
Modeling CO2 Recovery for Optimal Dynamic Operations

Ricardo Dunia, Gary T. Rochelle and S. Joe Qin

Abstract— The development of amine scrubbing processes
for coal and natural gas-fired power plants is essential to
reduce CO2 emissions. The design of tailor-made dynamic
models to predict CO2 capture in amine scrubbing processes
is fundamental for optimal control operations. This paper
presents the use of SIMPCA, a subspace system identification
technique used to develop a dynamic empirical model for an
LQG controller with integral action. Such a controller is made
to attain optimal operating conditions for a CO2 capture
pilot plant. Reference signals are used in conjunction with the
controller integral action to bring few process outputs towards
their set-points. The results illustrate the importance of reliable
model prediction in order to provide desirable closed loop
response and appropriate CO2 emission reduction.

I. INTRODUCTION

The CO2 capture process with amine solvent based
absorption and stripping is the most significant industrial
method for the removal of carbon dioxide from coal and nat-
ural gas-fired power plants [1]. Dynamic models have been
developed for the CO2 capture process [2] [3]. However,
these models require the calculation of reaction kinetics and
thermodynamic properties provided by specialized software
not made for real time optimization. Therefore, the appli-
cation of this type of models during process operations is
limited because simulation convergence, time and computa-
tional resources are limited in industrial setups.

Data-driven empirical models, like subspace system identi-
fication, allow fast adjustment to process operations. Among
empirical models, the subspace system identification algo-
rithms have been well accepted in industry not only because
of their simplicity and robustness, but also because they
provide state space models that are very convenient for
model based control [4] [5] [6]. This work implements a
subspace system identification technique named SIMPCA [7]
to develop dynamic empirical models for a multi-variable
predictive controller with integral action. Such a controller
model is based on data acquired for the CO2 capture pilot
plant at the separation research center in Austin, Texas.

There is a diversity of predictive multi-variable controllers
in the literature [8]. However, not all of them have been
successfully implemented in industrial applications. This is
because model maintenance and operator training play an
important role in the durability of an advanced controller.
Linear quadratic regulators with Kalman filters and integral
action have been recently implemented in the control of solid
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oxide fuel cell gas turbine in hybrid power plant systems [9].
The results show that the LQR ensures better maintenance of
the fuel cell stack voltage and temperature that improves fuel
cell system durability. LQR has been also used in the control
of rotor speed of wind turbines to reduce the drive-train
fatigue damage and improve power regulation [10]. In this
research work we use the LQR with a state estimator (LQG)
and integral action to control a CO2 recovery process.

This paper is divided in the following manner: Section
II introduces SIMPCA for empirical modeling of the CO2

capture pilot plant. The incorporation of integral action in
the LQG controller is discussed in Section III. The CO2

capture process operations are discussed in Section IV, where
the main manipulated variables and the number of states
variables are determined. Model prediction is tested and the
controller is implemented in Section V. The results illustrate
the importance of accurate models for closed loop perfor-
mance and stability. Section VI provides the conclusions and
the future work.

II. SUBSPACE SYSTEM IDENTIFICATION

Several mathematical forms can be used to describe linear
stochastic discrete state space models [11]. The one consid-
ered in this work is based on the following expressions,

x(k + 1) = Ax(k) + Bu(k) + w(k) (1)
y(k) = Cx(k) + Du(k) + v(k) (2)

where x(k) and w(k) ∈ <n, y(k) and v(k) ∈ <m, and
u(k) ∈ <l. The probabilistic distributions of wk and vk are
used to determine the model estimation confidence against
the output measurements accuracy. In this manner a Kalman
filter is included in the linear state space formulation in order
to correct the state dynamics based on the mismatch between
the estimated outputs ŷ and the actual measurements y at
each sample time k,

x̂(k + 1) = Ax̂(k) + Bu(k) + L [y(k)− ŷ(k)] (3)
ŷ(k) = Cx̂(k) + Du(k) (4)

where L is the steady state Kalman gain. Substitution of
e(k) ≡ y(k)− ŷ(k) in Eqs.(3, 4) gives

x̂(k + 1) = Ax̂(k) + Bu(k) + Le(k) (5)
y(k) = Cx̂(k) + Du(k) + e(k) (6)
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The f future y vectors, starting from sample time k, can be
appended in a composite vector yf (k),

yf (k) =


y(k)

y(k + 1)
...

y(k + f − 1)

 (7)

and the future time array adjoins N consecutive outcomes
of future time vectors as columns, starting from yf (k),

Yf =
[

yf (k) yf (k + 1) · · · yf (k +N − 1)
]

(8)

where Yf ∈ <m.f×N is also known as the Hankel data
matrix for future values of y. In a similar way, Hankel data
matrices are defined for past outcomes of y,

Yp =
[

yp(k) yp(k + 1) · · · yp(k +N − 1)
]

(9)

where, Yp ∈ <m.p×N and p represents the past horizon,

yp(k) =


y(k − p)

y(k + 1− p)
...

y(k − 1)

 (10)

Hankel data matrices are also defined for the vectors x̂, u,
and e to obtain the following forward dynamic relation,

Yf (k) = ΓfX(k) + HfUf (k) + GfEf (k) (11)

where Γf is the extended observability matrix, and Hf and
Gf are top triangular Toeplitz matrices, as are shown in the
Appendix.

The SIM method applied in this work is known as SIM-
PCA [7] and it first eliminates the effect of the state X(k)
on Yf (k) by pre-multiplying Eq.(11) with the orthogonal
complement of Γf full column rank,

(Γ⊥f )T [I −Hf ]
[

Yf

Uf

]
(k) = (Γ⊥f )T GfEf (k) (12)

The elimination of X(k) by the projection on the orthogonal
subspace of the Γf columns makes the mismatch between
the actual and model outputs solely dependent of Ef . For
this reason a right side matrix multiplication is used to
eliminate the effect of Ef in Eq.(12). The matrix W, known
as instrumental variable, is used to eliminate Ef ,

E{EfW} = 0 (13)

It has been shown that the matrix ZT
p ≡ [YT

p UT
p ] is a good

choice for instrumental variable of Ef in the sense that [12],

lim
N→∞

1
N

EfZT
p = 0 (14)

Therefore, the expectation of the right hand side multipli-
cation of Eq.(12) by W = ZT

p provides the following
expression,

lim
N→∞

(Γ⊥f )T [I −Hf ] ZfZT
p = 0 (15)

The application of PCA on an ergodic process, where past
data is representative of the future behavior of the process,
gives

1
N

Zf (k)ZT
p (k) = PT(k) + P̃T̃(k) (16)

which suggests from Eq.(15) that for N →∞,[
Γ⊥f

HT
f Γ⊥f

]
= P̃M =

[
P̃y

P̃u

]
M (17)

where M defines the non-trivial linear combination of the P̃
columns. The matrix P̃ is divided into the first m.f rows,
P̃y , and last l.f rows, P̃u, which gives

Γf = P̃⊥y −P̃T
y Hf = P̃T

u (18)

Notice that the upper triangular matrix Hf has a defined
column block structure as it is illustrated in the Appendix.
For that reason, the following arrangement is made to define
an upper triangular solution for Hf ,

−P̃T
y = Φ ≡

[
Φ1 · · · Φf

]
P̃T

u = Ψ ≡
[

Ψ1 · · · Ψf

]
where Φi ∈ <(m.f−n)×m and Ψi ∈ <(m.f−n)×l are the ith

block column of Φ and Ψ, respectively. Given the structure
of matrix Hf in the Appendix, only the first column block
Hf1 (defined by the first l columns) is necessary to determine
the rest of the matrix. Therefore, the expression ΦHf = Ψ
can be rearranged to,

Φ1 Φ2 · · · Φf−1 Φf

Φ2 Φ3 · · · Φf 0
...

...
. . .

...
...

Φf 0 · · · 0 0

Hf1 =


Ψ1

Ψ2

...
Ψf

 (19)

where

Hf1 ≡


D

CB
CAB

...
CAf−2B

 (20)

A least square solution for Hf1 is obtained from the over-
determined Eq.(19). The lower triangular matrix Hf can be
constructed from Hf1.

The top m rows of matrices Γ⊥f and Hf1 provide the
estimation for the system matrices C and D, respectively

Ĉ = Γf (1 : m, :)

D̂ = Hf1(1 : m, :)

The system matrices A and B are estimated by solving the
least squares problems

Γf (m+ 1 : m.f, :) = Γf (1 : m.(f − 1), :)Â (21)

and

Hf1(m+ 1 : m.f, :) = Γf (1 : m.(f − 1), :)B̂ (22)
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respectively. The matrix Gf is calculated from the QR
decomposition of the matrix,

Up

Yp

Uf

Yf

 =


R11 0 0 0
R21 R22 0 0
R31 R32 R33 0
R41 R42 R43 R44




Q1

Q2

Q3

Q4

 (23)

where only R44 and Q4 are required for the calculation of
Gf ,

G∗f = R44Q4 (24)

where G∗f = GfF. From the structure of the matrix Gf

given in the Appendix we obtain that the first m columns of
G∗f are given by

G∗f1 ≡


F

CLF
CALF

...
CAf−2LF

 (25)

Therefore, F̂ = G∗f1(1 : m, :) and

Γf (1 : m.(f − 1), :)L̂F̂ = G∗f1(m+ 1 : m.f, :) (26)

where the product L̂F̂ is obtained using least squares, and
F̂ is in general nonsingular.

III. LQG WITH INTEGRAL ACTION

Process engineers dictate requirements for a set of process
outputs to follow a list of reference variables, denoted by
r ∈ <s. Such a condition introduces a list of integrators or
additional states, denoted by xI ∈ <s, that are necessary to
determine the accumulated difference defined by r− Iry,

xI(k + 1) = xI(k) + r(k)− Iry(k) (27)

where rows of the matrix Ir ∈ <s×m define the set of outputs
with assigned reference or set-point. The incorporation of
these integrators determine the following steady state feasible
condition,

r∗ = Iry∗ (28)

where the subscripts
′∗′ denotes ”steady state”. A similar

necessary condition for the original model to reach steady
state is [

A− I B
C D

] [
x̂∗

u∗

]
=
[

0
ŷ∗

]
(29)

A control law that relates u to the states is necessary to
determine an appropriate optimal steady state target. For
convenience the LQR control law is here used,

u = − [K KI ]
[

x̂
xI

]
which satisfies the steady state conditions,

u∗ = − [K KI ]
[

x̂∗

xI
∗

]
(30)

The substitution of Eq.(30) in Eq.(29) provides the following
equality constraint in the case of no system-model output
mismatch, i.e. ŷ∗ = y∗,

A− I B 0 0
C D 0 −Im

0 0 0 Ir

K Il KI 0




x̂∗

u∗

xI
∗

ŷ∗

 =


0
0
r∗

0


This last expression represents the equality constraint for the
calculation of the optimal steady state target based on the
following objective function,

min
u∗

u∗T Ru∗ + χ∗T Qχ∗ (31)

where χ∗T ≡
[

x̂∗T x∗TI

]
, and the matrices R and Q

weight the costs of the different inputs and states, respec-
tively. Notice that these variables are defined in terms of
their deviation from nominal conditions. When the degrees
of freedom allow, inequality constraints can be also incorpo-
rated in the optimization scheme presented above,

umin ≤ u∗ ≤ umax ymin ≤ y∗ ≤ ymax (32)

Such inequality constraints define the feasible region of
operation. Notice that states are not included in the list of
inequality constraints because they lack of physical meaning.

The LQR gain matrix Kc = [K KI ] is calculated based
on the minimization of the following objective function,

J =
h−1∑
k=0

∆uT (k)R∆u(k) + ∆χT (k)Q∆χ(k) (33)

where ∆u(0), · · · ,∆u(h − 1) are the adjustable variables.
The operator ∆ indicates deviation from the optimal steady
state value, i.e. ∆u ≡ u−u∗. For convenience the matrices
R and Q are considered identical to the ones used for the
steady state case. The system matrices used for deviation
variables are also identical to the ones defined for the original
variables. Finally, the reference vector ∆r is eliminated from
the calculation of Kc as such inputs are not considered
as manipulated variables. One way to discard the use of
references as manipulated variables is by assigning large cost
penalties in the objective function, J .

The controller design procedure described above provides
the following controller structure,

∆χ(k + 1) = Λ∆χ(k) + Ω
[

∆y
∆r

]
(k)

∆u(k) = −Kc∆χ(k)

where the matrices Λ and Ω are given in the Appendix.
Notice that such a controller structure includes the state esti-
mator as well as the controller integrators. Figure 1 illustrates
how this controller exchanges data with the process sensors
as well as to the steady state optimizer to determine the
optimal control action, u(k). The Gf block is used to smooth
the steady state reference and avoid drastic changes in the
calculation of the controller action, u.
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Fig. 1. Block diagram of LQG Controller with Integral Action.

IV. MODELING CO2 RECOVERY PROCESS

The CO2 capture plant consists of absorbtion and stripping
columns. The absorber receives typical coal fired flue gas
containing 10 to 12 % CO2 at 40 to 60 oC and at atmospheric
pressure. Figure 2 illustrates the absorption column on the
right. Purified gas with low CO2 leaves the top of the
absorber column to the atmosphere. The stripper column
removes the CO2 from the liquid stream by increasing the
temperature to about 120oC at the bottom. Steam is used at
the reboiler to heat the aqueous solution.

Fig. 2. CO2 capture pilot process flow diagram. The purified gas and
captured CO2 are mixed and recycled to the absorber. The four main input
variables are highlighted in the diagram. These are the solvent flow (u1),
reboiler steam flow (u2), the stripper pressure (u3) and the flue gas flow
(u4).

There are four main input variables that define the operat-
ing conditions of this pilot plant. These variables have been
highlighted in Figure 2 and are manipulated or considered
as input disturbances to the process. These are:
• Solvent flow circulation: the solvent flow rate can be

adjusted by variable speed pumps throughout the whole
plant while maintaining liquid holdups.

• Flue gas load: the gas load is a function of the amount
of flue gas that needs to be processed from the power
plant exhaust stack. Such a flow depends in many
occasions of the amount of electric power generated.

• Reboiler steam flow: the steam flow regulates the tem-
perature in the stripper bottom and the amount of CO2

removed from the solvent. High steam consumption is
detrimental to the power plant efficiency, as in average

30% of low pressure steam available in the power plant
is consumed in the reboiler.

• Stripper pressure: the stripper pressure is regulated by
the amount of gas removed from the rich loading stream,
which is also a function of the reboiler steam flow.

Process variables are intrinsically correlated and that a
supervisory control level can be implemented to adjust plant
operations. Therefore, only few state variables representing
the dynamics of the process holdups and delays should be
necessary to define the process transients. This data compres-
sion to just a few dynamic states demonstrates the advantage
of subspace system identification methods to describe plant
modes of operation.

SIMPCA is used to develop the dynamic model for the
CO2 capture plant. The optimal number of states n is
determined by the Akaike Information Criterion index [13].
The data collected from the plant consists of 69 normalized
output measurements. The inputs were compressed into the
four independent decision variables described above. Table
I illustrates the AIC index for 310 samples taken every 15
seconds, where ten samples were used for the past and future
horizons. Base on such a criterion, the optimum number
of states that represents the process dynamics is 6, where
AIC(6) = 11.2 103.

TABLE I
AIC INDEX FOR THE DIFFERENT NUMBER OF STATES.

n 4 5 6 7 8
AIC.10−3 33.8 21.5 11.2 13.6 16.8

The fact that SIMPCA models are empirical prevents each
state to represent a material/energy holdup, as it would have
been the case of first principle models. Nevertheless, a state
profile can well be a linear combination of the process holdup
dynamic responses.

V. MODEL PREDICTION AND OPTIMAL CONTROL

A. Model Prediction

Model prediction is of significant importance in model
based control applications. It consists of the calculation of
future process outputs based on current and previous input-
output measurements. A Kalman filter is used to estimate
initial conditions for output prediction. After such an initial
state is estimated, the model prediction rescinds of the filter
term because future process measurements are not available
to correct the model dynamics. Therefore, the following
procedure is used to calculate an h step ahead prediction
profile:

1 Allow an initial number of samples κ for a reliable
estimation of the initial states x(κ) using Eqs.(1, 2).
Such expressions include the Kalman filter in order to
make the adequate correction in the model dynamics.

2 Given x(κ) and u(κ : κ+h) from the historian calculate
x(κ+1 : κ+h) using Eq.(1) but without the filter term.
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3 Using the last state and input vectors of the prediction
window x(κ + h) and u(κ + h) determine y(κ + h)
from Eq.(2).

4 Calculate x̂(κ + 1) using Eq.(1) and the actual output
vector y(κ) from the sensor measurements. Repeat the
procedure starting from step 2.

Notice that the vector y(κ+h) represents the output predic-
tion h samples in the future. Figure 3 illustrates the effect of
the prediction horizon in the the stripper bottom temperature
estimation. Only the last element of the prediction window
is shown for each plot line. After this output is estimated h
samples in the future, the prediction window steps one sam-
ple forward, and new measured outputs are made available
for the Kalman filter to estimate new initial conditions. This
procedure is repeated until all the data collected for testing
is considered.

Fig. 3. Effect of the prediction horizon in the stripper bottom temperature
estimation. The larger the prediction horizon the less accurate is the
prediction.

Model prediction precision determines the accuracy of
the controller gain calculations, as these are based of the
model system matrices. Next section illustrates the use of
model prediction in optimal control operations for the CO2

recovery process.

B. Optimal CO2 Recovery Under Transient Operations
The model identified in Section IV is used to develop a

Linear Quadratic Gaussian controller (LQG) with integral
action. The integral action is achieved by augmenting the
state vector with integrators and providing the respective ref-
erence profiles for the controlled variables, CVs. Therefore,
the controller will maintain zero offset for the chosen CVs
even in the presence of process-model mismatch.

The CO2 concentration at the top of the absorber (y8)
and the rich CO2 gas flow at the top of the stripper (y39)
were chosen as CVs. All inputs, with the exception of the
flue gas flow disturbance, are adjusted by the controller to
achieve optimal operating responses. The cost weight matrix
R has been designed based on the different manipulated
variables costs. In a similar manner, state deviation from
nominal conditions are also penalized based on the following
state-output weight conversion,

Q = CT QyC (34)

where Qy is the weight cost matrix for the output deviation
vector.

Figure 4 illustrates the closed loop time response to r∗ =
[−1 1]T . The CVs reach their respective reference values
within 1500 s (100 samples), while the MVs show a smooth
trajectory towards their desirable steady states. It is important
to emphasize that the controller internal model considered in
these responses is identical to the actual system.

(a) CVs are the CO2 concentration at the top of the absorber (y8) and
the rich CO2 gas flow at the top of the stripper (y39)

(b) MVs are the solvent flow (u1), reboiler steam flow (u2) and stripper
pressure (u3)

Fig. 4. Closed loop time response to r∗ = [−1 1]T using LQG with
integral action.

There are several studies that determine the detrimental
effect of process-model mismatch [14] [15]. In the case of the
LQR with integral action, the response can be deteriorated
to the point that closed loop responses can become unstable
when this mismatch is significant. To illustrate the effect of
process-model mismatch, the A matrix of the process, de-
noted by Asys is modified based on the following expression:

Asys = A + αA

where A represents the mismatch matrix and 0 ≤ α ≤ 1
determines the magnitude of the mismatch. Figure 5 illus-
trates the effect of the mismatch in the phase diagram defined
by the CVs. Notice that for α = 1 the response becomes
oscillatory and unstable. In such a case the integral action
intends to bring the system towards the [−1 1] target point
but the process-model discrepancy prevents the controller to
provide a stable closed loop response.

VI. CONCLUSIONS AND FUTURE WORK

The Subspace Identification Method with Principal Com-
ponent Analysis (SIMPCA) is successfully used to develop
a dynamic empirical model for the CO2 recovery pilot
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Fig. 5. Effect of process-model mismatch in the CVs phase diagram.

plant at the separation research center in Austin, Texas. This
model predicts the dynamic response of more than sixty
outputs with only six dynamic states. Four main decision
variables are used to bring the plant from one operating
condition to another. A multi-variable LQG controller is here
developed based on the SIMPCA model in order to assist the
operators in stabilizing the plant in an optimal manner around
desirable operating conditions. The results show that LQG
is well capable of bringing the plant to optimal steady state
conditions in cases where the controller model provides a
reliable prediction of the system outputs. Model Predictive
Control (MPC) will be incorporated as future work in the
controller structure to account for potential constraints during
significant power consumption swinging.
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APPENDIX

The extended observability matrix Γf is given by:

Γf =


C

CA
...

CAf−1

 ∈ <mf×n

while Hf and Gf are lower triangular Toeplitz matrices,

Hf =


D 0 · · · 0

CB D · · · 0
...

...
. . .

...
CAf−2B CAf−3B · · · D

 ∈ <mf×lf

Gf =


I 0 · · · 0

CK I · · · 0
...

...
. . .

...
CAf−2L CAf−3L · · · I

 ∈ <mf×mf

and determine the effect of the inputs and estimation errors
on the state dynamics. For the LQG controller structure, the
following matrices are considered:

Λ =
[

A− LC−BK + LDK LDKI −BKI

IrCBK− IrC I + IrCBKI

]
Ω =

[
L 0
0 I

]
Notice that the state estimator as well as the controller
integrators are already imbedded in such matrices.
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