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Abstract— In this paper, we consider the robust set-point
stabilisation problem for motion systems subject to friction.
Robustness aspects are particularly relevant in practice, where
uncertainties in the friction model are unavoidable. We propose
an impulsive feedback control design that robustly stabilises the
set-point for a class of position-, velocity- and time-dependent
friction laws with uncertainty. Moreover, it is shown that this
control strategy guarantees the finite-time convergence to the
set-point which is a favourable characteristic of the resulting
closed loop from a transient performance perspective. The
results are illustrated by means of an example.

I. INTRODUCTION

In this paper, we consider the robust set-point stabili-

sation problem for motion control systems with uncertain

friction using an impulsive control strategy. It is well known

that controlled motion systems with friction exhibit many

undesirable effects such as stick-slip limit cycling, large

settling times and non-zero steady-state errors, see e.g. [1]–

[4]. In the literature many different approaches towards the

control of motion systems with friction have been proposed,

such as PID control design, friction compensation, dithering-

based approaches, adaptive techniques and impulsive control

strategies. As shown e.g. in [1], PID control techniques may

suffer from an instability phenomenon known as hunting

limit cycling. Many friction compensation approaches are

available in the literature (see, for example, [1]–[5]) and have

successfully been applied in practice, although it is widely

recognised that the undercompensation and overcompensa-

tion of friction (due to inevitable friction modelling errors)

may lead to non-zero steady-state errors and limit cycling [4],

[6], [7]. Examples of adaptive compensation approaches are

reported in [8], [9]. Dithering-based approaches, see e.g. [1],

[10], [11], aim at smoothing the discontinuity induced by

(Coulomb) friction by the introduction of high-frequency

excitations and thereby aim to avoid non-zero steady-state

errors. The basic idea behind impulsive control strategies

is the introduction of controlled impulsive forces when the

system gets stuck at a non-zero steady-state error (due the

stiction effect of friction), see e.g. [1], [12]–[18]. One of

the key practical problems faced in any of those ‘friction-

beating’ strategies is the fact that friction is a phenomenon

which is particularly hard to model accurately, especially due
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to e.g. changing environmental conditions such as lubrication

conditions, temperature, wear, humidity etc. [1], [2]. It is

therefore of the utmost importance to develop stabilising

controllers that are robust against uncertainties in the friction.

Here, we propose an impulsive feedback control strategy

which guarantees the robust stability of the set-point in

the face of frictional uncertainties, where we consider a

large class of position-dependent, velocity-dependent, and

time-varying friction models. The practical feasibility of

impulsive force manipulation for the positioning of motion

control systems has been illustrated in [13], [14], [16], [17].

Moreover, different impulsive feedback control strategies

have been proposed in [15], [17]–[19]. However, rigorous

stability analyses of the closed-loop system are rare, es-

pecially when accounting for uncertainties in the friction

model. A notable exception is the recent work in [18] in

which an impulsive feedback law similar to the one proposed

in this paper has been studied. The common idea behind this

impulsive control law is that, when the system reaches the

stick phase at a non-zero regulation error, an impulsive force

is applied, which kicks the system out of the stick phase

and whose magnitude is dependent on the positioning error.

The current work differs from and extends the work in [18]

in the following ways. Firstly, in this paper we provide a

proof for the robust set-point stability for a class of set-

valued Coulomb friction models where the friction coef-

ficient may be position-dependent, velocity-dependent and

time-dependent, whereas in [18] only a stability analysis for

uncertain, but constant, friction coefficients is given. Given

the fact that position-dependencies, velocity-dependencies

(think of e.g. the Stribeck effect) and time-dependent fric-

tional characteristics (due to e.g. changing temperature,

humidity or lubrication conditions) are always present in

practice, such an extension is very relevant for applications.

Secondly, in [18] a combination of an impulsive controller

with a smooth linear position-error feedback controller is

considered. In the current work, we consider an impulsive

controller in combination with a more general linear state-

feedback controller. As also stated in [18], such an extension

is highly desirable from a performance perspective. Finally,

in the current paper we present conditions under which finite-

time stability of the set-point can be achieved, as opposed to

mere asymptotic stability in [18].

Resuming, the main contributions of the current paper are

as follows. Firstly, we propose an impulsive feedback control

design for a motion control system consisting of a controlled

inertia subject to friction modelled by a general class of set-

valued, position-dependent, velocity-dependent, and time-
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varying friction models. Secondly, we present conditions

under which the robust finite-time stability of the set-point

can be guaranteed in the face of uncertainties in the friction.
The outline of the paper is as follows. In Section II,

the control problem tackled in this paper is formalised. In

Section III, the impulsive control design is introduced. The

robust (finite-time) stability analysis of the impulsive closed-

loop system is presented in Section IV. The effectiveness of

the control design and its robustness properties are illustrated

by means of an example in Section V. Finally, concluding

remarks are presented in Section VI.

II. CONTROL PROBLEM FORMULATION

Consider a mechanical system consisting of an inertia

with mass m which is in frictional contact with a support

(see Figure 1). We denote the position of the inertia by z
and its velocity by ż. A friction force Ff acts between the

mass and the support under the influence of a normal force

mg, with g the gravitational acceleration. The control input

consists of a finite control force u and an impulsive control

force U . The dynamics of the control system is described

by the equation of motion mz̈ = u + Ff (z, ż, t) and the

impact equation m(ż+(tj)− ż−(tj)) = U , which relates the

difference between the post-impact velocity ż+(tj) and the

pre-impact velocity ż−(tj) to the impulsive control force U
at time tj .

The friction force Ff (z, ż, t) is assumed to obey the

following set-valued force law:

Ff (z, ż, t) ∈ −mgµ(z, ż, t)Sign(ż), (1)

where Sign(·) denotes the set-valued sign function

Sign(y) :=

{

y/|y|, y 6= 0
[−1, 1] , y = 0

.

Moreover, µ(z, ż, t) denotes the friction coefficient that may

depend on z, ż and time t. Note that (1) represent a rather

large class of friction models including possibly position-

dependent friction, velocity-dependent effects, such as the

Stribeck effect, and time-dependent friction (which can occur

in practice due to changing temperature/humidity of the con-

tact, wear or changing lubrication conditions). Moreover, (1)

represents a set-valued friction model to account for the

stiction effect induced by dry friction. In the remainder of

this paper, we adopt the following assumption on the friction

coefficient.

Assumption 1

The friction coefficient µ(z, ż, t) is lower bounded by µ and

upper bounded by µ, i.e. it holds that µ ≤ µ(z, ż, t) ≤
µ, ∀t, z, ż ∈ R, for some 0 < µ ≤ µ.

Fig. 1: Mechanical motion system with control input.

The impulsive and non-impulsive dynamics of the system

can be represented by a (in general non-autonomous) first-

order measure differential inclusion [20], [21]:

dx1 = x2 dt

dx2 ∈ −gµ(x1, x2, t)Sign(x2) dt +
1

m
dp

(2)

with the state vector x = [x1 x2]
T

:= [z ż]
T

and where

dp = u dt + U dη (3)

is the differential measure of the control input, dt is the

Lebesgue measure and dη is a differential atomic measure

consisting of a sum of Dirac point measures [22]. The

decomposition of the control force as in (3) implies that the

differential measure dx of the state can be decomposed as

follows dx = ẋdt + (x+ −x
−) dη. Such a decomposition,

implies that x(t) is a special function of locally bounded

variation [23]. The state x(t) admits at each time-instant

t a left and right limit x
−(tj) = limt↑tj

x(t), x
+(tj) =

limt↓tj
x(t), as x(t) is of (special) locally bounded variation.

The time-evolution of x(t) is governed by the integration

process x
+(t1) = x

−(t0)+
∫

[t0,t1]
dx, where [t0, t1] denotes

the compact time-interval between t0 and t1 ≥ t0.

Now let us state the control problem considered in this

paper.

Problem 1

Design a control law for u and U for system (2), (3) such

that x = 0 is a robustly globally uniformly attractively

stable1 equilibrium point of the closed-loop system for a

class of uncertain friction models of the form (1) satisfying

Assumption 1.

The controller proposed in this paper will induce stability

and finite-time attractivity, i.e. symptotic stability2.

III. IMPULSIVE FEEDBACK CONTROL DESIGN

In order to solve Problem 1, we adopt a proportional-

derivative (state-)feedback control law for u in (3):

u(x1, x2) = −k1x1 − k2x2, k1, k2 > 0, (4)

together with an impulsive feedback control law for U in (3):

U(x1, x
−
2 ) =

{

k3(x1), if (x−
2 = 0) ∧ (|x1| ≤ mgµ

k1
)

0, else
,

(5)

where the constants k1, k2 and the function k3(x1) are

to be designed. The resulting closed-loop dynamics can be

formulated in terms of a measure differential inclusion:

dx1 =x2 dt

dx2 ∈
(

−k1

m
x1 −

k2

m
x2 − gµ(x1, x2, t)Sign(x2)

)

dt

+
1

m
U(x1, x

−
2 ) dη.

(6)

1By global uniform attractive stability we mean global uniform asymp-
totic (or symptotic, i.e. finite-time) stability.

2For a definition of symptotic stability we refer to e.g. [21].
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In between impulsive control actions, the non-impulsive

dynamics is described by the differential inclusion

ẋ1 = x2

ẋ2 ∈ −k1

m
x1 −

k2

m
x2 − gµ(x1, x2, t)Sign(x2).

(7)

The state of the system may jump at impulsive time-instants

tj for which U 6= 0, i.e. for time instants at which x−
2 (tj) =

0, |x1(tj)| ≤ mgµ
k1

, according to the state reset map

x+
1 (tj) = x−

1 (tj), x+
2 (tj) = x−

2 (tj) +
k3(x

−
1 (tj))

m
. (8)

We denote x1(tj) = x−
1 (tj) = x+

1 (tj), since the position

x1(t) = z(t) is an absolutely continuous function of time,

and use the following definitions: ωn :=
√

k1/m and ζ :=
k2

2
√

k1m
denote the undamped eigenfrequency and damping

ratio of the closed-loop non-impulsive dynamics for x2(t) 6=
0, λ1 := −ωnζ + ωn

√

ζ2 − 1, λ2 := −ωnζ − ωn

√

ζ2 − 1
and

c :=
mgµ

k1
=

gµ

λ1λ2
, c :=

mgµ

k1
=

gµ

λ1λ2
. (9)

A. Impulsive Controller Design

Let us first explain the rationale behind the design of

the controller (3), (4), (5). Hereto, consider the case that

µ(x1, x2, t) = µ, with µ a constant, and consider the system

without the impulsive part of the controller (i.e. k3(x1) = 0
in (5)). In this case the closed-loop system is a PD-controlled

inertia with Coulomb friction which exhibits an equilibrium

set defined by {x ∈ R
2 | |x1| ≤ mgµ

k1
∧ x2 = 0}.

Clearly, the closed-loop system will then ultimately converge

to the equilibrium set and an undesirable non-zero steady-

state error will result. Note that for (non-constant) friction

coefficients µ(x1, x2, t) satisfying Assumption 1, the closed-

loop system without impulsive control will exhibit a time-

varying stick set E(t) that satisfies E ⊆ E(t) ⊆ E ∀t, where

E = {x ∈ R
2 | |x1| ≤

mgµ

k1
∧ x2 = 0}, E = {x ∈ R

2 |
|x1| ≤ mgµ

k1
∧ x2 = 0} are the minimal and maximal stick

sets, respectively. A point x
∗ =

[

x∗
1 x∗

2

]T ∈ E remains

stationary for all times and is therefore an equilibrium point

of the PD-controlled system. The time-varying nature of

the stick set E(t) may, however, destroy the stationarity of

points in E(t)\E . The set E(t) therefore denotes the stick

set at time t and not an equilibrium set. The basic idea

behind the impulsive controller (3), (4), (5) is to apply an

impulsive control force when the state of the system enters

the maximal stick-set E , i.e. when x
−(t) ∈ E . Loosely

speaking, the impulsive force kicks the system out of the

stick phase allowing it to further converge (closer) to the set-

point. Clearly, the impulsive part of the controller prevents

the existence of an equilibrium set (and the occurrence of

non-zero steady-state errors). However, energy is added to

the system at every time-instant on which an impulsive

control action is applied. In this paper, we will provide

design rules for k1, k2 and k3(x1) such that more energy

is dissipated (through the derivative action of the controller

and the friction) in a time-interval between two impulsive

control actions than is provided by the impulsive control

action preceding this time-interval.

In order to design the impulsive part of the controller

k3(x1), we take the following perspective. Consider a time

instant tj for which x
−(tj) ∈ E , i.e. an impulsive con-

trol action U = k3(x1(tj)) will be induced by the con-

troller (3), (4), (5) at t = tj . Note that an impulsive control

force results only in a jump of the velocity x2(t) whereas

the position x1(t) is absolutely continuous, see (8). The

impulsive control action will cause x
+(tj) /∈ E . Let tj+1

denote the first time-instant for which x(t) reaches again

E , i.e. x−
2 (tj+1) = 0. Now, we will design k3(x1) in (5)

such that the velocity will be reset to such a post-impact

velocity x+
2 (tj) that the solution to (7), with µ(z, ż, t) =

µ and initial condition
(

x1(tj), x
+
2 (tj)

)

, will converge to

the origin in finite time tj+1 without any impulses and/or

velocity reversals occurring in the time-interval (tj , tj+1].
The impulsive controller design will satisfy the condition

k3(y) y < 0, for y 6= 0, and k3(0) = 0; (10)

in other words, x = 0 is an equilibrium point of the

controlled system and the impulsive control force U at time

tj is opposite to the position error x1(tj). In Section IV, we

will show that this control design also robustly stabilises the

closed-loop system with a time-varying and state-dependent

friction coefficient µ(t) = µ(x1(t), x2(t), t) satisfying As-

sumption 1.

Let us now design the impulsive control law k3(x1)
that has the above properties. Hereto, consider the case

that x1(tj) < 0 (the case x1(tj) > 0 can be studied in

an analogous fashion). This implies that k3(x1(tj)) > 0,

see (10), and x+
2 (tj) > 0. On the non-impulsive open time-

interval (tj , tj+1), the dynamics of (2) for µ(x1, x2, t) = µ
is therefore governed by the differential equation

ẋ1(t) = x2(t)

ẋ2(t) = −ω2
nx1(t) − 2ζωnx2(t) − gµ.

(11)

We seek a solution curve of (11) with the boundary con-

ditions x
+(tj) =

[

x1(tj) x+
2 (tj)

]T
and x

−(tj+1) =
[

0 0
]T

. The initial position x1(tj) and initial time tj are a

priori known. The initial velocity x+
2 (tj) as well as the end

time tj+1 > tj are yet unknown. We therefore have to solve a

mixed boundary value problem for the unknowns x+
2 (tj) and

tj+1. Hereto, we express the solution for µ(x1, x2, t) = µ in

closed form as follows

x1(t) = c

(

λ2

λ2 − λ1
eλ1(t−tj+1

) − λ1

λ2 − λ1
eλ2(t−tj+1

) − 1

)

x2(t) = c
λ1λ2

λ2 − λ1

(

eλ1(t−t
j+1

) − eλ2(t−t
j+1

)
)

(12)

for ζ > 1 and with c given by (9). Subsequently, using (12)

we require that x1(t) at time tj equals the a priori known

initial position x1(tj). This yields a nonlinear real algebraic

equation

f(tj+1) = 0 (13)
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for the unknown end time tj+1, where the function f(t) is

given by

f(t) = c

(

λ2

λ2 − λ1
eλ1(tj−t) − λ1

λ2 − λ1
eλ2(tj−t) − 1

)

− x1(tj).

(14)

Let us now study the following questions for the system

of equations (12), (13), (14):

• For which domain in x1(tj) does a unique solution pair

(tj+1, x
+
2 (tj)) exist?

• If a such solution pair exists, can we show that both

the time lapse tj+1 − tj and x+
2 (tj) are bounded for

bounded x1(tj) (i.e. the impulsive control law yields

bounded impulses and the resulting flowing response of

system (11) converges to the origin in finite time)?

In the following proposition, we propose the impulsive

control law that exhibits the above properties. Note that

the impulsive control action k3(x1(tj)) can be computed

from (8) using the fact that x−
2 (tj) = 0:

k3(x1(tj)) = mx+
2 (tj). (15)

Proposition 1

Consider the impulsive control law k3(x1(tj)) for a given

x1(tj), with tj arbitrary, defined by (15), where

1. tj+1 is the solution of (13), (14);

2. the value of x+
2 (tj) is determined by the evaluation of

x2(t), given by (12) at t = tj .

If ζ > 1, then it holds that k3(x1) is uniquely defined and

bounded for all (x1, x2) ∈ E .

Proof: For the sake of brevity we refer to [24] for a

detailed proof.

A schematic representation of the impulsive control law

k3(x1) for ζ > 1 is given in Figure 2, where we recall that

it is only applied for x1 ∈ E∗
:= {x1 ∈ R | |x1| ≤ mgµ

k1
}

(the solid part of the graph). Note that the impulsive control

law (15) can be computed a priori given the plant properties,

the uncertainty bounds µ and µ on the friction coefficient and

the gains k1 and k2 of the PD-controller.

Fig. 2: Schematic representation of the impulsive control law
k3(x1) for ζ ≥ 1 (E

∗

= {x1 ∈ R | |x1| ≤
mgµ

k1
}).

B. Switching Impulsive Controller Design

We will consider the following switching impulsive con-

trol law consisting of three phases:

1) The system starts at an arbitrary initial condition

x(t0) ∈ R
2. The parameters k1 and k2 of the PD-

controller are chosen such that the closed loop system

without friction is an undercritically damped oscillator

(i.e. ζ < 1). We assume that the solution x(t) is at-

tracted in a finite time (denoted by t1) to E . In the next

section, we will formalise this assumption and provide

sufficient conditions under which this assumption is

satisfied, which will explicate the motivation for the

choice of ζ < 1 in ensuring finite-time attractivity to

the stick-set.

2) The impulsive controller turns on at t = t1 ≥ t0 when

x
−(t1) ∈ E and the k2 parameter of the PD controller

is increased, such that ζ > 1. We opt for tuning k2

(for t ≥ t1) such that ζ > 1 for the following reasons.

Firstly, certain key characteristics of the impulsive con-

trol law, see Proposition 1, hold for ζ > 1. Secondly,

choosing ζ > 1 (actually choosing ζ large) is desirable

from a transient performance perspective. Thirdly, we

will show in Section V that the proposed impulsive

control law will guarantee the global uniform symp-

totic stability of the set-point for an arbitrarily large

uncertainty in the friction coefficient by choosing ζ
sufficiently large, see Assumption 3 and Remark 1.

The impulsive controller induces a velocity jump to

x+
2 (t1) such that the subsequent non-impulsive motion

results in

a) x
−(t2) = 0 if µ(t) = µ, which defines the value

of x+
2 (t1) and therefore the impulsive control

action k3(x1(t1)), see Section III-A,

b) x
−(t2) ∈ E for arbitrary µ(t), which puts an

additional condition on µ and µ, see Assump-

tion 3 in Section IV, which can, however, always

be satisfied by choosing ζ large enough.

We note that under Assumptions 1 and 3 t2 is finite

(we refer to [24] for a detailed proof).

3) The impulsive control is applied at each time-instant

tj for which x
−(tj) ∈ E . It holds that x

−(t2) ∈ E
and the control is such that x

−(tj) ∈ E , j = 2, 3, . . . .

Infinitely many impulsive actions will occur in a finite

time, i.e. t∞ < ∞, with x(t∞) = 0, see Remark 2

after Theorem 1 in Section IV.

The resulting switching impulsive control law is now given

by (3), (5) and

u(x1, x2, t) = −k1x1 − k2(t)x2, k1, k2 > 0,

k2(t) =

{

k21 t0 ≤ t < t1
k22 t ≥ t1

,
(16)

such that k1 > 0, 0 < k21

2
√

k1m
< 1 and k22

2
√

k1m
> 1, and

where t1 is the smallest time instant t1 ≥ t0 such that

x
−(t1) ∈ E .
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IV. STABILITY ANALYSIS

In this section, we will show that the control design, pre-

sented in Section III, symptotically (finite-time) stabilises the

set-point x = 0. Consider the system (2) satisfying Assump-

tion 1 and the impulsive feedback controller (3), (5), (16)

with k3(x1) satisfying (15) and x+
2 (tj) fulfilling the mixed

boundary value problem (see point 2 in Proposition 1). We

will call this the resulting closed-loop system and show

that x = 0 is a globally uniformly symptotically stable

equilibrium point of this system. Now, let us adopt the

following assumption.

Assumption 2

Solutions of the resulting closed-loop system (2), (3), (5),

(16), satisfying Assumption 1, which start at x(t0) ∈ R
2

reach the compact set E in a finite time t1 (i.e. t1 − t0 < ∞).

We now formulate two sufficient conditions for Assump-

tion 2 in the following two propositions.

Proposition 2

Suppose the friction coefficient µ(x1, x2, t) satisfies As-

sumption 1. If the time-evolution of the friction coefficient

µ(t) = µ(x1(t), x2(t), t) along solutions of the closed-loop

system (2), (3), (16), with U = 0, is piecewise constant,

such that it is constant during each time-interval for which

x2(t) does not change sign, and the linear part of the closed-

loop system is undercritically damped (i.e. ζ < 1), then the

stick set E is reached in finite time for any initial condition

x(t0) ∈ R
2.

Proof: In [25], Theorem 2(iii), finite-time attraction is

proven for a constant value of µ(t). The proof can easily be

extended to a piecewise constant µ(t) as in the proposition.

Proposition 3

Consider the closed-loop system (2), (3), (16), with U =
0. Consider a velocity-dependent friction law satisfying the

decomposition Ff (x2) ∈ −mgµ Sign(x2)−Fsm(x2) instead

of the friction law in (1), where µ is constant and satisfies

Assumption 1, Fsm(·) ∈ C1 and Ff (x2)x2 ≤ 0, ∀x2. If

k21 + ∂Fsm

∂x2
(0) < 2

√
mk1, i.e. the linearisation of the con-

tinuous part of the closed-loop dynamics (around the origin)

is undercritically damped, then the stick set E is reached in

finite time for any initial condition x(t0) ∈ R
2.

Proof: Under the conditions in the proposition, Theo-

rem 2 in [25] can be directly employed to provide the proof.

Given the rather generic class of friction laws considered

in this paper, the conditions on the friction law in Propo-

sitions 2 and 3 can be considered to be restrictive. Note,

however, that (possibly asymmetric) Coulomb friction laws

with uncertain (though constant) friction coefficient form a

practically relevant subclass of friction models that satisfies

the conditions in Proposition 2 and that the friction law

in Proposition 3 represents a general class of discontinu-

ous, velocity-dependent friction laws (possibly including the

Stribeck effect). Moreover, the formulation of less stringent

conditions for the finite-time convergence to the stickset for

the case of generic friction coefficients µ(x1, x2, t) is, to the

best of the authors’ knowledge, an open problem. Namely,

it has been shown in [25], [26] that, even for constant µ,

manifolds in state space may exist for which solutions only

converge to the equilibrium set asymptotically (not in finite

time). More precisely, in [25], it is shown that, under the

conditions in Proposition 3 with k21 + ∂Fsm

∂x2
(0) ≥ 2

√
mk1,

solutions exist that reach the equilibrium set in infinite time.

Based on Propositions 2 and 3 and the work in [25], [26],

we conclude that the fact that the linearised dynamics is

undercritically damped appears to be an essential condition

for the finite-time attractivity of the equilibrium set. This is

the reason for designing the switching controller as in (16).
We do stress here that, although more generic sufficient

conditions for Assumption 2 are currently lacking, it has

been widely observed in the literature (both on a model

level as in experiments), see e.g. [1], [3], [4], that solutions

in practice generally do converge to the stickset in finite

time. In fact, this finite-time convergence to the stick set is

directly related to the problems of stick-slip limit cycling

and non-zero steady-state errors, which we are aiming to

tackle with the control design in this paper and form the

core motivation for our work. Hence, from a practical point

of view, Assumption 2 is a very natural one.
Next, we adopt the following assumption.

Assumption 3

We assume that one of the following two conditions holds:

µ/µ >
1

2
, (17)

or

µ/µ > 1 −
(

λ1

λ2

)−a1

, where a1 = − λ1

λ2 − λ1
. (18)

Remark 1

We note that the condition (18) in Assumption 3 can always

be satisfied by choosing ζ = k22

2
√

k1m
> 1 large enough.

Namely, it holds that, firstly, the function 1 − (λ1/λ2)
−a1

is strictly decreasing for increasing ζ (for ζ > 1) and,

secondly, limζ→∞ 1 − (λ1/λ2)
−a1 = 0. To validate the

latter statement, define q := λ1/λ2, p := 1 − q. We can

derive that limζ→∞ 1 − (λ1/λ2)
−a1 = limq↓0(1 − q

q

1−q ) =
1 − limq↓0 qq = 1 − limq↓0 eq ln q = 0. We stress here

that this fact will allow us to guarantee robust stability for

any uncertainty level in the friction by designing the non-

impulsive part of the controller such that ζ is large enough

(satisfying condition (18)).
Still, we care to also provide condition (17) (µ/µ > 1

2 ) in

Assumption 3, which is independent of ζ, since this condition

is less strict than condition (18) for ζ close to 1. Namely,

limζ↓1 1−
(

λ1

λ2

)−a1

= limq↑1(1− q
q

1−q ) = limp↓0(1− (1−
p)

1−p

p ) = 1 − limp↓0 e
1−p

p
ln(1−p) = 1 − 1

e
≈ 0.63 > 1

2 .

Finally, the following theorem states the conditions under

which the origin of the resulting closed-loop system is
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globally uniformly symptotically stable (i.e. Problem 1 is

solved).

Theorem 1

Consider the resulting closed loop system (2), (3), (5), (16)

satisfying Assumptions 1, 2 and 3. The origin of the resulting

closed-loop system is globally uniformly symptotically stable.

Proof: For the sake of brevity we refer to [24] for a

detailed proof.

We note that Theorem 1 states that the proposed impulsive

control law can render the set-point globally uniformly

symptotically stable for a very wide class of friction models.

Namely, Assumption 1 only requires the friction coefficient

to be bounded from above (and below) and Assumption 3

can be satisfied for any level of uncertainty in the friction by

appropriately tuning the non-impulsive part of the controller

(i.e. by taking ζ = k22

2
√

k1m
large enough).

Remark 2

A solution of the resulting closed-loop sys-

tem (2), (3), (5), (16) with a friction coefficient µ(x1, x2, t),
satisfying Assumption 1, and initial condition x

−(t2) ∈ E
reaches the origin in a finite time

t∞ − t2 ≤
√

2|y2|
gµ

1

1 −
(

1 − µ

µ̄

)
1
2

, (19)

with y2 = x1(t2) and x(t∞) = 0, see [24].

V. ILLUSTRATIVE EXAMPLE

In this section, we illustrate the effectiveness of the

proposed impulsive control strategy by means of an example.

Hereto, we consider a motion system as in Figure 1 with

dynamics described by (2) with m = 1 and g = 10.

Moreover, the friction coefficient in (2) is of the form

µ(x1, x2, t) = (µ1 − µ2)/(1 + 0.5|x2|) + µ2 + µ3 sin(Ωt),
where µ1 = 0.4, µ2 = 0.3, µ3 = 0.05 and Ω = 4. In this

friction law, one can recognise a velocity-dependency with a

pronounced Stribeck effect and an explicit time-dependency.

Note that this friction law satisfies Assumption 1 with µ =
0.25 and µ = 0.45, which indicates a significant possible

variation on the friction coefficient and which also implies

the satisfaction of Assumption 3. The possible variation of

the friction coefficient is also illustrated by the dashed lines

in Figure 3.

Next, we employ the switching impulsive controller design

proposed in Section III and described by (3), (5), (16).

Herein, the control parameters are designed as k1 = 1,

k21 = 0.5, k22 = 3, implying that 0 < k21

2
√

k1m
= 0.25 < 1

and k22

2
√

k1m
= 1.5 > 1 as proposed in Section III-B, and the

impulsive control design (5) is designed using Proposition 1,

see Figure 4.

We employ a numerical time-stepping scheme [23] to

numerically compute solutions of the impulsive closed-loop

system. Figures 5 and 6 depict a simulated response of the

closed-loop system for an initial condition x1(0) = −4 and

x2(0) = −4.

Fig. 3: Friction coefficient. Dashed lines indicate
bounds on and mean of the friction coefficient
and the solid line indicates the evolution of
the friction coefficient along a solution of the
closed-loop system.

Fig. 4: Impulsive control law.

Fig. 5: Time history of the position x1(t) and the
velocity x2(t) for x1(0) = x2(0) = −4.

Figure 5 clearly shows that the response indeed converges

to the origin in finite time, while the jumps in the velocity

induced by the impulsive control action are clearly visible.

This figure also displays the time instants t1 = 3.55 and t2 =
4.40 at which the response hits, for the first time, the sets E
(maximal stick set) and E (minimal stick set), respectively

(see also Figure 6). Moreover, the response converges to the
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Fig. 6: Phase portrait depicting x2(t) versus x1(t) for
x1(0) = x2(0) = −4.

origin in the finite time t∞ = 4.8707. The upper bound

on t∞ that can be computed using (19) is t∞ = 5.5162.

This upper bound on t∞ is not overly conservative and can

be considered to be a realistic bound on the time in which

convergence to the setpoint is achieved.

We care to stress that the impulsive control design by no

means exploits knowledge on the particular friction law used

in this example and indeed guarantees robust stabilisation

for any position-, velocity- and time-dependent friction co-

efficient satisfying the same bounds.

VI. CONCLUSIONS

In this paper, we have provided a solution to the robust

set-point stabilisation problem for motion systems subject to

uncertain friction. A robust stability guarantee with respect

to frictional uncertainties is particularly relevant in practice,

since uncertainties in the friction model are unavoidable. We

propose an impulsive feedback control design, consisting

of a non-impulsive state-feedback and a state-dependent

impulsive feedback, that robustly stabilises the set-point for a

class of position-, velocity- and time-dependent friction laws

with uncertainty. Moreover, this control strategy guarantees

the finite-time convergence to the set-point, thereby induc-

ing favourable transient performance characteristics in the

resulting closed loop. The results are illustrated by means of

a representative motion control example.
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