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Abstract— We consider the inverse optimization problem
associated with the polynomial program f∗ = min{f(x) :
x ∈ K} and a given current feasible solution y ∈ K. We
provide a systematic numerical scheme to compute an inverse
optimal solution. That is, we compute a polynomial f̃ (which
may be of same degree as f if desired) with the following
properties: (a) y is a global minimizer of f̃ on K with a
Putinar’s certificate with an a priori degree bound d fixed,
and (b), f̃ minimizes ‖f − f̃‖1 over all polynomials with such
properties. The size of the semidefinite program can be adapted
to the computational capabilities available. Moreover, f̃ takes
a simple canonical form, and computing f̃ reduces to solving
a semidefinite program whose optimal value also provides a
bound on how far is f(y) from the unknown optimal value f∗.
Some variations are also discussed.

I. INTRODUCTION

Let P be the optimization problem f∗ = min{f(x) : x ∈
K }, where

K := {x ∈ Rn : gj(x) ≥ 0, j = 1, . . . ,m}, (1)

for some polynomials f, (gj) ⊂ R[x].
Problem P is in general NP-hard and one is often satisfied

with a local minimum which can be obtained by running
some local minimization algorithm among those available in
the literature. Typically in such algorithms, at a current iterate
(i.e. some feasible solution y ∈ K), one checks whether
some optimality conditions (e.g. the Karush-Kuhn-Tucker
(KKT) conditions) are satisfied within some ε-tolerance.
However, as already mentioned those conditions are only
valid for a local minimum, and in fact, even only for
a stationary point of the Lagrangian. Moreover, in many
practical situations the criterion f to minimize is subject to
modeling errors or is questionable. In such a situation, the
practical meaning of a local (or global) minimum f∗ (and
local (or global) minimizer) also becomes questionable. It
could well be that the current solution y is in fact a global
minimizer of an optimization problem P′ with same feasible
set as P but with a different criterion f̃ . Therefore, if f̃
is close enough to f , one may not be willing to spend an
enormous computing time and effort to find the local (or
global) minimum f∗ because one might be already satisfied
with the current iterate y as an optimal solution of P′.

Inverse Optimization is precisely concerned with the
above issue of determining a criterion f̃ as close to f as
possible, and for which the current solution y is an optimal
solution of P′ with this new criterion f̃ . Pioneering work in
Control dates back to Freeman and Kokotovic [6] for optimal
stabilization. Whereas it was known that every value function
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of an optimal stabilization problem is also a Lyapunov
function for the closed-loop system, in [6] the authors show
the converse, that is, every Lyapunov function for every
stable closed-loop system is also a value function for a
meaningful optimal stabilization problem. In optimization,
pioneering works in this direction date back to Burton and
Toint [3] for shortest path problems, and Ahuja and Orlin
[2] for linear programs. For integer programming, Schaefer
[11] characterizes the feasible set of cost vectors d ∈ Rn
candidates for inverse optimality. It is the projection on
Rn of a (lifted) convex polytope obtained from the super-
additive dual of integer programs. In Heuberger [5] the in-
terested reader will find a nice survey on inverse optimization
for combinatorial optimization problems. More recently, for
linear programs Ahmed and Guan [1] have considered the
variant called inverse optimal value problem in which one
is now interested in finding a new linear criterion for which
the optimal value is the closest to a desired specified value.
This problem is shown to be NP-hard in [1].

As the reader may immediately guess, in inverse optimiza-
tion the difficulty lies in having some characterization of
global optimality for a given current point y ∈ K and some
candidate criterion f̃ . And even more, another difficulty is to
have a tractable characterization for practical computation.
This is why most of all the above cited works address linear
programs or combinatorial optimization problems for which
some characterization of global optimality is available and
can be effectively translated for practical computation. For
instance, the characterization of global optimality for integer
programs described in Schaefer [11] is exponential in the
problem size, which prevents from its use in practice.

Contribution. We investigate the inverse optimization
problem for polynomial optimization problems P as in (1),
i.e., in a rather general context which includes nonlinear
and nonconvex optimization problems and in particular, 0/1
and mixed integer nonlinear programs. Fortunately, in such
a context, Putinar’s Positivstellensatz [10] provides us with
a very powerful certificate of global optimality that can be
adapted to the actual computational capabilities for a given
problem size. More precisely, and assuming that y = 0
(possibly after the change of variable x′ = x − y), in the
methodology that we propose, one computes the coefficients
of a polynomial f̃d ∈ R[x] of same degree df as f (or
possibly larger degree if desired and/or possibly with some
additional constraints), such that:
• f̃(0) = f(0) and 0 is a global optimum of the related

problem minx{f̃d(x) : x ∈ K}, with a Putinar’s certificate
of optimality with degree bound d (to be explained later).
• f̃d minimizes ‖f̃ − f‖1 (where ‖ · ‖1 is the `1-norm of
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the coefficient vector) over all polynomials f̃ of degree df ,
having the previous property. Of course other choices for the
norm (and not discussed here) are possible, e.g. the `2- or
`∞-norm.

It turns out that the optimal value ρd := ‖f̃d − f‖1 also
measures how close is f(0) to the global optimum f∗ of P,
as we also obtain that f∗ ≤ f(0) ≤ f∗ + ρd.

In addition, we prove that when df is even, f̃d has a
canonical form, namely

f̃d = f + b′x +
n∑
i=1

(λi x2
i + γi x

df
i ),

for some vector b ∈ Rn, and nonnegative vectors λ, γ ∈ Rn,
optimal solutions of a semidefinite program. This canonical
form is another example of the “sparsity” property of the
`1-norm in optimization, already observed in other contexts
(e.g., in some compressed sensing applications).

Importantly, to compute f̃d one has to solve a semidefinite
program of size parametrized by d, where d is chosen so that
the size of semidefinite program associated with Putinar’s
certificate (with degree bound d) is compatible with the ca-
pabilities of current semidefinite solvers available. Of course,
even if d is relatively small, one is still restricted to problems
of relatively modest size. However, if problem P exhibits
some sparsity pattern (as is often the case in large scale
problems) then one can use the specific Positivstellensatz
developed for such problems [8], as a “sparse” certificate of
global optimality for y = 0.

Finally, one may also consider several options:
- Instead of looking for a polynomial f̃ of same degree

as f , one might allow polynomials of higher degree, and/or
restrict certain coefficients of f̃ to be the same as those of
f (e.g. for structural modeling reasons).

- One may restrict f̃ to a certain class of functions,
e.g., quadratic polynomials and even convex quadratic poly-
nomials. In the latter case and if the gj’s that define K
are concave, the resulting semidefinite program simplifies
drastically as it reduces to (a) solving a linear program and
(b) to computing the `1-projection of a matrix Q onto the
cone of positive semidefinite matrices.

II. NOTATION AND DEFINITIONS

Let R[x] (resp. R[x]d) denote the ring of real polynomials
in the variables x = (x1, . . . , xn) (resp. polynomials of
degree at most d), whereas Σ[x] (resp. Σ[x]d) denotes its
subset of sums of squares (s.o.s.) polynomials (resp. of s.o.s.
of degree at most 2d). For every α ∈ Nn the notation xα

stands for the monomial xα1
1 · · ·xαnn and for every i ∈ N,

let Npd := {β ∈ Nn :
∑
j βj ≤ d} whose cardinal is

s(d) =
(
n+d
n

)
. A polynomial f ∈ R[x] is written

x 7→ f(x) =
∑
α∈Nn

fα xα,

and f can be identified with its vector of coefficients f =
(fα) in the canonical basis (xα), α ∈ Nn. Denote by St ⊂
Rt×t the space of real symmetric matrices, and for any A ∈
St the notation A � 0 stands for A is positive semidefinite.

For f ∈ R[x]d, let ‖f‖1 :=
∑
α∈Nnd

|fα|. A real sequence z =

(zα), α ∈ Nn, has a representing measure if there exists
some finite Borel measure µ on Rn such that

zα =
∫

Rn
xα dµ(x), ∀α ∈ Nn.

Given a real sequence z = (zα) define the linear functional
Lz : R[x]→ R by:

f (=
∑
α

fαxα) 7→ Lz(f) =
∑
α

fα zα, f ∈ R[x].

Moment matrix

The moment matrix associated with a sequence z = (zα),
α ∈ Nn, is the real symmetric matrix Md(z) with rows and
columns indexed by Nnd , and whose entry (α, β) is just zα+β ,
for every α, β ∈ Nnd . Alternatively, let vd(x) ∈ Rs(d) be the
vector (xα), α ∈ Nnd , and define the matrices (Bα) ⊂ Ss(d)
by

vd(x) vd(x)T =
∑
α∈Nn2d

Bα xα, ∀x ∈ Rn. (2)

Then Md(z) =
∑
α∈Nn2d

zαBα.

Localizing matrix

With z as above and g ∈ R[x] (with g(x) =
∑
γ gγx

γ),
the localizing matrix associated with z and g is the real
symmetric matrix Md(g z) with rows and columns indexed
by Nnd , and whose entry (α, β) is just

∑
γ gγzα+β+γ , for

every α, β ∈ Nnd . Alternatively, let Cα ∈ Ss(d) be defined
by:

g(x) vd(x) vd(x)T =
∑

α∈Nn2d+deg g

Cα xα, ∀x ∈ Rn.

(3)
Then Md(g z) =

∑
α∈Nn2d+degg

zαCα.
With K as in (1), let g0 ∈ R[x] be the constant polynomial

x 7→ g0(x) = 1, and for every j = 0, 1, . . . ,m, let vj :=
d(deg gj)/2e.

Definition 1: With d, k ∈ N and K as in (1), let Qk(g) ⊂
R[x] and Qdk ⊂ R[x]d be the convex cones:

Q(g) :=


m∑
j=0

σj gj : σj ∈ Σ[x], ∀j

 (4)

Qk(g) =


m∑
j=0

σj gj : σj ∈ Σ[x]k−vj , ∀j

 (5)

Qdk(g) = Qk(g) ∩ R[x]d. (6)

Every element h ∈ Qk(g) is said to have a Putinar’s
certificate of positivity on K, with degree bound k.

The cone Q(g) is called the quadratic module associated
with the gj’s. Obviously, if h ∈ Q(g) the associated s.o.s.
polynomials σj’s provide a certificate of nonnegativity of h
on K. The name “Putinar’s certificate” is coming from Puti-
nar’s Positivstellensatz [10] which asserts that under some
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archimedean assumption on the gj’s, every polynomial h
strictly positive on K belongs to Qk(g) for some k. Namely,
let Cd(K) ⊂ R[x]d be the convex cone of polynomials of
degree at most d that are nonnegative on K.

Theorem 1 (Putinar): Let K be as in (1) and assume that
there is some M > 0 such that the quadratic polynomial
x 7→ M − ‖x‖2 belongs to Q(g). Then every polynomial
f ∈ R[x] strictly positive on K belongs to Q(g). In addition,

cl

( ∞⋃
k=0

Qdk(g)

)
= Cd(K), ∀d ∈ N. (7)

The first statement is just Putinar’s Positivstellensatz [10]
whereas the second statement is an easy consequence. Indeed
let f ∈ Cd(K). If f > 0 on K then f ∈ Qdk(g) for some
k. If f(x) = 0 for some x ∈ K, let fn := f + 1/n, so that
fn > 0 on K for every n ∈ N. But then fn ∈ ∪∞k=0Q

d
k(g)

and the result follows because ‖fn − f‖1 → 0 as n→∞.

The ideal inverse problem

Let P be the global optimization problem f∗ =
minx{f(x) : x ∈ K} with K ⊂ Rn as in (1), and
f ∈ R[x]df where df := deg f .

Identifying a polynomial f ∈ R[x]df with its vector of
coefficients f = (fα) ∈ Rs(df), one may and will identify
R[x]df with the vector space Rs(df), i.e., R[x]df 3 f ↔ f ∈
Rs(df). Similarly, the convex cone Cdf (K) ⊂ R[x]df can
be identified with the convex cone {h ∈ Rs(df) : h ↔ h ∈
Cdf (K)} of Rs(df). Next, let y ∈ K be fixed. With no loss of
generality (possibly after a change of variable x′ = x − y)
we may and will assume that y = 0 ∈ K. Consider the
following optimization problem P:

ρ∗ = min
f̃∈R[x]df

{ ‖f̃ − f‖1 : f̃ − f̃(0) ∈ Cdf (K) }. (8)

Theorem 2: Problem (8) has an optimal solution f̃∗ ∈
R[x]df . In addition, ρ∗ = 0 if and only if 0 is an optimal
solution of P.

Proof: Obviously the constant polynomial f̃(x) := 1
for all x, is a feasible solution with associated value δ :=
‖f̃ − f‖1. Moreover the optimal value of (8) is bounded
below by 0. Consider a minimizing sequence (f̃ j) ⊂ R[x]df ,
j ∈ N, hence such that ‖f̃ j − f‖k → ρk as j →∞. As we
have ‖f̃ j−f‖1 ≤ δ for every j, the sequence (f̃ j) belongs to
the `1-ball B(f) := {f̃ ∈ R[x]df : ‖f̃−f‖1 ≤ δ} ⊂ Rs(df),
a compact set. Therefore, there is an element f̃∗ ∈ B(f) and
a subsequence (jt), t ∈ N, such that f̃ jt → f̃∗ as t→∞. Let
x ∈ K be fixed arbitrary. Obviously (0 ≤) f̃ jt(x)−f̃ jt(0)→
f̃∗(x)− f̃∗(0) as t→∞, which implies f̃∗(x)− f̃∗(0) ≥ 0,
and so, as x ∈ K was arbitrary, f̃∗ − f̃∗(0) ≥ 0 on K, i.e.,
f̃∗ − f̃∗(0) ∈ Cdf (K). Finally, we also obtain the desired
result

ρ∗ = lim
j→∞

‖f̃ j − f‖1 = lim
t→∞

‖f̃ jt − f‖1 = ‖f̃∗ − f‖1.

Next, if 0 is an optimal solution of P then f̃ := f is an
optimal solution of P with value ρ∗ = 0. Conversely, if
ρ∗ = 0 then f̃∗ = f , and so by feasibility of f̃∗ (= f) for

(8), f(x) ≥ f(0) for all x ∈ K, which shows that 0 is an
optimal solution of P.
Theorem 2 states that the ideal inverse optimization prob-
lem is well-defined. However, even though Cdf (K) is a
finite-dimensional closed convex cone, it has no simple and
tractable characterization to be used for practical computa-
tion. Therefore one needs an alternative and more tractable
version of problem P . Fortunately, we next show that in
the polynomial context such a formulation exists, thanks to
powerful positive certificates from real algebraic geometry.

III. MAIN RESULT

As the ideal inverse problem is intractable we here provide
tractable formulations whose size depends on a parameter
d ∈ N. If f̃∗ in Theorem 2 belongs to Q(g) then when
d increases, f̃∗ ∈ R[x]df can be obtained in finitely many
steps, by solving finitely many semidefinite programs.

A. The practical inverse problem

With d ∈ N fixed, consider the following optimization
problem Pd (where g0 = 1):

ρd = min
f̃ ,σj

‖f − f̃‖1

s.t. f̃(x)− f̃(0) =
m∑
j=0

σj(x) gj(x), ∀x ∈ Rn

f̃ ∈ R[x]df ; σj ∈ Σ[x]d−vj , j = 0, . . . ,m,

(9)

where df = deg f , and vj = d(deg gj)/2e, j = 0, . . . ,m.
Remark 1: Observe that the constant coefficient f̃0 plays

no role in the constraints of (9), but since we minimize ‖f̃−
f‖k then it is always optimal to set f̃0 = f0. That is, f̃(0) =
f̃0 = f0 = f(0).

The parameter d ∈ N impacts (9) by the maximum degree
allowed for the s.o.s. weights (σj) ⊂ Σ[x] in Putinar’s
certificate for the polynomial x 7→ f̃(x)− f̃(0).

For any feasible solution f̃ of (9), the constraints of (9)
state that the polynomial x 7→ f̃(x) − f̃(0) is in Qdfd (g).
Therefore, in particular, f̃(x) ≥ f̃(0) for all x ∈ K, and so
0 is a global minimum of f̃ on K. So Pd is a strengthening of
P in that one has replaced the constraint f̃− f̃(0) ∈ Cdf (K)
witht the stronger condition f̃ − f̃(0) ∈ Qdfd (g). And so
ρ∗ ≤ ρd for all d ∈ N. However, as we next see, Pd is a
tractable optimization problem with nice properties. Indeed,
Pd is a convex optimization problem and even a semidefinite
program, as one may rewrite Pd as:

ρd = min
f̃ ,λα,Zj

∑
α∈Nndf\{0}

λα subject to:

λα + f̃α ≥ fα, ∀α ∈ Nndf \ {0}
λα − f̃α ≥ −fα, ∀α ∈ Nndf \ {0}

〈Z0,Bα〉+
m∑
j=1

〈Zj ,Cj
α〉 =

{
f̃α, if 0 < |α| ≤ df
0, if α = 0 or |α| > df

Zj � 0, j = 0, 1, . . . ,m,
(10)

with Bα as in (2) and Cj
α as in (3) (with gj in lieu of g).

The semidefinite program dual of (10) reads
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max
u,v,z

∑
α∈Nndf\{0}

fα(uα − vα) (= Lz(f(0)− f))

subject to:
uα + vα ≤ 1, ∀α ∈ Nndf \ {0}
uα − vα + zα = 0, ∀α ∈ Nndf \ {0}
Md(z), Md−vj (gj z) � 0, j = 1, . . . ,m.

(11)

Lemma 1: Assume that K ⊂ Rn has nonempty interior.
Then there is no duality gap between the semidefinite pro-
gram (10) and its dual (11). Moreover, (10) has an optimal
solution f̃d ∈ R[x]df .

Proof: Observe that ρd ≥ 0 and the constant polyno-
mial f̃(x) = 0 for all x ∈ Rn, is an obvious feasible solution
of (9) (hence of (10)). Therefore ρd being finite, it suffices to
prove that Slater’s condition1 holds for the dual (11). Then
the conclusion of Lemma 1 follows from a standard result
of convex optimization. Let µ be the a finite Borel measure
defined by

µ(B) :=
∫
B∩K

e−‖x‖
2
dx, ∀B ∈ B

(with B the usual Borel σ-field), and let z = (zα), α ∈ Nn2d,
with

zα := κ

∫
K

xα dµ(x), α ∈ Nn2d,

for some κ > 0 sufficiently small to ensure that

κ

∣∣∣∣∫ xα dµ(x)
∣∣∣∣ < 1, ∀α ∈ Nn2d \ {0}. (12)

Define uα = max[0,−zα] and vα = max[0, zα], α ∈ Nndf ,
so that uα+vα < 1, α ∈ Nn2d. Hence (uα, vα, z) is a feasible
solution of (11). In addition, Md(z) � 0 and Md−vj (gj z) �
0, j = 1, . . . ,m, because K has nonempty interior, and so
Slater’s condition holds for (11), the desired result.
As already mentioned, we could have chosen the `∞- or
`2-norm rather than the `1-norm. For instance, with the `∞-
norm the semidefinite program (10) becomes

ρd = min
f̃ ,λ,Zj

λ subject to:

λ+ f̃α ≥ fα, ∀α ∈ Nndf \ {0}
λ− f̃α ≥ −fα, ∀α ∈ Nndf \ {0}

〈Z0,Bα〉+
m∑
j=1

〈Zj ,Cj
α〉 =

{
f̃α, if 0 < |α| ≤ df
0, if α = 0 or |α| > df

Zj � 0, j = 0, 1, . . . ,m,
(13)

while its dual reads

1Slater’s condition holds if there exists x0 ∈ K such that gj(x0) > 0
for every j = 1, . . . , m.

max
u,v,z

∑
α∈Nndf\{0}

fα(uα − vα) (= Lz(f(0)− f))

subject to:∑
α∈Nndf\{0}

uα + vα ≤ 1

uα − vα + zα = 0, ∀α ∈ Nndf \ {0}
Md(z), Md−vj (gj z) � 0, j = 1, . . . ,m.

(14)

Theorem 3: Assume that K in (1) has nonempty interior
and let x∗ ∈ K be a global minimizer of P with optimal
value f∗, and let f̃d ∈ R[x] be an optimal solution of Pd in
(9) with optimal value ρd. Then:

(a) 0 ∈ K is a global minimizer of the problem
f̃∗d = minx{f̃d(x) : x ∈ K}. In particular, if ρd = 0 then
f̃d = f and 0 is a global minimizer of P.

(b) f∗ ≤ f(0) ≤ f∗ + ρd sup
α∈Nndf

|(x∗)α|. In particular if

K ⊆ [−1, 1]n then f∗ ≤ f(0) ≤ f∗ + ρd.
Proof: (a) Existence of f̃d is guaranteed by Lemma

1. From the constraints of (9) we have: f̃d(x) − f̃(0) =∑m
j=0 σj(x) gj(x) which implies that f̃d(x) ≥ f̃(0) for all

x ∈ K, and so 0 is a global minimizer of the optimization
problem P′ : minx{f̃d(x) : x ∈ K}.

(b) Let x∗ ∈ K be a global minimizer of P. Observe that
with k = 1,

f∗ = f(x∗) = f(x∗)− f̃d(x∗)︸ ︷︷ ︸+ f̃d(x∗)− f̃d(0)︸ ︷︷ ︸
≥0

+f̃d(0)

≥ f̃d(0)− |f̃d(x∗)− f(x∗)|
≥ f̃d(0)− ‖f̃d − f‖1 × sup

α∈Nndf
|(x∗)α|

= f̃d(0)− ρd sup
α∈Nndf

|(x∗)α|, (15)

and the result follows because f̃d(0) = f̃d0 = f0 = f(0);
see Remark 1.
So not only Theorem 3 states that 0 is the global optimum of
the optimization problem min{f̃d(x) : x ∈ K}, but it also
states that the optimal value ρd also measures how far is f(0)
from the optimal value f∗ of the inital problem P. Moreover,
observe that Theorem 3(a) requires no assumption on the
basic semi-algebraic set K, and Theorem 3(b) only requires
existence of a global minimizer of P, and in particular, K
may not be compact.

B. A canonical form

In fact when df is even, then the optimal solution f̃d ∈
R[x]df in Theorem 3 (with k = 1) takes a particularly simple
canonical form, which is due to the use of the `1-norm.

Theorem 4: Assume that K has a nonempty interior and
let x∗ ∈ K be a global minimizer of P with optimal value
f∗. Let f̃d ∈ R[x]df be an optimal solution of Pd in (9) with
optimal value ρ1

d for the `1-norm. Then f̃d is of the form:

f̃d(x) = f(x) + b′x +
n∑
i=1

(
λ∗i x

2
i + γ∗i x

df
i

)
, (16)
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for some vector b ∈ Rn and some nonnegative vectors
λ∗, γ∗ ∈ Rn, optimal solution of the semidefinite program:

ρ1
d := min

λ,γ≥0,b
‖b‖1 +

n∑
i=1

(λi + γi)

s.t. f − f(0) + b′x +
∑
i=1n

(
λi x

2
i + γi x

df
i

)
∈ Qd(g)

(17)
Proof: The dual (11) of (10) is equivalent to:

max
z

Lz(f(0)− f))

s.t. Md(z), Md−vj (gj z) � 0, j = 1, . . . ,m,
|zα| ≤ 1, ∀α ∈ Nndf \ {0}.

(18)
But Md(z) � 0 ⇒ Mdf/2(z) � 0. On the other hand, re-
calling that df is even and Mdf/2(z) � 0, one may use same
arguments as those used in Lasserre and Netzer [9, Lemma
4.1, 4.2], to obtain |zα| ≤ maxi{max[Lz(x2

i ), Lx(xdfi )]}, for
very α ∈ Nndf with 1 < |α| ≤ df . Hence in (18) one may
replace the constraint |zα| ≤ 1 for all α ∈ Nndf \ {0} with
the 3n inequality constraints:

±Lz(xi) ≤ 1, Lz(x2
i ) ≤ 1, Lx(xdfi ) ≤ 1, (19)

for all i = 1, . . . , n. And so the dual of the modified SDP
(19) is now

max
b1,b2,λ,γ

n∑
i=1

(
(b1i + b2i ) + λi + γi

)
s.t. f − f(0) + (b1 − b2)′x +

n∑
i=1

(
λix

2
i + γi x

df
i

)
∈ Qd(g) ; b1,b2, λ, γ ≥ 0.

which is equivalent to (17).
This special canonical form of f̃d is specific to the `1-norm,
which yields the constraint |zα| ≤ 1, α ∈ Nndf \ {0} in
the dual (11) and allows its simplification (19) thanks to a
property of the moment matrix described in [9].

C. Asymptotics when d→∞
We now relate Pd, d ∈ N, with the ideal inverse problem

P in (8) when d increases. Recall that ρ∗ ≤ ρd for every
d ∈ N.

Proposition 1: Let K in (1) be with nonempty interior, ρd
be as in (9), and let f̃∗ ∈ R[x]df be an optimal solution of
(8) with associated optimal value ρ∗.

The sequence (ρd), d ∈ N, is monotone nonincreasing
and if the polynomial x 7→ f̃∗(x) − f̃∗(0) is in Q(g), then
ρd = ρ∗ for some d.

Proof: By definition if f̃∗ − f̃∗(0) ∈ Q(g) then f̃∗ −
f̃∗(0) ∈ Qdfd (g) for some d = d0. Hence, f̃∗ is a feasible
solution of (9) (when d = d0) but with value ρ∗ ≥ ρd.
Therefore, we conclude that f̃∗ is an optimal solution of (9)
when d = d0.

Proposition 1 relates ρd and ρ∗ in a strong sense when
f̃∗− f̃∗(0) ∈ Q(g). However, we do know how restrictive is
the assumption f̃∗−f̃∗(0) ∈ Q(g) compared to f̃∗−f̃∗(0) ∈
Cdf (K). Indeed, even though Cdf (K) = cl (∪∞k=0Q

df
k ) when

K satisfies the assumptions of Theorem 7, an approximating

sequence (fn) ⊂ Q(g), n ∈ N (with ‖fn − f̃∗‖k → 0), may
not satisfy fn(x)− fn(0) ≥ 0 for all x on K.

D. Convexity

One may wish to restrict to search for convex polynomials
f̃ ∈ R[x]df (no matter if f itself is convex). For instance if
the gj’s are concave (so that K is convex) but f is not,
one may wish to find the convex optimization problem for
which y = 0 ∈ K is an optimal solution, and with convex
polynomial criterion f̃ ∈ R[x]df closest to f .

If df > 2 then it suffices to add to the semidefinite program
(9) the additional Putinar’s certificate

(x,u) 7→ u∇2f̃(x) u =
m∑
j=0

ψj(x,u) gj(x) (20)

+ψm+1(x,u)(1− ‖u‖2),

with ψm+1 ∈ R[x,u]d−1 and ψj ∈ Σd−vj [x,u], for all
j = 0, 1, . . . ,m. Indeed, (20) is a Putinar’s certificate of
convexity for f̃ on K, with degree bound d, which also
translates into additional semidefinite constraints.

If df ≤ 2 (i.e. if f̃(x) = xTQx + bTx + c) for some
real symmetric matrix Q ∈ Rn×n, some vector b ∈ Rn
and some scalar c ∈ R) then in (9) it suffices to add
constraint ∇2f̃(x) = 2Q̃ � 0, which is just a Linear Matrix
Inequality (LMI). And therefore, again, (9) can be rewritten
as a semidefinite program, namely (10) with the additional
LMI constraint Q̃ � 0.

Notice that for k = 1, 2, it also makes sense to search
for f̃ ∈ R[x]2 even if f has degree df > 2, i.e., if f(x) =
c+bTx+ 1

2x
TQx+h(x) where h ∈ R[x] does not contains

monomials of degree smaller than 3. This means that one
searches for the convex program with quadratic cost closest
to f .

So for instance, in the case where one searches for f̃ ∈
R[x]2, and given 0 ∈ K let J(0) := {j ∈ {1, . . . ,m} :
gj(0) = 0} be the set of constraints that are active at 0. If the
gj’s that define K are concave and Slater’s condition holds
for K, then one may simplify (9). Writing f̃ = 1

2x
T Q̃x +

b̃Tx + c̃, (9) now reads:

ρ := min
Q̃,b̃,λ

‖f − f̃‖1

s.t. b̃ =
∑
j∈J(0)

λj ∇gj(0)

Q̃ � 0; λj ≥ 0, j ∈ J(0).

(21)

which simplifies to:

ρ = min
Q̃�0
‖Q̃−Q‖1 + min

λ≥0
‖b−

∑
j∈J(0)

λj∇gj(0)‖1 (22)

Problems (21) and (22) are much simpler than (9) because
one has replaced Putinar’s certificate of nonnegativity on
K by the Karush-Kuhn-Tucker (KKT) optimality conditions
at the point x = 0 ∈ K, and the convexity condition of
f̃ reduces to the single LMI Q̃ � 0. In particular, there
is no index d! Moreover, problem (22) reduces to solving
separately a linear program and a semidefinite program. The
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latter simply computes the `1-projection of Q onto the closed
convex cone of semidefinite matrices.

Lemma 2: Let K ⊂ Rn be as in (1) with gj being concave
for every j = 1, . . . ,m. Then (21) has an optimal solution
f̃∗ ∈ R[x]2 and 0 is an optimal solution of the convex
optimization problem P′ : min{f̃∗(x) : x ∈ K}.

Proof: Let (f̃ , λ) (with f̃ ∈ R[x]2) be any feasible
solution of (21). The constraint in (21) states that ∇L(0) =
0, where L ∈ R[x] is the Lagrangian polynomial x 7→
L(x) := f̃(x) −

∑
j∈J(0) λj gj(x), which is convex on K

because the gj’s are concave, the λj’s are nonnegative, and
f̃ is convex. Therefore ∇L(0) = 0 implies that 0 is a global
minimum of L on Rn and a global minimum of f̃ on K
because

f̃(x) ≥ L(x) ≥ L(0) = f̃(0), ∀x ∈ K. (23)

It remains to prove that (21) has an optimal solution f̃∗. But
we have seen that (21) is equivalent to (22) for which an
optimal solution can be found by solving a linear program
and a semidefinite program.
So in this case where the gj’s are concave (hence K is
convex), one obtains the convex programming problem with
quadratic cost whose criterion is the closest to f for the `1-
norm.

E. Examples

Example 1: Let n = 2 and consider the optimization
problem P : f∗ = minx {f(x) : x ∈ K} with x 7→
f(x) = x1 + x2, and

K = {x ∈ R2 : (x1 + 1)(x2 + 1) ≥ 1; −1/2 ≤ x ≤ 1 }.

The polynomial f is convex and the set K is convex as well,
but the polynomials that define K are not all concave. The
point y = 0 ∈ K is a global minimizer. With d = 1, one
searches for an affine polynomial f̃1 such that

f̃1 − f̃1(0) = σ0 + ((x1 + 1)(x2 + 1)− 1)σ1

+
2∑
i=1

(1− xi)ψi + (xi + 1/2)φi,

for some s.o.s. polynomials σ1, ψi φi ∈ Σ[x]0 and some
s.o.s. polynomial σ0 ∈ Σ[x]1. But then necessarily σ1 = 0,
which in turn implies that σ0 is a constant polynomial. A
straightforward calculation shows that f̃1(x) = 0 for all x,
and so ρ1 = 2. On the other hand ρ3 = 0. However, if now
K has the representation:

K =
{x : (x1 + 1)(x2 + 1) ≥ 1

(xi + 1/2)(1− xi) ≥ 0, i = 1, 2 } ,

then it turns out that

x1 + x2 = 1
5 + 2

5 (x1 − x2)2 + 4
5 ((x1 + 1)(x2 + 1)− 1)

+ 2
5

2∑
i=1

(xi + 1/2)(1− xi),

i.e., f − f∗ ∈ Q1
1(g). Hence the test of inverse optimality

yields ρ1 = 0 with f̃1 = f . This example shows that the
representation of K may be important.

Example 2: Again consider Example 1 but now with y =
(0.1,−0.091) ∈ K, which is not a global optimum of f
on K any more. By solving (10) with d = 1 we still find
ρ1 = 0, and with d = 2 we find f̃2(x) ≈ 0.82782x1 +
x2. And indeed by solving the new optimization problem
with criterion f̃2 (using GloptiPoly [4]) we find the global
minimizer (0.0991,−0.092) ≈ y.

Example 3: Let P be the MAXCUT problem
max{x′Ax : x2

i = 1, i = 1, . . . , n} where A = A′ ∈ Rn×n
and Aij = 1/2 for all i 6= j. For n odd, the optimal solution
is y = (yj) with yj = 1, j = 1, . . . dn/2e, and yj = −1
otherwise. However, one cannot obtain

x′Ax− y′Ay = σ +
n∑
j=1

γi(x2
i − 1) (24)

for some σ ∈ Σ[x]1 and λ, γ ∈ R. Hence the inverse
optimization problem reads: Find Ã ∈ Rn×n such that (24)
holds and Ã minimizes the `1-norm ‖A−Ã‖1. Solving (10)
for n = 5 with y as above, we find that Ã = A except for
the entries (i, j) ∈ {(1, 2), (1, 3), (2, 3)} now equal to 1/3.
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