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Abstract–In this paper, discrete time inverse optimal tra-
jectory tracking for a class of non-linear positive systems is
proposed. The scheme is developed for MIMO (multi-input,
multi-output) a!ne systems. This approach is adapted for
glycemic control of type 1 diabetes mellitus (T1DM) pa-
tients. The control law calculates the insulin delivery rate
in order to prevent hyperglycemia levels. A neural model is
obtained from an on-line neural identifier, which uses a re-
current neural network, trained with the extended Kalman
filter (EKF); this neural model has an a!ne form, which
permits the applicability of inverse optimal control scheme.
The proposed algorithm is tuned to follow a desired trajec-
tory; this trajectory reproduces the glucose absorption of a
healthy person. Simulation results illustrate the aplicability
of the control law in biological processes.

I. Introduction

Many physical systems involve variables which are al-
ways positive. These class of systems are called positive
systems [1]. The state variables of positive systems are
confined within a "cone" located in the positive orthant
rather than in the whole space Uq. This feature makes
the analysis and synthesis of positive systems a challeng-
ing and interesting task [2] [3]. Considering this class of
systems, the goal of this paper is design a feedback con-
troller which stabilizes a non-linear positive system along
a desired trajectory. This paper reports an important ex-
tension to positive systems which is inspired by [4]. The
scheme control is focused in the application to Type 1 Di-
abetes Mellitus (T1DM) Patients. Recently, many authors
have worked intensively to develop an appropriate T1DM
controller [5] [6] [7]. Progress has been important, as there
are insulin pumps and glucose sensors very sophisticated
which improve the quality of life patients.

For the case of T1DM, there are di�erent models rep-
resenting glucose-insulin dynamics [8] [9]. However, syn-
thesizing a control law for these models is complicated due
to the complexity associated with the measurements and
the uncertainty of related parameters [10]. Hence, neural
identification is an excellent option to determine mathe-
matical models for glucose dynamics. The neural identifi-
cation used in this paper comes from the compartmental
model proposed by Sorensen [8]. The present paper reports
the modeling and the control for glucose-insulin dynamics,
which allows representing a virtual patient, for prediction
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purposes and for performance evaluation of the proposed
controller.
This paper is organized as follows: First the inverse opti-

mal control strategy is developed for positive systems; then
the neural model in an a!ne form is obtained from the
compartmental model developed by Sorensen; and finally,
simulation results are described and important conclusions
are stated.

II. Inverse Optimal Trajectory Tracking for

Positive Systems

Let consider a nonlinear a!ne system with an output (to
achieve passivity) given as

{n+1 = i ({n) + j({n)xn (1)

|n = k({n) + M({n)xn (2)

where (1) is a positive system if { 5 <q+ which is the state
of the system at time n 5 N , x> | 5 <p+ i : <q+ $ <q+,

j : <q+ $ <q×p+ , k : <q+ $ <p+ , and M : <
q
+ $ <p×p+

are smooth and bounded mappings. For all the last defi-
nitions •+ indicates non-negative elements including zero.
We assume i(0) = 0 and k(0) = 0. N denotes the set
of nonnegative integers. It is worth to note that, the out-
put which renders the system passive is not in general the
variable we wish to control.
The problem considered in this paper is to find a feed-

back control law which stabilizes system (1) along a desired
trajectory, and to establish that this controller is inverse
optimal with respect to a cost functional given as

F =
4X

n=0

O({n> xn) (3)

where O(•) is a non-negative function. Similar to the
continuous-time case, the discrete-time Hamiltonian be-
comes [11]

K({n> xn) = O({n> xn) + Y ({>n+1)� Y ({n) (4)

where K({n> xn) = 0 for { 5 <q+ and the optimal control
law x 5 <p+ ; Y : <

q
+ $ <+ is a nonnegative definite func-

tion such that Y (0) = 0 and Y ({n) A 0 (positive definite
function), ;{n 6= 0.
Due to the fact that the inverse optimal control is based

on a Lyapunov function, we establish the following defini-
tions:
Definition 1 (DTCLF [12]) Let Y1 be a radially un-

bounded, positive definite function, with Y1 ({n) A 0,
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;{n 6= 0 and Y1(0) = 0. If for any {n 5 <q+, there ex-
ist real values xn such that

�Y1({n> xn) ? 0

where �Y1({n> xn) is defined as

Y1 (i({n) + j({n)xn)� Y1({n)

Then Y1(·) is said to be a “discrete-time control Lyapunov
function” (DTCLF) for system (1).
Definition 2 (Passivity [13]) The system (1)-(2) is said to

be passive if there exists a non-negative function Y , called
storage function, such that for all xn

Y ({n+1)� Y ({n) � |
W
n xn (5)

where (·)W denotes transpose. This storage function can be
selected as a DTCLF if it is a positive definite function.
Definition 3 [14]. System (1)-(2) is locally zero-state ob-

servable (respectively locally zero-state detectable) if there
exists a neighborhood Z of {n = 0 such that {0 = {n 5 Z.

|n|x(n)=0 = k(�(n> {n> 0)) = 0 ;n , {n = 0

(uhvs= lim
n$4

�(n> {n> 0) = 0)

where !(n> {n> 0) = i
n({n) is the trajectory of the unforced

dynamics {n+1 = i({n) from {0 = {n; Z is in general a
neighborhood of the origin in <q+. If Z = <

q
+, the system is

zero-state observable (respectively zero-state detectable).
It is important to note that the output, with respect to

which the system is rendered passive, will not be the vari-
able which we wish to control. The passive output will
only be a preliminary step for control synthesis; addition-
ally, we have to define the signals which ensure the output
variables, which we want to control, behaves as desired.
To achieve tracking trajectory, first we define a DTCLF

as

Y ({n> {�>n) =
1

2
({�>n � {n)

W N1
W SN1 ({�>n � {n) (6)

where {�>n 5 Uq+ is the desired trajectory and N1 is an
additional gain matrix to modify the convergence rate of
the tracking error.
Theorem 1. Assume an a!ne discrete-time positive non-

linear system (1), and define an output as

|n = k({n> {�>n+1) + M({n)xn (7)

which is zero-state detectable with a candidate DTCLF de-
fined by (6), and satisfies the modified passivity condition

Y ({n+1> {�>n+1)� Y ({n> {�>n) � |
W
n xn (8)

If there exists a S = S
W
A 0 such that

iW S i + {W�>n+1 S {�>n+1 � i
W S {�>n+1

�{W�>n+1 S i � ({n � {�>n)
W S ({n � {�>n)

� 0

where S = NW
1 SN1 is a positive definite matrix. Then,

system (1) with output (7), is globally asymptotically sta-
bilized, along the desired trajectory ({�>n), by the output
feedback

xn = � (Lp + M({n))
�1
k({n> {�>n+1) (9)

with

k(•) =

½
jW ({n)S ({�>n+1 � i({n)) for i({n) º {�>n+1
jW ({n)S (i({n)� {�>n+1) for i({n) ! {�>n+1

(10)
and

M({n) =
1

2
jW ({n)S j({n) (11)

Moreover, with (6) as a DTCLF, this control law is in-
verse optimal in the sense that minimizes the cost func-
tional given as [4]

F =
4X

n=0

O ({n> {�>n> xn) (12)

Proof: Case 1 (k({n> {�>n+1) = jW ({n)S ({�>n+1 �
i({n))). Let (6) be a candidate DTCLF. System (1) with
output (7), must be rendered passive, such that the in-
equality (8) is fulfilled. Then, from (8), and considering
one step ahead for {�>n, we have

({�>n+1 � {n+1)
W NW

1 S N1 ({�>n+1 � {n+1)

2

�
({�>n � {n)

W NW
1 S N1 ({�>n � {n)

2
(13)

� kW ({n> {�>n)xn + x
W
n M

W ({n)xn=

Defining S = NW
1 S N1 and substituting (1) in (13), we

have

({�>n+1 � i � j xn)
W S ({�>n+1 � i � j xn)

2
(14)

�
({�>n � {n)

W S ({�>n � {n)

2

� kW xn + x
W
n M

W xn

Hence, (14) becomes

iW S i + {W�>n+1 S {�>n+1 � i
W S {�>n+1

�{W�>n+1 S i � ({�>n � {n)
W S ({�>n � {n) (15)

+(2iW S j � 2{W�>n+1 S j)xn + x
W
n j

W S j xn

� 2kWxn + 2x
W
n M

Wxn=

From (15), passivity is achieved if:
1) from the first term of (15), we can find S A 0 such

that

iW S i + {W�>n+1 S {�>n+1 � i
W S {�>n+1

�{W�>n+1 S i � ({n � {�>n)
W S ({n � {�>n) � 0> (16)

2) with (2iWSj � 2{W�>n+1 S j)xn = 2k
W xn, thus

k({n> {�>n+1) = j
W ({n)S (i({n)� {�>n+1)> (17)
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3) and xW jW S j xn = 2x
W
n M

W xn, thus

M({n) =
1

2
jW ({n)S j({n)= (18)

If system (1) with output (7) fulfill the zero-state de-
tectability property and if, from 1), 2), and 3) we deduce
that, if there exist a S , such that is satisfied (16), then the
system (1) with output (2) is passive.
To guarantee asymptotic trajectory tracking, we choose

xn = �|n and then Y ({n+1> {�>n+1) � Y ({n> {�>n) �

�|Wn |n � 0, which satisfies the Lyapunov forward di�er-
ence of Y .
In order to establish the inverse optimality, (4) is mini-

mize w.r.t. xn, with:

O ({n> xn) = o ({n) + x
W
n xn

= o ({n)� |
W
n xn

where o ({n) = �
¡
iW ({n)Si ({n)� {

W
n S{n

¢
� 0; thus, we

have

0 = min
xn
{O ({n> xn) + Y ({n+1)� Y ({n)}

= min
xn

©
o ({n)� |

W
n xn + Y ({n+1)� Y ({n)

ª

= �kW � xWn
¡
M + MW

¢
+
¡
iW � |Wn j

W
¢
Sj

= �kW � xWn
¡
M + MW

¢
+ iWSj � |Wn j

WSj

Considering kW = iWSj and M = MW , it is obtained

0 = �xWn M � k
WM � xWn M

WM

xWn
¡
M + MWM

¢
= �kWM

¡
M + M2

¢
xn = �Mk

and solving for xn, the proposed inverse optimal control
law is given as

xn = � (Lp + M ({n))
�1
k ({n> {�>n+1) (19)

with k ({n> {�>n+1) = j
W ({n)S ({�>n+1 � i ({n))

Now, solving (4) for O ({n> xn) and summing over [0> Q ],
where Q 5 N yields

QX

n=0

O ({n> xn) = �Y ({Q ) + Y ({0) +
QX

n=0

K ({n> xn)

Letting Q $ 4 and nothing that Y ({Q ) �$ 0 for all
{0, and K ({n> xn) = 0 for the inverse optimal control xn,
then F ({0> xn) = Y ({0), which is called the optimal value
function. Finally, if Y ({n) is a radially unbounded func-
tion, i.e., Y ({n) �$ 4 as k{nk �$ 4, then the solution

{n = 0, n 5 N , of the closed-loop system (1) is globally
asymptotically stable.
Case 2 (k({n> {�>n+1) = j

W ({n)S (i({n) � {�>n+1)). It
can be derived as explained in [4]. Then the proposed in-
verse optimal control law is given as

xn = � (Lp + M ({n))
�1
k ({n> {�>n+1) (20)

with k ({n> {�>n+1) = j
W ({n)S (i ({n)� {�>n+1)

Finally combining (19) and (20) the control law is given
as

xn = dev
h
� (Lp + M ({n))

�1
k ({n> {�>n+1)

i
(21)

which ensures that k(•) satisfies (10) ; the absolute value
in the control law is used to simplify the calculations for
the implementations.

III. Neural Glucose metabolism model

A. On-line Neural Identification

In this paper for the neural model identification the
RMLP (Recurrent Multi-Layer Perceptron) is chosen, then
the neural model structure definition reduces to dealing
with the following issues: selecting the inputs to the net-
work and 2) selecting the internal architecture of the net-
work.
The structure selected in this paper is NNARX [15]

(acronym for Neural Network AutoRegressive eXternal in-
put); the output vector for the artificial neural network
is defined as the regression vector of an AutorRegressive
eXternal input linear model structure (ARX) [16].
It is common to consider a general nonlinear system;

however, for many control applications is preferred to ex-
press the model in an a!ne form, which can be represented
by the following equations

|n+1 = i (|n > |n�1> ===> |n�t+1) + jxn (22)

where t is the dimension of the state space and j is the
input matrix. In other words, a nonlinear mapping i exists,
for which the present value of the output |n+1 is uniquely
defined in terms of its past values |n> ===> |n�t+1 and the
present values of the input xn.
Considering that it is possible to define:

!n =
£
|n===|(n�t+1)

¤W

which is similar to the regression vector of a ARX linear
model structure [15], then the nonlinear mapping i can be
approximated by a neural network defined as

|n+1 = * (!n> z
�) + z0�xn + %

where z� is an ideal weight vector, z0� is an ideal weight
vector for inputs and % is the modeling error; such neural
network can be implemented on predictor form as

a

|n+1 = * (!n> z) + z
0xn (23)
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where z is the vector containing the adjustable parame-
ters in the neural network and z0 is a fixed weight vector
for inputs, which is used to ensure controllability of the
neural model [4]. It is worth to note that for identification,
adequate inputs signals should be used [17].

B. EKF Training Algorithm

For KF-based neural network training, the network
weights become the states to be estimated. Due to the fact
that the neural network mapping is nonlinear, an EKF-
type is required [18]. The training goal is to find the op-
timal weight values which minimize the prediction error.
The modified Extended Kalman Filter (EKF) algorithm is
defined by:

zn+1 = zn +Nn

h
|n �

a

|n

i
(24)

Nn = SnK
W
nPn

Sn+1 = Sn �NnKnSn +Tn

with

Pn =
£
Un +KnSnK

W
n

¤�1

hn = |n �
a

|n

where h (n) 5 < is the respective approximation error, is the
prediction error associated covariance matrix at step n, z 5
<O is the weight (state) vector, O is the respective number

of neural network weights, | is the system output,
a

| is the
neural network output, N 5 <O is the Kalman gain vector,
T 5 <O×O is the state noise associated covariance matrix,
U 5 < is the measurement noise associated covariance; K 5

< is a vector, in which each entry (KLM) is the derivative

of one of the neural network output,
³
a

|
´
, with respect to

one neural network weight, (zm) defined as follows

Klmn =

"
C
a

|n
Czmn

#W

zl>n=zl>n+1

where l = 1> ===>p; m = 1> ===> O. Usually S and T are ini-
tialized as diagonal matrices, with entries S (0) and T (0),
respectively. It is important to remark that Kn> Nn and
Sn for the EKF are bounded; for a detailed explanation
of this fact see [19]. The measurement and process noises
are typically characterized as zero-mean, white noises with
covariance given by �n>>mUn and �n>>mTn, respectively with
�n>m a Kronecker delta function (zero for n 6= 1 and l for
n = o) [20]. In order to simplify the notation in this paper
the covariance will be represented by their respective asso-
ciated matrices, Un and Tn for the noises and Sn for the
prediction error.

meal

x(k+1) 
y(k) 

y(k-1) 

Compartmental�Model

(Virtual�patient)�

�

y=GP 

u
�

Neural�Model� Control�Law�

Fig. 1. Closed loop diagram for the control law.

C. Tracking objective

Proposition 1. Given a desired output trajectory {g =
{�, a dynamic system with state {, and a neural network
identifier with state b{, the following inequality holds [16]:

k{g � {k � kb{� {k+ k{g � b{k (25)

where {g�{ is the system state tracking error, and b{�{ is
the state estimation error and {g � b{ is the tracking error
for the neural network.
It is possible to establish Proposition 1 due to the sep-

aration principle for discrete-time nonlinear systems [21].
Based on (25), it is possible to divide the tracking objective
into two parts:
1. Minimization of b{�{, which can be achieved by the pro-
posed on-line EKF-learning algorithm (24) for the neural
identifier (23).
2. Minimization of {g � b{. This minimization is obtained
by the control law (9).

IV. Simulation results

In this section inverse optimal trajectory tracking is
adapted for glycemic control of type 1 diabetes mellitus
(T1DM) patients. Fig. 1 is a block diagram which por-
trays how the compartmental model proposed by Sorensen
[8] is connected to the on-line neural identifier, and how the
neural model is used to determining the control law. The
compartmental model takes as system input the total glu-
cose absorbed by the patient gut with every meal and the
insulin in the plasma after bolus and basal subcutaneous
dose as initial conditions; then the on-line neural identifier
captures the dynamics of the compartmental model. The
neural model is used to calculate the inverse optimal law
control and to obtain the insulin dose to be supplied to
the compartmental model and to the neural model. Sim-
ulations are implemented using Matlab, which is a trade
mark of the MathWorks, Inc.

A. On-line Identification

The on-line identification comes from the compartmen-
tal model proposed by Sorensen [8]. The compartmental
model represents the insulin-glucose dynamics (for more
details of the compartmental model see [8]). In order to do
the identification, the system output of the compartmen-
tal model is the glucose in the periphery interstitial fluid
space, which is represented by | = Js; the system input of
the compartmental model are the total glucose absorbed
by the patient gut with every meal which is represented
by �phdo and the time evolution for insulin in plasma after
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bolus and basal subcutaneous dose provided to the patient
by the Paradigm R° Real-time Insulin pump which is rep-
resented by l (w) then, x = [�phdo> l(w)]. Time evolution
of insulin in plasma is obtained using the model proposed
by Berger et al [22]. The simulation of the compartmental
model is done with real data taken from a T1DM patient.
To obtain the values for �phdo, the patient has to register
the quantity of carbohydrates every time he takes a meal;
then, with the quantity of carbohydrates and using the
model proposed by Lehmann et al. [23] the appearance of
glucose via glucose absorption from the gut is calculated.
It is important to note that the compartmental model [8]

is used as a virtual patient in order to update the patient
glucose level.
The RMLP used in this paper contains sigmoid units

only in the hidden layer (5 neurons); the output layer is
a linear one (one neuron). The sigmoid function V (•) is
defined as

V ()) =
1

1 + exp (��))
> � A 0

where ) is any real value variable. For the RMLP model the
input is the insulin, the output is the peripheral glucose and
the glucose absorbed by the patient gut with every meal is
taken as an unknown disturbance.
The neural model (23) can be represented in state space

as follows:

{1>n+1 = i1 ({n) (26)

{2>n+1 = i2 ({n) + j ({n)x ({n) (27)

a

|n = {2>n

|n = k ({n> {�>n+1) + M ({n)xn

i1 ({n) = {2>n

i2 ({n) =
5X

l=0

z
(2)
1l yl with y0 = +1

yl =

5

7V

3

C
2X

m=0

z
(1)
lm {m

4

D

6

8 with {0 = +1

j ({n) =

�
0
z0

¸

where k ({n> {�>n+1) is equal to (10) and M ({n) is equal to
(11), {2>n+1 is the glucose level, xn is the insulin dose.
The initial values for the covariance matrices (U>T>S )

are U0 = T0 = S0 = 10000. The lagged recurrent inputs
to the RMLP are equal to 2. The training is performed on-
line, using an EKF-learning algorithm in a series-parallel
configuration; the delayed outputs are taken from the
Sorensen model, which is fed with experimental data. The
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Fig. 2. Neural network identification.

specified target prediction error is 10�4. The results are
presented in Fig. 2, for the neural network identifier. The
sample time is 5 minutes because the Paradigm R° Real-
time Continuous Glucose Monitoring System takes a sam-
ple every 5 minutes. The total of samples is 1400 equivalent
to almost 5 days of monitoring.

B. Control Law Implementation

S and N1 are select as follows:

S =

�
14 11=5
11=5 14

¸
and N1 =

�
46 0
0 6=5

¸

and S = NW
1 SN1

The desired trajectory ({�>n) is obtained using the model
proposed by Lehmann et Al. [23] in order to take into ac-
count the postprandial e�ect. We select the trajectory to
be tracked as the glucose level of a healthy person in order
to improve the T1DM patient well-being. The control law
is (21), which ensures that k(•) satisfies (10). The tracking
performance and the tracking error are displayed in Fig. 3;
it can be seen that the two errors have the same sign so the
vector comparison of (10) is valid for this application. Fig.
4 presents the di�erence between the insulin supplied to the
patient with the insulin pump (open loop) and the insulin
which is calculated by the proposed control law. The mean
of the insulin supplied by the pump is 25.47mU/min. and
the mean of the insulin calculated by the proposed control
law is 26.81mU/min. Fig. 4 also displays the di�erence
between the glucose in the plasma taken from the patient
with the Continuous Glucose Monitoring System by Min-
iMed Inc (open loop) and the glucose in the plasma with
the proposed control law. It can be noticed that the glucose
reaches values above 150mg/dl, due to the carbohydrates
ingested by the patient, which act like a disturbance; there-
fore the control law corrects this situation quickly through
the insulin infusion. These are preview results; we are tun-
ing the algorithm for clinical trial.

V. Conclusions

A controller for positive systems is proposed. This class
of systems has high relevance as illustrates its applicabil-
ity to T1DM patients. The proposed scheme stabilizes the
system along a desired trajectory. The controller is applied
to an a!ne positive model representing the glucose-insulin
dynamics. Simulation results show how the control law is
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Fig. 3. Tracking performance of glucose in plasma from a patient
with T1DM.
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able to stabilize the blood glucose levels along a desired tra-
jectory. Indeed, this scheme improves the regulation of the
blood glucose level in T1DM patients, increasing slightly
the insulin quantity. This technique is an important result
since most of the biological systems are positive. It is also
illustrated that the proposed RMLP, used in our experi-
ments, captures very well the complexity associated with
blood glucose level for T1DM patients.
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