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Abstract— This paper focuses on multistability theory for dis-
continuous dynamical systems having a set of multiple isolated
equilibria and/or a continuum of equilibria. Multistability is
the property whereby the solutions of a dynamical system can
alternate between two or more mutually exclusive Lyapunov
stable and convergent equilibrium states under asymptotically
slowly changing inputs or system parameters. In this paper,
we extend the definition and theory of multistability to discon-
tinuous autonomous dynamical systems. In particular, nontan-
gency Lyapunov-based tests for multistability of discontinuous
systems with Filippov solutions are established. The results are
then applied to excitatory and inhibitory biological neuronal
networks to explain the underlying mechanism of action for
anesthesia and consciousness from a multistable dynamical
system perspective, thereby providing a theoretical foundation
for general anesthesia using the network properties of the brain.

I. INTRODUCTION

Advances in neuroscience have been closely linked to
mathematical modeling beginning with the integrate-and-fire
model of Lapicque [1] and proceeding through the modeling
of the action potential by Hodgkin and Huxley [2] to the
current era of mathematical neuroscience; see [3] and the
numerous references therein. Neuroscience has always had
models to interpret experimental results from a high-level
complex systems perspective; however, expressing these
models with dynamic equations rather than words fosters
precision, completeness, and self-consistency. Nonlinear dy-
namical system theory, in particular, can provide a framework
for a rigorous description of the behavior of large-scale
networks of neurons. A particularly interesting application
of nonlinear dynamical systems theory to the neurosciences
is to study phenomena of the central nervous system that
exhibit nearly discontinuous transitions between macroscopic
states. One such example exhibiting this phenomenon is the
induction of general anesthesia [4–7].

The rational, safe, and effective utilization of any drug in
the practice of medicine is grounded in an understanding of
the pharmacodynamics of the drug, loosely defined as what
the drug does to the body [8]. A very important measure of
the pharmacodynamics of any drug is the drug concentration
parameter EC50, which reflects the drug dose at which
the therapeutic effect is achieved in 50% of the cases.
This concept is certainly applicable for the administration
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of general inhalational anesthetics, where the potency of
the drug is defined by the minimum alveolar concentration
(MAC) of the drug needed to prevent a response to noxious
stimuli in 50% of administrations [9].

The MAC concept is intrinsically embedded in a prob-
abilistic framework [8]. It is the concentration at which
the probability of a response to a noxious stimulus is 0.5.
Typically the MAC of a particular anesthetic is determined
by administering various doses of the agent to a population
of patients and determining the dose at which there is a 0.5
chance of responding to a noxious stimulus. (Technically,
we identify the concentration in the alveoli, the fundamental
functional gas exchange units of the lung, at which the
chance of response is 0.5.) It has been possible, however,
to conduct studies of single subjects, varying the anesthetic
concentration and determining responsiveness. When this has
been done, it has been noted that the transition from respon-
siveness to non-responsiveness in the individual patient is
very sharp, almost an all-or-none transition [10]. This simply
confirms the observations of generations of clinicians. And
this raises the question of how to account for such a transition
in terms of the known molecular properties of the anesthetic
agent.

Although general anesthesia has been used in the clinical
practice of medicine for over 150 years, the mechanism of ac-
tion is still not fully understood [11] and is still under consid-
erable investigation [4–7]. Theories range from a nonspecific
perturbation of the lipid bilayer membrane of neurons, the
cells responsible for the “information” function of the central
nervous system, to the interaction of the anesthetic agent with
specific protein receptors [11]. Early theories postulated that
anesthesia is produced by disturbance of the physical prop-
erties of cell membranes. The work of Meyer and Overton
[12], [13] demonstrated that for some anesthetics there was
a correlation between anesthetic potency and solubility in
fat-like solvents. This led to a theory that anesthesia resulted
from a nonspecific perturbation of the lipid bilayer membrane
of neurons [7], [14]. Subsequent research then found that
membrane proteins performed functions of excitability and
this led to a focus on anesthetic binding and perturbation
of hydrophobic regions of membrane proteins [15]. Further
research also revealed that some anesthetic gases follow the
Meyer-Overton correlation but do not produce anesthesia
and some Meyer-Overton gases are excitatory and can cause
seizures [16]. These results led to the more common modern
focus on the interaction of the anesthetic agent with specific
protein receptors [11].

In particular, there has been extensive investigation of
the influence of anesthetic agents on the binding of
neurotransmitters to their postsynaptic receptors [6], [7].
A plethora of receptors have been investigated, includ-
ing receptors for glycine, serotonin type 2 and 3, N-
methyl-d-aspartate (NMDA), α-2 adrenoreceptors, α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), his-
tamine, acetycholine, and γ-aminobutyric acid (GABA). One
attractive aspect of this focus on postsynaptic receptors is it
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facilitates mathematical analysis on the basis of the effect
of receptor binding on the postsynaptic potential. This is
in marked contrast to the Meyer-Overton hypothesis, which
failed to explicitly detail how a nonspecific perturbation of
the lipid membrane would result in the anesthetic state.

In parallel with the investigation of the molecular inter-
actions of general anesthetic agents, there has also been
active investigation of the anatomic pathways involved in
the transition from consciousness to anesthesia [4]. There
is compelling evidence that the immobility created by some
anesthetics is mediated at the level of the spinal cord. In con-
trast, functional imaging and electroencephalograph analysis
has suggested that the site of suppression of consciousness is
the thalamus, and thalamocortical tracts may play a critical
role in the suppression of consciousness [7].

Despite these advances in our understanding of the molec-
ular interactions of anesthetic agents and of specific anatomic
loci for the action of anesthetic agents, there has been less
development of a mathematical framework to understand
this fascinating and clinically important phenomenon. It is
certainly possible that if the mechanism of general anesthesia
is the binding of the anesthetic agent to a specific receptor
protein, then the nearly all-or-none transition from the awake
state to the anesthetized state could be explained by a
highly cooperative binding of the anesthetic to the receptor.
In fact, it has been common to mathematically model the
probability of responsiveness to drug concentration using
the Hill equation, a simplified equation originally derived
in 1909 to describe the cooperative binding of oxygen to
the hemoglobin molecule [8]. However, to date, no single
unifying receptor mediating general anesthesia has been
identified.

Rather, the most likely explanation for the mechanisms of
action of anesthetics lies in the network properties of the
brain. It is well established that there are two general types
of neurons in the central nervous system—excitatory and
inhibitory—interconnected in a complex network. The action
potential of a spiking neuron is propagated along the axon to
synapses where chemical neurotransmitters are released that
generate a postsynaptic potential on the dendrites of con-
nected neurons. Excitatory neurons generate a depolarizing
postsynaptic potential on the dendrite of the connected neu-
ron and if the depolarization is of sufficient magnitude, then
a spike will be induced in the connected neuron. In contrast,
inhibitory neurons generate a hyperpolarizing postsynaptic
potential; an effect that acts to maintain a quiescent state.

The human central nervous system involves a complex
large-scale interconnected neural network involving feedfor-
ward and feedback (or recurrent) networks, with the brain
serving as the central element of this network system. The
brain is interconnected to receptors that transmit sensory
information to the brain, and in turn the brain delivers action
commands to effectors. The neural network of the brain
consists of approximately 1011 neurons (nerve cells) with
each having 104 to 105 connections interconnected through
subnetworks or nuclei. The nuclei in turn consist of clusters
of neurons each of which performs a specific and defined
function.

The most basic characteristic of the neurons that comprise
the central nervous system is the electrochemical potential
gradient across the cell membrane. All cells of the human
body maintain an electrochemical potential gradient between
the inside of the cell and the surrounding milieu. Neurons
have the capacity of excitability. If stimulated beyond a
threshold the neuron will “fire” and produce a large voltage
spike (the action potential) before returning to the resting
potential [3], [17]. The neurons of the brain are connected
in a complex network in which the firing of one neuron
can be the stimulus for the firing of another neuron. A

major focus of theoretical neuroscience has been describing
neuronal behavior in terms of this electrochemical potential,
both at the single neuron level but more ambitiously, at
the level of multi-neuron networks. In this type of analysis
the specific properties of the single neuron that are most
relevant are how the spike of a one neuron alters the
electrochemical potential of another neuron, and how this
change in the potential results in a neuronal spike. The
physical connection between neurons occurs in the synapse,
a small gap between the axon, the extension of the cell body
of the transmitting neuron, and the dendrite, the extension
of the receiving neuron. The signal is transmitted by the
release of a neurotransmitter from the axon into the synapse.
This neurotransmitter diffuses across the synapse, binds to a
postsynaptic receptor membrane protein on the dendrite, and
alters the electrochemical potential of the receiving neuron.

There is considerable evidence that general anesthetics
alter postsynaptic potentials [18], [19]. For example, it is
possible that the anesthetic bifurcation to unconsciousness or
the nearly all-or-none characteristic induction of anesthesia
is a type of phase transition of the neural network. This
possibility was first considered by Steyn-Ross et al. (see [20]
and the references therein). Their focus was on the mean
voltage of the soma, or cell body, of neurons. Specifically,
the authors in [20] show that the biological change of state to
anesthetic unconsciousness is analogous to a thermodynamic
phase change involving a liquid to solid phase transition. For
certain ranges of anesthetic concentrations, their first-order
model predicts the existence of multiple steady states for
brain activity leading to a transition from normal levels of
cerebral cortical activity to a quiescent, low-firing state.

In this paper, we present an alternative approach to the
possibility of neuronal network phase transition in terms of
neuronal firing rates, using the concept of multistability for
dynamical systems. Multistability is the property whereby
the solutions of a dynamical system can alternate between
two or more mutually exclusive Lyapunov stable and con-
vergent states under asymptotically slowly changing inputs
or system parameters. In particular, multistable systems
give rise to the existence of multiple (isolated and/or a
continuum of) stable equilibria involving a quasistatic-like
behavior between these multiple semistable steady states
[21]. Semistability is the property whereby the solutions to a
dynamical system converge to Lyapunov stable equilibrium
points determined by the system initial conditions [22], [23].
Multistability is ubiquitous in biological systems ranging
from biochemical networks to ecosystems to gene regulation
and cell replication [24]. Since molecular studies suggest
that one possible mechanism of action of anesthetics is the
inhibition of synaptic transmission in cortical neurons [18],
[19], this suggests that general anesthesia is a phenomenon
in which different equilibria can be attained with changing
anesthetic agent concentrations. Hence, multistability theory
can potentially provide a theoretical foundation for describ-
ing general anesthesia. Finally, we note that the proofs of
the results of this paper can be found in [24].

II. BIOLOGICAL NEURAL NETWORKS

The fundamental building block of the central nervous
system, the neuron, can be divided into three functionally
distinct parts, namely, the dendrites, soma (or cell body),
and axon. The dendrites play the role of input devices
that collect signals from other neurons and transmit them
to the soma; whereas the soma generates a signal that is
transmitted to other neurons by the axon. The axons of other
neurons connect to the dendrites and soma surfaces by means
of connectors called synapses. The behavior of the neuron
is best described in terms of the electrochemical potential
gradient across the cell membrane. If the voltage gradient
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across the membrane increases to a critical threshold value,
then there is a subsequent abrupt step-like increase in the
potential gradient, the action potential. This action potential
is transmitted from the soma along the axon to a dendrite
of a receiving neuron. The action potential elicits the release
of neurotransmitter molecules that diffuse to the dendrite of
a “receiving” neuron. This alters the voltage gradient across
the receiving neuron.

The electrochemical potential for a neuron can be de-
scribed by a nonlinear four-state system [3]. Coupling these
system equations for each neuron in a large neural population
is computationally prohibitive. To simplify the mathematical
modeling, it has been common to use phenomenological
firing rate models for studying neural coding, memory,
and network dynamics [3]. Firing rate models involve the
averaged behavior of the spiking rates of groups of neurons
rather than tracking the spike rate of each individual neuron
cell. In such population models, the activity of a neuron, that
is, the rate at which the neuron generates an action potential
(“fires”) is modeled as a function of the voltage (across
the membrane). The “firing” of a neuron evokes voltage
changes, postsynaptic potentials on receiving neurons; that
is, neurons electrically connected to the firing neurons via
axon-dendrite connections. In general, neurons are either ex-
citatory or inhibitory depending on whether the postsynaptic
potential increases or decreases the potential of the receiving
neuron. In particular, excitatory neurotransmitters depolarize
postsynaptic membranes by increasing membrane potentials
and can collectively generate an action potential. Inhibitory
neurotransmitters hyperpolarize the postsynaptic membrane
by decreasing membrane potentials, thereby nullifying the
actions of excitatory neurotransmitters and in certain cases
prevent the generation of action potentials.

Biological neural network models predict a voltage in the
receiving or postsynaptic neuron given by

V (t) =

nE
∑

i=1

∑

j

αE
i (t− tj) +

nI
∑

i′=1

∑

j′

αI
i′(t− tj′), (1)

where i ∈ {1, . . . , nE} and i′ ∈ {1, . . . , nI} enumerate the
action potential or firings of the excitatory and inhibitory
transmitting (presynaptic) neurons at firing times tj and tj′ ,
respectively, and αE

i (·) and αI
i′(·) are functions describing

the evolution of the excitatory and inhibitory postsynaptic
potentials, respectively.

Using a (possibly discontinuous) function fi(·) to repre-
sent the firing rate of the ith neuron and assuming the firing
rate is a function of the voltage vE

i (·) (resp., vI
i(·)) across the

membrane of the ith neuron given by fi(v
E
i (AXY)) (resp.,

fi(v
I
i(A

XY))), it follows that

vE
i (t) =

nE
∑

j=1,j 6=i

AEE
ij

∫ t

−∞

αE
j (t− τ)fi(v

E
j (τ))dτ

+

nI
∑

j′=1

AEI
ij′

∫ t

−∞

αI
j′(t− τ)fi(v

I
j′ (τ))dτ

+IE
i (t), i = 1, . . . , nE, (2)

vI
i(t) =

nE
∑

j=1

AIE
ij

∫ t

−∞

αE
j (t− τ)fi(v

E
j (τ))dτ

+

nI
∑

j′=1,j′ 6=i

AII
ij′

∫ t

−∞

αI
j′ (t− τ)fi(v

I
j′ (τ))dτ

+II
i (t), i = 1, . . . , nI, (3)

where the neuronal connectivity matrix AXY is such that
AXY

ij 6= 0, X,Y ∈ {E, I}, if the jth neuron is connected
(i.e., contributes a postsynaptic potential) to the ith neuron
and AXY

ij = 0 otherwise, and where IE
i (·) and II

i (·) are

continuous synaptic current functions. Note that AEE
ii =

AII
ii = 0 by definition.

Next, defining the synaptic drive of each (excitatory or
inhibitory) neuron by

S
(E,I)
i (t) ,

∫ t

−∞

α
(E,I)
i (t− τ)fi(v

(E,I)
i (τ))dτ, (4)

and assuming α
(E,I)
i (t) = B(E,I)e

− t

λ
(E,I)
i , where B(E,I) =

BE if the ith neuron is excitatory and B(E,I) = BI if the ith

neuron is inhibitory, and similarly for S
(E,I)
i , v

(E,I)
i , α

(E,I)
i ,

and λ
(E,I)
i , it follows from (4) and the expresion for α

(E,I)
i (t)

that

dS
(E,I)
i (t)

dt
= −

1

λ
(E,I)
i

S
(E,I)
i (t) +B(E,I)fi(v

(E,I)
i (t)). (5)

Now, using the expressions for the excitatory and inhibitory
voltage given by (2) and (3), respectively, it follows that

dSE
i (t)

dt
= −

1

λE
i

SE
i (t) +BEfi





nE
∑

j=1,j 6=i

AEE
ij S

E
j (t)

+

nI
∑

j′=1

AEI
ij′S

I
j′ (t) + IE

i (t)



 , i = 1, . . . , nE, (6)

dSI
i(t)

dt
= −

1

λI
i

SI
i(t) +BIfi





nI
∑

j′=1,j′ 6=i

AII
ij′S

I
j′(t)

+

nE
∑

j=1

AIE
ij S

E
j (t) + II

i (t)



 , i = 1, . . . , nI. (7)

The above analysis reveals that a form for capturing
the neuroelectronic behavior of biological excitatory or in-
hibitory neuronal networks can be written as

dSi(t)

dt
= −τiSi(t) + fi





n
∑

j=1

AijSj(t) + Ii(t)



 ,

Si(0) = Si0, t ≥ 0, i = 1, . . . , n, (8)

where Si(t) ∈ D ⊆ R is the ith synaptic drive, Ii(t) ∈
R denotes the synaptic current of the ith neuron, Aij is a
constant representing the coupling strength of the jth neuron

on the ith neuron, τi , 1/λi is a time constant, and fi(·)
is a nonlinear activation function describing the relationship
between the synaptic current and the firing rate of the neuron.
In this paper, we assume that fi(·) can be a discontinuous
function such as a hard limiter or a continuous function such
as a half-wave rectification function or a sigmoidal function.
Specifically, for a typical neuron

fi(x) = [x]+, (9)

where i ∈ {1, . . . , n} and [x]+ = x if x ≥ 0, and [x]+ =
0 otherwise. Alternatively, we can approximate fi(x), i ∈
{1, . . . , n}, by the sigmoidal function

fi(x) =
xeγx

1 + eγx
, γ >> 0. (10)
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III. MULTISTABILITY THEORY

Multistability is the property whereby the solutions of
a dynamical system can alternate between two or more
mutually exclusive semistable states under asymptotically
slowly changing inputs or system parameters. In particular,
the state of a multistable system converges to Lyapunov
stable equilibria that belong to an equilibrium set that has
a multivalued hybrid topological structure consisting of iso-
lated points and closed sets homeomorphic to intervals on
the real line. In this and the next section, we develop a
general, nontangency- and weak stability-based framework
for addressing multistability of nonlinear dynamical systems.
This work is inspired by the study of nontangency-based
Lyapunov tests for convergence and stability addressed in
[22] as well as weak stability notions for dynamical systems
addressed in [25].

To develop the notion of multistability, consider the au-
tonomous differential equation given by

ẋ(t) = f(x(t)), x(0) = x0, a.a. t ≥ 0, (11)

where f : R
q → R

q is Lebesgue measurable and locally
essentially bounded [26], that is, f is bounded on a bounded
neighborhood of every point, excluding sets of measure zero,
and let Ee , {x ∈ R

q : f(x) = 0} denote the set of equilibria
for (11).

Definition 3.1 ([26]): An absolutely continuous function
x : [0, τ ] → R

q is said to be a Filippov solution of (11) on
the interval [0, τ ] with initial condition x(0) = x0, if x(t)
satisfies d

dt
x(t) ∈ K[f ](x(t)) for almost every t ∈ [0, τ ],

where the Filippov set-valued map K[f ] : R
q → B(Rq) is

defined by K[f ](x) ,
⋂

δ>0

⋂

µ(S)=0 co {f(Bδ(x)\S)} for

x ∈ R
q, where Bδ(x) denotes the open ball centered at x

with radius δ, B(Rq) denotes the collection of all subsets
of R

q , µ(·) denotes the Lebesgue measure in R
q , and “co”

denotes the convex closure.

Note that K[f ] : R
q → B(Rq) is a map that assigns sets

to points. Dynamical systems of the form given by d
dt
x(t) ∈

K[f ](x(t)) are called differential inclusions [27] and for each
state x ∈ R

q , they specify a set of possible evolutions rather
than a single one. Note that an equilibrium point of (11) is
a point xe ∈ R

q such that 0 ∈ K[f ](xe).

Definition 3.2: Consider the nonlinear dynamical system
(11). We say that the dynamical system (11) is multistable
if i) there exists more than one equilibrium point of (11)
in R

q; ii) all solutions to (11) converge to one of these
equilibrium points; and iii) almost all solutions to (11)
converge to Lyapunov stable equilibria; that is, the set of
initial conditions driving the solutions of (11) to unstable
equilibria has Lebesgue measure zero.

It is important to note that our definition of multistability
is different from the definition given in [28]. Specifically,
pertaining to condition iii), the definition of multistability
given in [28] requires that almost all solutions to (11) con-
verge to asymptotically stable equilibria. This key difference
allows for the dynamical system (11) to possess a continuum
of equilibria, rather than merely isolated equilibria. As we
see later, if fi is of the form given by (9), then (8) has
a continuum of equilibria under certain conditions, and
hence, (11) is semistable in the sense of iii) [27]. Hence,
in this case, it is more appropriate to use Definition 3.2 to
characterize multistability.

Almost all of the existing results on multistability theory
rely on linearization techniques based on the Hartman-
Grobman theorem involving the fact that the linearized sys-
tem has the same topological property as the original system
around a hyperbolic fixed point. When the system fixed point

is not hyperbolic, however, these techniques fail to predict
multistability. In this case, checking multistability becomes
a daunting task. Rather than checking the transversality
condition for hyperbolicity, in this paper we present a new
approach for guaranteeing multistability using equilibria-
independent, semidefinite Lyapunov function methods. In
particular, using the geometric structure of the vector field
f for a given dynamical system, we develop nontangency-
based Lyapunov tests for verifying conditions ii) and iii) in
Definition 3.2 involving convergence and Lyapunov stability
almost everywhere.

IV. DIRECTION CONES, NONTANGENCY,

CONVERGENCE, AND NONSMOOTH MULTISTABILITY

To show condition ii) in Definition 3.2 holds for dynamical
systems of the form given by (11), we adopt the notion
of nontangency [22], [27] to develop nontangency-based
Lyapunov tests for convergence. Specifically, the authors in
[22] develop a general framework for nontangency-based
Lyapunov tests for the convergence of dynamical systems
described by ordinary differential equations with continu-
ous vector fields. In [27], the authors extend some of the
results of [22] to nonsmooth dynamical systems, that is,
systems described by ordinary differential equations with
the discontinuous right-hand sides. Since the vector field f
characterizing biological neural networks can involve either
continuous or discontinuous vector fields, we use the more
general definition for nontangency presented in [27]. Before
stating our results, we introduce some notation and defini-
tions.

A set E ⊆ R
q is connected if and only if every pair of

open sets Ui ⊆ R
q, i = 1, 2, satisfying E ⊆ U1∪U2 and Ui∩

E 6= ∅, i = 1, 2, has a nonempty intersection. A connected
component of the set E ⊆ R

q is a connected subset of E that
is not properly contained in any connected subset of E . Given
a set E ⊆ R

q , let coco E denote the convex cone generated
by E .

Definition 4.1: Given x ∈ R
q , the direction cone Fx of

the vector field f at x is the intersection of closed convex

cones of the form
⋂

µ(S)=0 coco{f(U\S)}, where U ⊆ R
q

is an open neighborhood of x and Q denotes the closure of
the set Q. Let E ⊆ R

q . A vector v ∈ R
q is tangent to E at

z ∈ E if there exist a sequence {zi}∞i=1 in E converging to z
and a sequence {hi}

∞
i=1 of positive real numbers converging

to zero such that limi→∞
1
hi

(zi − z) = v. The tangent cone

to E at z is the closed cone TzE of all vectors tangent to E
at z. Finally, the vector field f is nontangent to the set E at
the point z ∈ E if TzE ∩ Fz ⊆ {0}.

Next, let ω(x) be the positive limit set of (11) at x
and let V̇ denote the set-valued Lie derivative [27] for
Filippov solutions to (11) for a given lower semicontinuous
function V (·). The next result generalizes the Krasovskii-
LaSalle invariant set theorem to the case where V (·) is lower
semicontinuous and f(·) is Lebesgue measurable and locally
essentially bounded.

Proposition 4.1: Assume that V : R
q → R is a lower

semicontinuous function such that V̇ is defined on R
q and

V̇ (x) ≤ 0 for all x ∈ R
q . Let x ∈ R

q be such that a solution

ψ(t, x) of (11) is bounded. Then ω(x) ⊆ M, where M ,
⋃

γ∈R
Mγ and Mγ denotes the largest weakly invariant set

contained in Rγ ,
⋂

c>γ V
−1([γ, c]).

The following theorem gives sufficient conditions for
convergence using the nontangency between the vector field
f and invariant subsets of the level sets of a lower semicon-
tinuous semidefinite Lyapunov function.
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Theorem 4.1: Assume that V : R
q → R is a lower

semicontinuous function such that V̇ is defined on R
q and

V̇ (x) ≤ 0 for all x ∈ R
q. Let x ∈ R

q be such that the
solution of (11) is bounded. If M defined in Proposition 4.1
is composed of isolated equilibria of (11) or f is nontangent
to M at every point in M, then limt→∞ ψ(t, x) exists.

Corollary 4.1: Assume that V : R
q → R is a continuous

function such that V̇ is defined on R
q and V̇ (x) ≤ 0 for

all x ∈ R
q . Let x ∈ R

q be such that the solution of (11) is
bounded and let N denote the largest weakly invariant set
contained in V̇ −1(0). If N is composed of isolated equilibria
of (11) or f is nontangent to N at every point in N , then
limt→∞ ψ(t, x) exists.

Next, we present convergence results for (11) in the case
where a subset of the equilibria of (11) are Lyapunov stable.

Theorem 4.2: Assume that there exists a lower semicon-
tinuous function V : R

q → R such that V̇ is defined on
R

q and satisfies V̇ (x) ≤ 0 for all x ∈ R
q . Let x ∈ R

q

be such that the solution of (11) is bounded, let Se ⊆ Ee
denote the set of equilibria of (11) that are Lyapunov stable,
and let C0 denote the largest weakly invariant set contained
in M. In addition, for every k = 0, 1, 2, . . ., let Hk ⊆ Ck
denote the set of points in Ck where f is not nontangent to
Ck and let Ck+1 ⊆ Hk denote the largest weakly invariant
set contained in Hk. If Hk ⊆ Se for some k ∈ {0, 1, 2, . . .},
then limt→∞ ψ(t, x) exists.

Corollary 4.2: Assume that V : R
q → R is a continuous

function such that V̇ is defined on R
q and V̇ (x) ≤ 0 for

all x ∈ R
q . Let x ∈ R

q be such that the solution of (11) is
bounded and let N denote the largest weakly invariant set

contained in V̇ −1(0). If every point in N is Lyapunov stable,
then limt→∞ ψ(t, x) exists.

The results of this section can be used to verify condition
ii) of Definition 3.2, that is, convergence of all solutions to
(11). Now, we need only show that all solutions converging to
unstable equilibria correspond to a Lebesgue zero-measure
set of initial conditions to establish multistability. This is
addressed in the next section.

V. SEMISTABILITY ALMOST EVERYWHERE

In this section, we use the results of the previous section
to derive sufficient conditions for convergence and Lyapunov
stability almost everywhere of (11). This result does not
require any assumptions on the sign definiteness of the
Lyapunov function. The assumption needed is a nontangency
condition on the vector field to the closure of the zero-level
set of the Lyapunov function derivative.

Theorem 5.1: Assume that V : R
q → R is a continuous

function such that V̇ is defined almost everywhere on R
q

and V̇ ≤ 0 wherever V̇ is well defined. Let x ∈ R
q be such

that the solution of (11) is bounded and let N denote the
largest weakly invariant set contained in V̇ −1(0). If either
every point in N is Lyapunov stable or f is nontangent to
N at every point in N , then almost all solutions of (11)
converge to Lyapunov stable equilibria.

VI. APPLICATIONS TO EXCITATORY-INHIBITORY

BIOLOGICAL NETWORKS

The form of biological neural network models given by
(8) represents a wide range of firing rate population models
appearing in neuroscience [3], [17]. In this section, we
will consider an important class of these network systems
involving excitatory-inhibitory networks. The firing rate is
a nonnegative quantity representing the probability of the
firing action potential by the neuron and can be interpreted

as a measure of the neuron’s activity. Since the firing rate of
the excitatory-inhibitory network is nonnegative, all solutions
of physical interest always take values in the nonnegative
orthant of the state space for nonnegative initial conditions.
For such systems, which evolve on possibly closed positively
invariant subsets of R

q , it is natural to consider the nonnega-

tive orthant R
q

+ as their state space, and hence, these systems
are nonnegative dynamical systems [23]. In this case, all of
our stability and convergence results developed in Sections

IV and V hold with respect to R
q

+ by replacing R
q with R

q

+.

The following result, which follows from Proposition 2.1
of [23], gives necessary and sufficient conditions for the
activation function of the excitatory-inhibitory networks such
that the firing rates Si(t) remain in the nonnegative orthant
of the state space. For the statement of the next result recall

that f is nonnegative if and only if f(x) ≥≥ 0, x ∈ R
n

+,
where “≥≥” denotes a component-wise inequality.

Proposition 6.1: Consider the excitatory-inhibitory net-
work given by (8). The firing rate vector S(t) ,

[S1(t), . . . , Sn(t)]T ∈ R
n remains in the nonnegative orthant

of the state space R
n

+ for all t ≥ 0 if and only if for
every Si ≥ 0 and Ii ≥ 0, i = 1, . . . , n, the function

f̃ = [f1(
∑n

j=1 A1jSj + I1), . . . , fn(
∑n

j=1 AnjSj + In)]T :
R

n → R
n is nonnegative.

The vector-matrix form of (8) can be written as

Ṡ(t) = −LS(t) + f̃(AS(t) + I(t)), S(0) = S0, (12)

where t ≥ 0, L , diag[τ1, . . . , τn] ∈ R
n×n is a time

constant matrix, A , [Aij ] ∈ R
n×n is a matrix representing

the strength of the synaptic interconnections, and I(t) ,

[I1(t), . . . , In(t)]T ∈ R
n, t ≥ 0, is a vector of synaptic

currents.

First, we consider the case where fi(·) is given by (9) and

I(t) ≡ 0. By Proposition 6.1, for S0 ∈ R
n

+, S(t) ∈ R
n

+ for
all t ≥ 0 if and only if A is a nonnegative matrix, that is,
Aij ≥ 0, i, j = 1, . . . , n. Hence, let A be nonnegative. Then,
(12) collapses to the linear model given by

Ṡ(t) = (A− L)S(t), S(0) = S0 ∈ R
n

+, t ≥ 0. (13)

The linear system (13) has a continuum, and hence, multiple
equilibria if and only if the rank of A−L is less than n. To
analyze the multistability of (13), we assume that the rank
of A − L is less than n. In this case, (13) has a continuum
of equilibria and limt→∞ S(t) exists if and only if A − L
is semistable [23]. Hence, multistability of (13) reduces to
checking semistability of (13).

Next, we consider the case where fi(·) is given by (10)
and I(t) ≡ 0. In this case, we assume that Aij ≥ 0, i, j =
1, . . . , n. Consider the nonnegative function U(x) = pTx,

where x ∈ R
n

+ and p ∈ R
n

+. It follows from the Perron-
Frobenius theorem [23] that there exist positive vectors p, r ∈
R

n
+ such that (A− L)Tp+ r = 0. Hence,

U̇(S) = −pTLS + pTf(AS) ≤ −pTLS + pTAS

= pT(A− L)S = −rTS ≤ 0, S ∈ R
n

+. (14)

Thus, all the solutions of (8) are bounded.

Next, assume that the set Ee has a nonzero element, that
is, f̃(Ax)−Lx = 0 has a nonzero solution for x ∈ R

n

+. The
following result is immediate.

Proposition 6.2: If Ee consists of multiple isolated equi-
libria, then rank (A− L) = n.
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If rank (A−L) < n, then Ee has a continuum of equilibria.
Now, consider the following two cases.

Case 1. Either Ee consists of multiple isolated equilibria
or Ee consists of both multiple isolated equilibria and a
continuum of equilibria, and rank (L−A) = n.

In this case, consider the function V (x) = 1
2x

TKx, x ∈

R
n

+, where K is symmetric but not sign definite, and note
that

V̇ (x) =

n
∑

i=1

n
∑

j=1

Kijxj ẋi = −
n

∑

i=1

n
∑

j=1

τiKijxixj

+

n
∑

i=1

n
∑

j=1

Kijxj(
∑n

k=1 Aikxk)eγ(
∑

n
k=1 Aikxk)

1 + eγ(
∑

n
k=1 Aikxk)

. (15)

Now, since
∑n

k=1 Aikxk ≥ 0, it follows that

1

2
≤

eγ(
∑

n
k=1 Aikxk)

1 + eγ(
∑

n
k=1 Aikxk)

< 1. (16)

Hence,

V̇ (x) ≤ −
n

∑

i=1

n
∑

j=1

τiKijxixj

+

n
∑

i=1

n
∑

j=1

n
∑

k=1

[

3

4
+

1

4
sign(Kij)

]

KijAikxkxj

= −xTKLx+ xTKAx = −xT(KL−KA)x, (17)

where the entries of K are given by Kij =
[

3
4 + 1

4 sign(Kij)
]

Kij . If K is chosen such that

(KL − KA) ≥ 0, then V̇ (x) ≤ 0 for all x ∈ R
n

+.

Thus, V̇ −1(0) ⊆ N (KL − KA), where N (·) denotes null
space, which implies that the largest weakly invariant set of
V̇ −1(0) is contained in N (KL−KA) ∩ Ee.

If the system

ẋ(t) = (KA−KL)x(t), x(0) = x0, t ≥ 0, (18)

is Lyapunov stable, then it follows from Corollary 4.2 that
all the solutions converge to one of the Lyapunov stable
equilibria in N (KL−KA) ∩ Ee for (12). Hence, it follows
from Theorem 5.1 that (12) is multistable.

Alternatively, if the vector field f of (12) is nontangent to
N (KL −KA) ∩ Ee at every point in N (KL −KA) ∩ Ee,
then it follows from Corollary 4.1 that all the solutions of
(12) converge to one of the equilibria in N (KL−KA)∩Ee.
Hence, it follows from Theorem 5.1 that (12) is multistable.

Case 2. rank (L−A) < n.

In this case, the null space of L−A is a subset of Ee since

−Lx+ f̃(Ax) ≤≤ (A − L)x for all x ∈ R
n

+. Consider the

function V (x) = 1
2x

Tx, x ∈ R
n

+, and note that

V̇ (x)

= −
n

∑

i=1

τix
2
i +

n
∑

i=1

xi(
∑n

j=1 Aijxj)e
γ(

∑

n
j=1 Aijxj)

1 + eγ(
∑

n
j=1 Aijxj)

≤ −
n

∑

i=1

τix
2
i +

n
∑

i=1

n
∑

j=1

Aijxixj = −xT(L−A)x. (19)

If all the τi’s are sufficiently large, then we can ensure that

L − A ≥ 0. In this case, V̇ (x) ≤ 0 for all x ∈ R
n

+. Thus,

V̇ −1(0) ⊆ N (L−A) ⊆ Ee and the largest weakly invariant

set of V̇ −1(0) is contained in N (L−A).

If (13) is Lyapunov stable, then it follows from Corol-
lary 4.2 that all the solutions of (12) converge to one of the
Lyapunov stable equilibria in N (L − A). Now, it follows
from Theorem 5.1 that (12) is multistable. Alternatively, if
the vector field f of (12) is nontangent to N (L−A) at every
point in N (L − A), then it follows from Corollary 4.1 that
all the solutions of (12) converge to one of the equilibria in
N (L−A). Hence, it follows from Theorem 5.1 that (12) is
multistable.

VII. A TWO-CLASS MEAN EXCITATORY AND

INHIBITORY SYNAPTIC DRIVE MODEL

The excitatory and inhibitory neural network model given
by (6) and (7) possesses multiple equilibria. For certain
values of the model parameters it can be shown that as the
inhibitory time constants λI

i get larger, the equilibrium states
can flip their stabilities. Since molecular studies suggest
that one possible mechanism of action of anesthetics is the
prolongation of the time constants of inhibitory neurons [18],
[19], this suggests that general anesthesia is a phenomenon
in which different equilibria can be attained with changing
anesthetic agent concentrations. In this section, we develop
a simplified model involving mean excitatory and inhibitory
drives to explore this multistability phenomenon.

Consider the excitatory and inhibitory synaptic drive
model given by (6) and (7) with fi(·) = f(·), IE

i (t) = IE,
II
i (t) = II, BE = BI = 1, λE

i = λE, and λI
i = λI. In this

case, (6) and (7) become

dSE
i (t)

dt
= f





nE
∑

j=1

AEE
ij S

E
j (t) +

nI
∑

k=1

AEI
ikS

I
k(t) + IE





−
1

λE
SE

i (t), i = 1, . . . , nE, (20)

dSI
i(t)

dt
= f





nE
∑

j=1

AIE
ij S

E
j (t) +

nI
∑

k=1

AII
ikS

I
k(t) + II





−
1

λI
SI

i(t), i = 1, . . . , nI, (21)

where f(·) is given by (10) and AEE
ii = AII

ii = 0.

Next, let AEE
ij = A

EE
+ ∆EE

ij , A
EI
ij = A

EI
+

∆EI
ij , A

IE
ij = A

IE
+ ∆IE

ij , and AII
ij = A

II
+ ∆II

ij ,

where (·) denotes mean and ∆XY
ij ,X,Y ∈ {E, I}, are

deviations from the mean. Furthermore, note that since,

by definition, A
EE

=
(

1
n2

E

)

∑nE

i=1

∑nE

j=1 A
EE
ij , A

EI
=

(

1
nEnI

)

∑nE

i=1

∑nI

j=1 A
EI
ij , A

IE
=

(

1
nEnI

)

∑nI

i=1

∑nE

j=1 A
IE
ij ,

and A
II

=
(

1
n2

I

)

∑nI

i=1

∑nI

j=1 A
II
ij , it follows that

nE
∑

i=1

nE
∑

j=1

∆EE
ij =

nE
∑

i=1

nI
∑

j=1

∆EI
ij =

nI
∑

i=1

nE
∑

j=1

∆IE
ij

=

nI
∑

i=1

nI
∑

j=1

∆II
ij = 0. (22)

Now, using the average and perturbed expressions for
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AXY
ij ,X,Y ∈ {E, I}, (20) and (21) can be rewritten as

dSE
i (t)

dt
= f



nEA
EE
S

E
(t) +

nE
∑

j=1

∆EE
ij S

E
j (t)

+ nIA
EI
S

I
(t) +

nI
∑

k=1

∆EI
ikS

I
k(t) + IE

)

−
1

λE
SE

i (t), i = 1, . . . , nE, (23)

dSI
i(t)

dt
= f



nEA
IE
S

E
(t) +

nE
∑

j=1

∆IE
ij S

E
j (t)

+ nIA
II
S

I
(t) +

nI
∑

k=1

∆II
ikS

I
k(t) + II

)

−
1

λI
SI

i(t), i = 1, . . . , nI, (24)

where S
E
(t) , 1

nE

∑nE

j=1 S
E
j (t) and S

I
(t) , 1

nI

∑nI

j=1 S
I
j(t).

Next, assume that i) ∆XY
ij ,X,Y ∈ {E, I}, i = 1, . . . , nX

and j = 1, . . . , nY, in (23) and (24) are small relative to
the remaining terms in f(·), and ii)

∑nX

i=1 ∆XY
ij = 0,X,Y ∈

{E, I}, for each j ∈ {1, . . . , nY}, which asserts that the total
influence of the jth neuron on all other neurons is identical
for each j ∈ {1, . . . , nY}. It follows from assumption i) that
the first-order expansions of (23) and (24) are given by

dSE
i (t)

dt
= f

(

nEA
EE
S

E
(t) + nIA

EI
S

I
(t) + IE

)

+f ′
(

nEA
EE
S

E
(t) + nIA

EI
S

I
(t) + IE

)





nE
∑

j=1

∆EE
ij S

E
j (t) +

nI
∑

k=1

∆EI
ikS

I
k(t)





−
1

λE
SE

i (t), i = 1, . . . , nE, (25)

dSI
i(t)

dt
= f

(

nEA
IE
S

E
(t) + nIA

II
S

I
(t) + II

)

+f ′
(

nEA
IE
S

E
(t) + nIA

II
S

I
(t) + II

)





nE
∑

j=1

∆IE
ij S

E
j (t) +

nI
∑

k=1

∆II
ikS

I
k(t)





−
1

λI
SI

i(t), i = 1, . . . , nI. (26)

Now, letting S
E

and S
I

denote the mean excitatory synap-
tic drive and mean inhibitory synaptic drive, respectively, and

defining SE
i (t) , S

E
(t) + δEi (t) and SI

i(t) , S
I
(t) + δIi(t),

where δEi (t) and δIi(t) are deviations from the mean, it
follows that

nE
∑

i=1

nE
∑

j=1

∆EE
ij S

E
j (t) =

nE
∑

i=1

nE
∑

j=1

∆EE
ij

(

S
E
(t) + δEi (t)

)

=

nE
∑

i=1

nE
∑

j=1

∆EE
ij δ

E
i (t), (27)

since
∑nE

i=1

∑nE

j=1 ∆EE
ij S

E
(t) = 0 by (22).

Next, it follows from assumption ii) that

nE
∑

i=1

nE
∑

j=1

∆EE
ij δ

E
j (t) = 0,

nE
∑

i=1

nI
∑

j=1

∆EI
ij δ

I
j(t) = 0, (28)

nI
∑

i=1

nE
∑

j=1

∆IE
ij δ

E
j (t) = 0,

nI
∑

i=1

nI
∑

j=1

∆II
ijδ

I
j(t) = 0. (29)

Now, summing (25) and (26) over i = 1, . . . , nE and i =
1, . . . , nI, and dividing by nE and nI, respectively, it follows
that the average excitatory synaptic drive and the average
inhibitory synaptic drive are given by

dS
E
(t)

dt
= f

(

nEA
EE
S

E
(t) + nIA

EI
S

I
(t) + IE

)

−
1

λE
S

E
(t), t ≥ 0, (30)

dS
I
(t)

dt
= f

(

nEA
IE
S

E
(t) + nIA

II
S

I
(t) + II

)

−
1

λI
S

I
(t). (31)

Next, note that (30) and (31) can be written in the form
of (12) with

A =

[

nEA
EE

nIA
EI

nEA
IE

nIA
II

]

, L =

[

1
λE 0
0 1

λI

]

,

A− L =

[

nEA
EE

− 1
λE nIA

EI

nEA
IE

nIA
II
− 1

λI

]

. (32)

If

(

nEA
EE

−
1

λE

) (

nIA
II
−

1

λI

)

− nEA
IE
nIA

EI
= 0, (33)

then it follows that rank (A − L) < 2. Hence, it follows
from the analysis of Section VI that the dynamical system
(30) and (31) exhibits multistability for λI and λE satisfying

(33) and nEA
EE

+nIA
II
< 1

λE + 1
λI . Note that if λI and λE

satisfy (33) and the previous inequality, then the eigenvalues

of A−L are given by 0 and nEA
EE

+nIA
II
− 1

λE + 1
λI < 0.

Hence, A− L is semistable [23].

To investigate (30) and (31) numerically, let f(·) be the

given by (10) with γ = 100, nEA
EE

= 0.2, nIA
EI

= 1,

nEA
IE

= 1, nIA
II

= 0, λE = 1, IE = 0, and II = 0, and
let λI vary. In this case,

A=

[

0.2 1
1 0

]

, L =

[

1 0
0 1

λI

]

, A−L=

[

−0.8 1
1 − 1

λI

]

.

Clearly, rank (A − L) < 2 for λI = 0.8. Hence, it follows
from the analysis of Section VI that the dynamical system
(30) and (31) exhibits multistability for λI = 0.8. In this
case, A − L is semistable. For our simulation, we take

x1 = S
E

and x2 = S
I
, and use the initial condition

x(0) = [0.1, 0.5]T. Figures 1 and 2 show the time response
for the average excitatory and inhibitory synaptic drives, and
the phase portrait for λI = 0.8. Note that there is a zero-
eigenvalue transcritical bifurcation at λI = 0.8.
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Fig. 1. State trajectories of (30) and
(31) for λ

I
= 0.8.
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Fig. 2. Phase portrait of (30) and
(31) for λI

= 0.8.

VIII. CONCLUSION

With advances in biochemistry, molecular biology, and
neurochemistry there has been impressive progress in the
understanding of the function of single neurons. Using the
example of the mechanism of action of general anesthesia,
the past decade has seen a remarkable explosion of our
understanding of how anesthetic agents affect the properties
of neurons. However, despite this advance, we still do not
understand how molecular mechanisms translate into the
induction of general anesthesia at the macroscopic level. In
particular, there has been little focus on how the molecular
properties of anesthetic agents lead to the observed macro-
scopic property that defines the anesthetic state, that is, lack
of responsiveness to noxious stimuli. This clinical property
leads to consideration of anesthesia as a binary (on-or-off)
variable, and the relationship between the concentration of
an anesthetic agent in the central nervous system and the
anesthetic state is described in terms of the probability
of responsiveness as a function of anesthetic concentration
[8]. In clinical studies, the typical observation is that at
low concentrations of anesthetic agent the probability of
responsiveness (to noxious stimuli) is high, possibly unity.
Then as the anesthetic concentration increases there is a sharp
transition to a probability of responsiveness that is low and
possibly zero.

In this paper, we used a synaptic drive firing rate model
to model the central nervous system as a discontinuous au-
tonomous dynamical system and showed that the transition to
the anesthetic state exhibits multistability; that is, the system
exhibits multiple attracting equilibria under asymptotically
slowly changing parameters. The goal of this paper has been
to specifically develop multistability theory as a framework
for understanding central nervous system behavior charac-
terized by abrupt transitions between mutually exclusive
states. Such phenomena are not limited to general anesthesia
and can be seen in biochemical systems, ecosystems, gene
regulation and cell replication, as well as numerous medical
conditions (e.g., seizures, schizophrenia, hallucinations, etc.)
and are obviously of great clinical importance but have been
lacking rigorous theoretical frameworks. The primary impact
of such frameworks will be to allow for the development
of models that go beyond words to dynamic equations,
leading to mathematical models with greater precision and
self-consistency. Mathematical formulations enforce self-
consistency and while “self-consistency is not necessarily
truth, self-inconsistency is certainly falsehood.”
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