̃k ∈ ∏M

i=1E for all k = t + 1, . . . , t + N − 1.
Note also that x̂t+N/t − x̃t+N = 0 ∈ E by (18). Furthermore,
since x̃t+N = x̂t+N/t and x̂t+N ∈ X̂F , from (32) it holds that
H(x̂t+N/t , x̃t+N) ≤ 0 from (ii) of Assumption 3. Therefore,
we can conclude that the state and the input sequences
x̂[t+1:t+N+1]/t and û[t+1:t+N]/t are feasible at t + 1, since
constraints (31) and (32) are satisfied. This proves that xt ∈
XN , x̄t ∈ X̄N

xt
and x̃[t:t+N−1] ∈ X̃N

xt ,x̄t
implies that xt+1 ∈ XN ,

x̄t ∈ X̄N
xt+1

and x̃[t+1:t+N] ∈ X̃N
xt+1,x̄t+1

.

Convergence. By optimality, VN,0(x̂t+1/t) ≤
VN(x̂t+1/t , û[t+1:t+N]/t). Recalling (33)

VN,0(x̂t+1/t)−VN,0(x̂t/t)≤−(∥x̂t/t∥2
Q +∥ût/t∥2

R)+

+∥x̂t+N/t∥2
Q +∥ût+N/t∥2

R +∥x̂t+N+1/t∥2
P −∥x̂t+N/t∥2

P (35)

In view of (19)

∥x̂t+N+1/t∥2
P −∥x̂t+N/t∥2

P +∥x̂t+N/t∥2
Q +∥ût+N/t∥2

R ≤ 0

and so, from (35), it follows that

VN,0(x̂t+1/t)≤ VN,0(x̂t/t)− (∥x̂t/t∥2
Q +∥ût/t∥2

R) (36)

Now we analyze the properties of the cost function VN∗(x̄t)
defined in (30). First, note that, by definition of x̂t/t , we have
that VN∗(x̄t) = VN,0(x̂t/t). By optimality, we have that

VN∗(x̄t+1) = VN,0(x̂t+1/t+1)≤ VN,0(x̂t+1/t)

Considering (36), we obtain that

VN∗(x̄t+1)≤ VN∗(x̄t)− (∥x̂t/t∥2
Q +∥ût/t∥2

R) (37)

for all x̄t ∈ X̄N
xt

, being xt ∈XN , and for all x̃[t:t+N−1] ∈ X̃N
xt ,x̄t

.
Since Q > 0 and R > 0 by definition, ∥x̂t/t∥ → 0 and
∥ût/t∥→ 0 as t →+∞. From (1), (25), and (28){

σσσ t+1 = (A+LC)σσσ t
x̄t+1 = (A+BKaux)x̄t −LCσσσ t +B

(
ût/t −Kauxx̂t/t

)
By asymptotic convergence to zero of the nominal state
and input signals x̂t/t and ût/t respectively, we obtain that
B
(
ût/t −Kauxx̂t/t

)
is an asymptotically vanishing term. Since

(A+BKaux) and (A+LC) are Schur by Assumption 3
and 1, we obtain that σσσ t → 0 and x̄t → 0 as t → +∞, from
which it follows that xt = x̄t +σσσ t → 0 as t →+∞.

B. Proof of Proposition 1 First note that ZΣi can be
defined only if Gi is Schur, for all i = 1, . . . ,M. A condition

guaranteeing that Assumption 1 is verified is that, for all
i = 1, . . . ,M, Zδ

Σi ⊂ Σi. This condition is satisfied [5] if

sup
z[i]Σ ∈Zδ

Σi

f T
Σi,rz

[i]
Σ < lΣi (38)

where Zδ
Σi is defined in (23). Note that sup

z[i]Σ ∈Zδ
Σi

f T
Σi,rz

[i]
Σ ≤

sup
z[i]Σ ∈ZΣi

f T
Σi,rz

[i]
Σ +∥ f T

Σi,r∥∞δ where ZΣi is defined in (22).

In view of (22) and of the definition of set Vi it holds that

sup
z[i]Σ ∈ZΣi

f T
Σi,rz

[i]
Σ ≤ ∑∞

k=0 supv[i]∈Vi
f T
Σi,rG

k
i v[i]

≤ ∑∞
k=0 ∑M

j=1 supσ [ j]∈EΣ j
f T
Σi,rG

k
i Ãi jσ [ j] (39)

Recalling (21), the latter quantity is smaller or equal than

∑M
j=1 ∑∞

k=0 sup∥d j∥∞≤lΣ j
f T
Σi,rG

k
i Ãi jΞΣ j d j =

= ∑M
j=1 ∑∞

k=0 ∥ f T
Σi,rG

k
i Ãi jΞΣ j∥∞lΣ j

(40)

Therefore, condition (38) is satisfied for all i, r if, for all i

∑M
j=1 ∑∞

k=0 ∥(T
(k)

Σi j )
T ΞΣ j∥∞lΣ j + supr ∥ f T

Σi,r∥∞δ < lΣi

The latter is fulfilled, for a sufficiently small value of δ , if

∑M
j=1 ∑∞

k=0 ∥(T
(k)

Σi j )
T ΞΣ j∥∞lΣ j < lΣi (41)

If we define the vector lΣ = (lΣ1, . . . , lΣM), condition (41)
is equivalent to [µΣ

i1 . . . µΣ
iM]lΣ < 0, for all i = 1, . . . ,M, and

hence it corresponds to M ΣlΣ < 0. This holds, from [7], if
M Σ is Hurwitz.
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