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Abstract— In this paper, we develop a nonlinear controller
to achieve trajectory tracking for a velocity-sensorless vertical
take-off and landing (VTOL) aircraft with measurement delays.
By applying Pade approximation technique, the original con-
trolled system is approximately transformed into an augmented
dimension system without any time delay. After construct-
ing full-order observer, error coordinate transformation, and
system decomposition, the tracking problem of the newly
transformed system is changed into the stabilization problem of
two non-minimum phase subsystems and one minimum phase
subsystem. The resulting controller not only forces the VTOL
aircraft to asymptotically track the desired trajectories, but also
drives the unstable internal dynamics which stands for the non-
minimum property of VTOL aircraft to follow the causal ideal
internal dynamics (IID) solved via stable system center (SSC)
method. Numerical simulation results illustrate the effectiveness
of the proposed controller.

I. INTRODUCTION

Over the last few years, controlling of VTOL aircraft has

been paid considerable attention by the control community.

The main difficulty of VTOL aircraft control lies in its

non-minimum phase nature which limits the straightforward

application of some powerful nonlinear control techniques

such as feedback linearization and sliding mode control

(SMC)(Shkolnikov and Shtessel 2002).

At present, the bulk of the existing work with respect

to VTOL aircraft control covers two main branches: the

stabilization control (Olfati-Saber 2002; Zavala, Fantoni, and

Lozano 2003) and the trajectory tracking control (Hauser,

Sastry and Meyer 1992; Huang and Yuan 2002; Al-Hiddabi

and McClamroch 2002; Do, Jiang and Pan 2003). It should

be pointed out that the aforementioned papers are all based

on the assumption that there is no any time delay in the

VTOL aircraft system. Actually, the unavoidable presence

of time delay is a common feature in many systems (Liu,

Zinober and Shtessel 2009), including flight control systems

(FCSs). Time delays have significant effects on the flying

qualities of FCSs (Smith 1986). If not dealt with properly,

these delays may cause a significant degradation in control-

ling performance or even lead to loss of stability. So the time

delays must be taken into account and dealt with properly
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when designing controllers for aircrafts (Zhu, Wang and Cai

2011).

Usually, the position and the attitude of unmanned aircrafts

are measured by GPS and inertial measurement units (IMUs),

respectively. However, the transmission of position informa-

tion from the satellites to the aircraft and the measurements

of attitudes by IMUs all exist time delays (Wang, Liu and

Cai 2009). In [12] and [13], Pade approximation technique

was originally introduced to deal with the attitude measure-

ment time delays of VTOL aircraft. The problem of output

tracking control for velocity-sensorless VTOL aircrafts with

delayed outputs was addressed in [11]. However, in the

papers (Wang, Liu and Cai 2009; Zhu, Wang and Cai

2010b) based on output feedback control, the simulation

results demonstrated that VTOL aircrafts were merely forced

to track a desired vertical trajectory without considering

the lateral movement. As a result, the roll attitude is kept

horizontal, i.e., the asymptotically unstable internal dynamics

is stabilized to be zero. Under this circumstance, the tracking

problem is greatly simplified, as it is only during lateral

movement that the non-minimum phase property reflected

by the coupling between lateral and vertical thrusts is prob-

lematic (Consolini, Maggiore, Nielsen, and Tosques 2010).

This paper focuses on the problem of approximate trajec-

tory tracking control for a velocity-sensorless VTOL aircraft

in the presence of measurement delays. Compared with the

control schemes in [11] and [13], which only considered the

vertical movement of the VTOL aircraft in the presence of

time delay, the lateral movement is taken into account in

our scheme, during which, the unstable internal dynamics of

the aircraft is forced to follow its causal and bounded IID

(Gopalswamy and Hedrick 1993) solved via stable system

center (SSC) method (Shkolnikov and Shtessel 2002) rather

than directly stabilized to zero as in vertical movement. By

virtue of the causality of the solved IID, the proposed scheme

guarantees the output tracking of the VTOL aircraft even in

the presence of unexpected changes of desired trajectories.

The paper is organized as follows. In section 2, the control

problem of the VTOL aircraft is formulated. In section 3,

the design procedure of controller is presented. In section 4,

the stability analysis is provided. In section 5, the numerical

simulation is given to show the effectiveness of the proposed

design method. Section 6 draws the conclusions.

II. PROBLEM FORMULATION

The nominal mathematical model of the VTOL aircraft

moving in the vertical-lateral plane is described as (Hauser,

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 2499



1
u

2
u

2
uε

mg

z

y

b
Z

bY

φ

Fig. 1. Vertical take-off and landing aircraft.

Sastry and Meyer 1992)

ẋ1 = x2,

ẋ2 = −u1 sinx5 + εu2 cos x5,

ẋ3 = x4,

ẋ4 = u1 cos x5 + εu2 sinx5 − 1,

ẋ5 = x6,

ẋ6 = u2, (1)

where x1 and x3 denote, respectively, the horizontal position

y and vertical position z of the aircraft center of mass in the

body-fixed reference frame shown in Fig.1, x5 is the roll

angle φ of the aircraft, x2, x4 and x6 are the corresponding

velocities, respectively, and ε is a small coefficient that

characterizes the coupling between the rolling moment and

the lateral force. ‘−1’ denotes the acceleration of gravity;

The control inputs are the thrust (directed out the bottom of

the aircraft), u1, and the rolling moment about the aircraft

center of mass, u2. The two outputs are y1 = x1, y2 = x3.

By setting xi = 0 (i = 1, . . . , 4) in (1), it can be seen that

the resulting zero dynamics ẍ5 = 1
ε

sinx5 is asymptotically

unstable for ε 6= 0, which means that the VTOL aircraft is

non-minimum phase.

Under the assumption that without velocity measurements,

say, x2, x4 and x6 are not available for measurements

and the signals x1, x3, x5 are measured with known time

delays τ1, τ2, τ3 respectively, where τ1, τ2 are the time delays

brought from the transmitting delays by GPS, and τ3 is the

time delay brought from measurement delay by IMU. The

control objective is to design a feedback control law using

the delayed signals x2i−1(t − τi), i = 1, 2, 3, so that the

outputs y1 = x1(t − τ1) and y2 = x3(t − τ2) can track the

smooth reference trajectories y1d and y2d, respectively.

We use x̄(2i−1)td, i = 1, 2, 3, to denote the actual delayed

signal of x2i−1(t − τi) and then have

x̄(2i−1)td = x2i−1(t − τi). (2)

By replacing the time-delay function (2) with its first-

order Pade approximation (Shtessel, Zinober and Shkolnikov

2003), we have

x̄(2i−1)td(s)

x2i−1(s)
= exp(−τis) ≈

2 − τis

2 + τis
, (3)

where s is the Laplace transform variable. Define an auxiliary

variable x(2i−1)td as

x(2i−1)td(s)

x2i−1(s)
=

2 − τis

2 + τis
. (4)

It can be seen from (3) and (4) that the x(2i−1)td is the

approximation of the delayed signal x̄(2i−1)td. From (1) and

the equation (4), we obtain

ẋ(2i−1)td = −
2

τi

x(2i−1)td +
2

τi

x2i−1 − x2i, i = 1, 2, 3. (5)

Denote

Xi =





x(2i−1)td

x2i−1

x2i



 , Ai =





− 2
τi

2
τi

−1

0 0 1
0 0 0



 ,

i = 1, 2, 3,

g =





0
0
−1



 , u =

(

u1

u2

)

,

B1(x5) =





0 0
0 0

− sinx5 ε cos x5



 ,

B2(x5) =





0 0
0 0

cos x5 ε sinx5



 , B3 =





0 0
0 0
0 1



 .(6)

Under the coordinate transformation of (X1, X2, X3), the

system (1) with measurement delays can be transformed into

the following form without any time delay:

Ẋi = AiXi + Bi(x5)u + (i − 1)g, i = 1, 2,

Ẋ3 = A3X3 + B3u. (7)

The approximate measurement outputs are

yi = CXi, i = 1, 2, (8)

where C = (1, 0, 0).

Since x2i−1, x2i, i = 1, 2, 3, are unaccessible, and to

avoid noise-sensitivity caused by reduced-order observer, the

following full-order observer is designed for the purpose of

the tracking control:

˙̂
Xi = AiX̂i + Bi(x̂5)u + (i − 1)g + GiC(Xi − X̂i),

i = 1, 2,
˙̂

X3 = A3X̂3 + B3u + G3C(X3 − X̂3). (9)

where Gi = (gi1,gi2,gi3)
T , 1 ≤ i ≤ 3, are selected to make

Ã0i = Ai − GiC be Hurwitz. Let the observer errors be

defined as

X̃i = Xi − X̂i, i = 1, 2, 3. (10)

And subtracting (9) from (7), we have

˙̃
Xi = Ã0iX̃i + [Bi(x5) − Bi(x̂5)]u, i = 1, 2,

˙̃
X3 = Ã03X̃3, (11)
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where

X̃i =
(

x̃(2i−1)td, x̃2i−1, x̃2i

)T
,

Ã0i =





− 2
τi

− gi1
2
τi

−1

−gi2 0 1
−gi3 0 0



 , i = 1, 2, 3.

Define

φi = x(2i−1)td + x2i−1, i = 1, 2, (12)

then

φ̇i =
2

τi

φi −
4

τi

x(2i−1)td. (13)

The control aim is to let output yi = x(2i−1)td → yid, so

φid, the desired value of φi, satisfies

φ̇id =
2

τi

φid −
4

τi

yid. (14)

Since 2
τi

> 0, the system in Eq.(14) is non-minimum

phase, a stable numerical solution can be obtained via output

regulation theory (Isidori and Byrnes 1990), detailed solution

will be given in Section 5. By noticing (12), the desired value

of x2i−1 is φid − yid, thus the corresponding desired value

of x2i is φ̇id − ẏid.

Further, define the following error coordinate transforma-

tion

e(2i−1)td = x̂(2i−1)td − yid,

e2i−1 = x̂2i−1 − (φid − yid),

e2i = x̂2i − (φ̇id − ẏid), i = 1, 2,

η0 = x̂5td + x̂5,

η1 = x̂5,

η2 = εx̂6 − e2 cos x̂5 − e4 sin x̂5, (15)

whose time derivative yields

ė(2i−1)td = −
2

τi

e(2i−1)td +
2

τi

e2i−1 − e2i + ϕid,

ė2i−1 = e2i + gi2x̃(2i−1)td,

ė2i = vi + gi3x̃(2i−1)td, i = 1, 2,

η̇0 = −
2

τ3
η0 +

4

τ3
η1 + (g31 + g32)x̃5td,

η̇1 =
1

ε
(η2 + e2 cos η1 + e4 sin η1) + g32x̃5td,

η̇2 =
1

ε
(η2 + e2 cos η1 + e4 sin η1)

(e2 sin η1 − e4 cos η1) +

(φ̈1d − ÿ1d − g13x̃1td) cos η1 +

(1 + φ̈2d − ÿ2d − g23x̃3td) sin η1 +

[(e2 sin η1 − e4 cos η1)g32 + εg33]x̃5td. (16)

where ϕid = − 4
τi

yid + 2
τi

φid − φ̇id + gi1x̃(2i−1)td, and the

new inputs vi is defined as

v1 = −u1 sin x̂5 + εu2 cos x̂5 − (φ̈1d − ÿ1d),

v2 = u1 cos x̂5 + εu2 sin x̂5 − (φ̈2d − ÿ2d) − 1. (17)

The internal dynamics expressed by the last three equations

in (16) can be described as

η̇ = Φ(η, e, X̃, Yd), (18)

where

η = (η0, η1, η2)
T , e = (e1td, e1, e2, e3td, e3, e4)

T ,

X̃ = (x̃1td, x̃3td, x̃5td)
T

, Yd = (φ̈1d, ÿ1d, φ̈2d, ÿ2d)
T .

Rewriting (18) by separating its linear part from its non-

linear part yields

η̇ = Aηη + Aee + q(η, e, X̃, Yd), (19)

where

Aη =
∂Φ(η, e, X̃, Yd)

∂η
(0, 0, 0, 0) =





− 2
τ3

4
τ3

0

0 0 1
ε

0 1 0



 ,

Ae =
∂Φ(η, e, X̃, Yd)

∂e
(0, 0, 0, 0) =





0 0 0 0 0 0
0 0 1

ε
0 0 0

0 0 0 0 0 0





and

q(η, e, X̃, Yd) = Φ(η, e, X̃, Yd)−Aee−Aηη = (q0, q1, q2)
T ,

the specific form of q shows that

q0 = (g31 + g32)x̃5td,

q1 =
1

ε
(e2 cos η1 + e4 sin η1 − e2) + g31x̃5,

q2 =
1

ε
(η2 + e2 cos η1 + e4 sin η1)(e2 sin η1 − e4 cos η1)

+(φ̈1d − ÿ1d − g13x̃1td) cos η1

+(1 + φ̈2d − ÿ2d − g23x̃3td) sin η1

+[(e2 sin η1 − e4 cos η1)g32 + εg33]x̃5td − η1. (20)

If ε > 0, the matrix Aη is non-Hurwitz, the internal dy-

namics is asymptotically unstable. To curb this phenomenon,

a proper control is absolutely necessary, the way out is to

force the unstable internal dynamics η to track its bounded

IID ηd, which can be obtained by setting e, X̃ to their desired

states in (21). Under ideal conditions, X̃ = 0, and e = 0.

Consequently, the differential equation about ηd appears




η̇0d

η̇1d

η̇2d



 =





− 2
τ3

4
τ3

0

0 0 1
ε

0 1 0









η0d

η1d

η2d



 +





0
0
1



 ψ,

(21)

where ψ = (φ̈1d − ÿ1d) cos η1d + (1 + φ̈2d − ÿ2d) sin η1d −
η1d. Note that (21) has no stable numerical solutions due

to the non-Hurwitz property of Aη for ε > 0. However,

this does not mean that a bounded solution cannot be found

for such an unstable system (Al-Hiddabi and McClamroch

2002). In fact, under suitable assumptions, via the noncausal

stable inversion approach in (Devasia, Chen and Paden 1996)

or the SSC method in (Shkolnikov and Shtessel 2002), a

bounded solution can be computed. It is worth noting that

stable inversion approach is of limited practical use due to

the fact that the desired trajectories and their any changes

must be exactly known in advance, the offline pre-computing
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procedure is conducted backward in time, and the resulting

IID is noncausal. On the contrary, the SSC method does

not necessarily require the future information of the desired

trajectories, the online solving procedure for bounded IID is

performed forward in time. Therefore, we turn to the SSC

method to get the causal IID of (21) that will be given in

Section 5 in detail.

Let

η̃i = ηi − ηid, i = 0, 1, 2. (22)

And subtracting (21) from (19) results in

˙̃η0 = −
2

τ3
η̃0 +

4

τ3
η̃1 + q̃0,

˙̃η1 =
1

ε
e2 +

1

ε
η̃2 + q̃1,

˙̃η2 = η̃1 + q̃2, (23)

where q̃0 = q0, q̃1 = q1, q̃2 = q2 − ψ.

Then the system (16) whose last three equations are

replaced by (23) can be rewritten as

ė(2i−1)td = ˙̂x(2i−1)td − ẏid

= −
2

τi

e(2i−1)td +
2

τi

e2i−1 − e2i + ϕid,

ė2i−1 = ˙̂x2i−1 − (φ̇id − ẏid)

= e2i + gi2x̃(2i−1)td,

ė2i = ˙̂x2i − (φ̈id − ÿid)

= vi + gi3x̃(2i−1)td, i = 1, 2, (24)

˙̃η0 = −
2

τ3
η̃0 +

4

τ3
η̃1 + q̃0,

˙̃η1 =
1

ε
e2 +

1

ε
η̃2 + q̃1,

˙̃η2 = η̃1 + q̃2. (25)

By defining ηe2i−1
= e(2i−1)td + e2i−1, i = 1, 2. The time

derivative of ηe2i−1

η̇e2i−1
=

2

τi

ηe2i−1
−

4

τi

e(2i−1)td + ϕid + gi2x̃(2i−1)td,

which means that the subsystem (24) is non-minimum phase.

From (19), we see that the internal dynamics (25) is

linear relative with e1td, e1, e2, and linear irrelative with

e3td, e3, e4. Thus the system (27) can be decomposed into

the following three parts: non-minimum phase part 1

ė1td = −
2

τ1
e1td +

2

τ1
e1 − e2 + ϕ1d,

ė1 = e2 + g12x̃1td,

ė2 = v1 + g13x̃1td,

˙̃η1 =
1

ε
e2 +

1

ε
η̃2 + q̃1,

˙̃η2 = η̃1 + q̃2. (26)

non-minimum phase part 2

ė3td = −
2

τ2
e3td +

2

τ2
e3 − e4 + ϕ2d,

ė3 = e4 + g22x̃3td,

ė4 = v2 + g23x̃3td, (27)

and minimum phase part

˙̃η0 = −
2

τ3
η̃0 +

4

τ3
η̃1 + q̃0. (28)

Now, the tracking problem for the original system (1)

with measurement delays has been approximately converted

into a stabilization problem for the new subsystems (26) and

(27) without any time delay. The decomposition technique

(Al-Hiddabi and McClamroch 2002) enables us to design

control laws for the two non-minimum phase subsystems,

respectively, meanwhile the minimum phase part (28) which

is irrelevant to vi can be left alone when designing control

laws.

III. CONTROL LAW DESIGN

By defining z1 = (e1td, e1, e2, η̃1, η̃2)
T , the part (26) can

be rewritten as

ż1 = Az1
z1 + b1v1 + W1, (29)

where

Az1
=













− 2
τ1

2
τ1

−1 0 0

0 0 1 0 0
0 0 0 0 0
0 0 1

ε
0 1

ε

0 0 0 1 0













, b1 =













0
0
1
0
0













,

W1 = (ϕ1d, g12x̃1td, g13x̃1td, q̃1, q̃2)
T

.

By the same way, define z2 = (e3td, e3, e4)
T , the part (27)

appears as

ż2 = Az2
z2 + b2v2 + W2, (30)

where

Az2
=





− 2
τ2

2
τ2

−1

0 0 1
0 0 0



 , b2 =





0
0
1



 ,

W2 = (ϕ2d, g22x̃3td, g23x̃3td)
T

.

Replacing vi = vnli −Kizi, i = 1, 2, in (29) and (30) yields

żi = A0izi + bivnli + Wi, (31)

where Ki is selected so that A0i = Azi
− biKi is a Hurwitz

matrix; hence, for any given symmetric positive definite

matrix Qi, there exists a unique symmetric positive definite

matrix Pi satisfying the Lyapunov equation

AT
0iPi + PiA0i = −Qi. (32)

Pre-multiplying the vector zT
i Pi on both sides of (31) results

in

zT
i Piżi = zT

i PiA0izi + zT
i Pibivnli + zT

i PiWi. (33)

Because zT
i Pibivnli and zT

i PiWi are all scalars, we select

zT
i Pibivnli = −zT

i PiWi. (34)

The minimum-norm solution can be obtained as

vnli = −
(zT

i Pibi)
T zT

i PiWi

(zT
i Pibi)(zT

i Pibi)T
= −

δi

σi

, (35)
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where for convenience, we use δi and σi to denote the nu-

merator and denominator of the above equation, respectively.

In order to avoid control singularity problem, we redesign the

control law vnli as

vnli =







− δi

σi

, σi > ǫ,

− δi

σi

tanh2(λσi

ǫ
), σi ≤ ǫ,

(36)

where ǫ is a small positive constant.

By noticing (17), the practical inputs are obtained via the

input transformation

(

u1

u2

)

=

(

− sin x̂5 ε cos x̂5

cos x̂5 ε sin x̂5

)

−1

×

(

v1 + φ̈1d − ÿ1d

v2 + φ̈2d − ÿ2d + 1

)

. (37)

IV. STABILITY ANALYSIS

In this section, we present the boundness analysis of all

the signals of the closed-loop system.

For the Hurwitz matrix Ã0i and any given symmetric

positive definite matrix Q̃i, there exists a unique symmetric

positive definite matrix P̃i satisfying the Lyapunov equation

ÃT
0iP̃i + P̃iÃ0i = −Q̃i, i = 1, 2, 3. (38)

Select the following Lyapunov function

Vi = X̃T
i P̃iX̃i, i = 1, 2, 3, Vo =

2
∑

i=1

Vi + γV3. (39)

where γ is a positive constant.

Due to space limitations, the detailed stability analysis is

omitted.

V. SIMULATION RESULTS

A. Solving φd via output regulation theory

The desired output trajectories are y1d = R cos(ωt),
y2d = R sin(ωt). The sine signals can be generated by the

exosystem

ẇ = Sw, S =

(

0 ω

−ω 0

)

, (40)

where w = (w1, w2)
T , and thus y1d = RC1w, y2d = RC2w,

where C1 = (0, 1), C2 = (1, 0).

Focusing on the linear equation (14), define φid = Πiw,

the solution can be obtained via output regulation theory

φ1d = R
(

−4τ1ω
4+τ2

1
ω2

8
4+τ2

1
ω2

)

w,

φ2d = R
(

8
4+τ2

2
ω2

4τ2ω
4+τ2

2
ω2

)

w. (41)

0 50 100
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Fig. 2. (a) The desire IID η0d and η1d. (b) The desired IID η2d.

B. VTOL IID (ε = 0.5)

By (21), the IID ηd of the VTOL aircraft can be rewritten

in the following form

η̇0d = −
2

τ3
η0d +

4

τ3
η1d, ˙̄ηd = Aη̄ η̄d + bψ, (42)

where

η̄d =

(

η1d

η2d

)

, Aη̄ =

(

0 2
1 0

)

, b =

(

0
1

)

.

The characteristic polynomial of the exosystem (40)

P (λ) = |λI − S| = λ2 + ω2, (43)

from which we can determine the polynomial order k = 2,

the coefficients p1 = 0, p0 = ω2. By setting the desired

eigenvalue s1,2 = −1, the corresponding characteristic

equation (s + 1)
2

= s2 + 2s + 1 = 0; hence, the parameters

c1 = 2, c0 = 1. According to the formula in [1], we get

P1 = (I + c1Q
−1
1 + c0Q

−2
1 )(I + p1Q

−1
1 + p0Q

−2
1 )−1 − I

=
1

1 + 0.5ω2

(

0.5(1 − ω2) 2
1 0.5(1 − ω2)

)

, (44)

P0 = c0Q
−1
1 − (P1 + I)p0Q

−1
1

=
1

1 + 0.5ω2

(

−ω2 1 − ω2

0.5(1 − ω2) −ω2

)

, (45)

where Q1 = Aη̄.

The IID η̄d can be solved from the following matrix

differential equation

¨̄ηd + c1 ˙̄ηd + c0η̄d = −(P1θ̇d + P0θd), (46)

where θd = (0, 1)T ψ. When R = 1, ω = 0.1, the IID ηd

of the VTOL aircraft solved via the SSC method is given in

Fig.2.

C. Simulation results

The coupling coefficient ε is selected to be 0.5, which

means that the VTOL aircraft is a strongly non-minimum

phase system. The desired output trajectory y1d = R cos(ωt),
y2d = R sin(ωt), where the amplitude R and the fre-

quency ω switch, respectively from 1 to 1.2 and 0.1 to

0.2 at random time 62.8+5·rand(1). Such a situation may

occur in the case of obstacle avoidance. The initial condi-

tions are chosen as x(0) = (1.5, 0,−0.5, 0.2, 0.28, 0)T .The

observer initial conditions are chosen as x̂(0) =
(0, 1.3, 0.1, 0,−0.3, 0.1, 0.2, 0.1, 0.1)T . The observer gain
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Fig. 3. (a) The desired path and the actual path. (b) The desired roll angle
η0d − η1d, the actual roll angle x5d.

G1 = G2 = (−1, 0.8125, 0.25)T , such that the eigen-

values of Ã01 and Ã02 are all placed at −1; G3 =
(−1, 2.97, 2.7)T , which set the eigenvalues of Ã03 at −3.

The controller gains of the non-minimum phase subsystems

are K1 = (−0.2857,−3.7143, 6, 10.7143, 15.1429)T and

K2 = (−3.375, 3.625,−1)T , such that the eigenvalues of

A01 and A02 are all placed at −2 and −1. The corresponding

matrix P̃i is computed from (32) with Q̃i = I and ǫ = 0.1,

λ = 6.

From the simulation results, we can conclude that although

the measurement delays exist in the feedback channels,

not only the perfect output tracking is achieved, but also

the unstable internal dynamics, the delayed roll angle of

VTOL aircraft in physical meaning, is forced to follow its

corresponding IID which is subject to the desired outputs

and stands for the desired roll angle. The simulation also

shows that owing to the causality of the IID solved via the

SSC method adopted by our scheme, the roll angle is able

to adapt the change of the desired roll angle when some

unexpected changes of desired trajectories occur. To the end,

it is illustrated that the proposed control scheme based on the

application of Pade approximation technique to tackle delays

is valid and feasible.

VI. CONCLUSION

We have presented a nonlinear controller to achieve ap-

proximate trajectory tracking for a velocity-sensorless VTOL

aircraft in the presence of measurement delays. The control

development was based on Pade approximation technique to

deal with time delay, the construction of full-order observer,

error coordinate transformation, and system decomposition.

The resulting controller not only forced the VTOL aircraft

to track the desired trajectories, but also drived the unstable

internal dynamics to follow the causal IID. It has been

proved that the overall closed-loop system is asymptotically

stable. Simulation results have verified the validity of the

proposed controller. Finally, we point out that in this paper,

the time delay τ is exactly known. However, in actual control

systems, the time delay τ may include delay perturbation,

i.e., τ = τ0 + ∆τ, where τ0 is the known nominal time

delay, ∆τ is the unknown delay perturbation. Current work

is under way to consider this case of time delay, which is

still an open problem.
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