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Abstract—We study the interaction among users of
contention-based wireless networks, where the performance
of the network is highly correlated with user transmission
probabilities. Considering the underlying user incentives, we
make use of the conceptual framework of noncooperative game
theory to obtain a distributed control mechanism to limit the
contention among wireless nodes by taking into account queue
stability. We present a comprehensive analysis of the game
including existence and uniqueness of Nash equilibrium point
and convergence dynamics. Utilizing linear pricing enables us
to move the equilibrium point of the game to a desirable region.
We obtain conditions on linear prices necessary to achieve
stability of user queues in the asymmetric and symmetric cases.

I. INTRODUCTION

Contention-based medium access control plays a signifi-

cant role in the successful deployment of modern wireless

networks, where users are expected to manage their resources

in a decentralized fashion. In such decentralized settings,

selfishness of the users may lead to inappropriate utiliza-

tion of resources and poor overall performance. When the

transmission probabilities of the users are high, collisions

dominate the system which in turn degrades the network

throughput. In the opposite extreme, when the transmission

probabilities are low, there are many idle slots reducing the

utilization of the wireless channel. In this context, a recent

focus is to design optimization algorithms for contention

based networks in the presence of selfish users with each

user aiming to maximize its own performance [1], [2].

In the presence of selfish wireless nodes, game theory

appears as a natural modeling framework, since it pro-

vides incentive compatibility to optimization, and networking

problems. In this paper, we propose a noncooperative game

that achieves a steady state with desirable features such as

finite and stable user backlogs. In this game, the strategy of a

wireless user is the selection of its channel access probability,

and the cost of this strategy is a function of its utility

gain, channel access price, and queue size. The modeling of

queue stability within such a game theoretical framework in

contention based wireless networks constitutes as one of the

contributions of our work. We characterize the equilibrium

point of the proposed game and investigate its existence

and uniqueness properties. Furthermore, we study dynamical
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and distributed algorithms for computing and achieving the

equilibrium solution. Specifically, we propose a gradient-

based algorithm and prove its convergence to the equilibrium.

It may seem that selfish users applying their own strategies

could lead to poor performance by constantly colliding in an

attempt to maximize their individual throughput. However,

the system performance depends on the cost associated with

the users’ transmissions [3]. Specifically, we show that the

stability of user queues can be guaranteed by changing values

of the linear channel access prices to eliminate queue drifts.

In this paper, we design a noncooperative game in a slotted

ALOHA setting, and analyze the existence and uniqueness

of the Nash Equilibrium (NE) solution. The convergence

of a gradient based algorithm to this equilibrium is also

proven. Finally, we obtain an implicit relationship between

the individual channel access prices of the users that needs

to be satisfied for the stability of user queues.

II. RANDOM ACCESS GAME

We consider an uplink wireless network where N users

are competing to gain access to a single base station (BS).

The time is slotted, and the length of the time slot is equal to

the channel coherence interval. The achievable transmission

rate of user i at time slot t is Ci(t). The medium access

mechanism is basic slotted ALOHA [4], where each user i
attempts to transmit with some probability qi(t). ALOHA is

a medium access mechanism which is sufficiently simple to

analyze but at the same time that is sufficiently generic to

draw meaningful conclusions. Also, some form of ALOHA

protocol is used in many different advanced wireless access

protocols, e.g., cellular networks.

In this work, we assume that the network consists of

selfish users where each user aims to maximize its net

benefit while keeping its queue stable at the same time. The

net benefit of a user is defined as the difference between

the utility obtained from the network access and the cost

of this access. The utility function is taken to be a non-

decreasing concave function of the throughput. This choice

is of practical interest, since a small increase in the rate in the

low rate regime is generally more appreciated than a small

increase in the high rate regime. In accordance with most

prior works, from now on, we assume a logarithmic utility

function.

When interactions between the users are taken into ac-

count, game theory emerges as a natural modeling frame-

work. In this paper, we design a noncooperative game model,

in which users not only aim to maximize their utilities but
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also minimize their queue backlogs. The base station partici-

pates in the game by controlling the price of wireless medium

access attempts. The players of the game are the users of the

network, and their actions are defined by their transmission

probabilities, qi. We assume that each participating user is

active, i.e. transmits at least with a very small but nonzero

probability ǫ. At each time slot t, the following game is

played.

Definition 1. The stabilizing random access game in slotted

ALOHA system is defined as

Γ , {N , (si)i∈N , (Ji)i∈N }, (1)

where N is the set of N wireless users in the network;

si , {qi : qi ∈ [ǫ, 1]} is the strategy space corresponding

to transmission probabilities of users; and Ji is the cost of

strategy of user i.

Let us define the user cost function as the sum of three

terms, where each term identifies an important aspect of the

system model. The first term is the utility achieved by the

user and is assumed to be related to the log throughput, i.e.,

J1
i (t) = −ηi log



Ci(t)qi(t)
∏

j 6=i

(1− qj(t))



 . (2)

In (2) ηi > 0 represents the preference of the different types

of users for network throughput1.

The second term penalizes the positive drift in the queue

size, and it is utilized to achieve the stability of user queues.

J2
i (t) = ∆Bi(t). (3)

In (3), ∆Bi(t) is defined as the drift in queue size of user

i which is obtained by subtracting the service rate from the

arrival rate:

∆Bi(t) = Ai(t)− Ci(t)qi(t)
∏

j 6=i

(1− qj(t)),

where Ai(t) is the arrival rate of packets for user i at time

t.
The final term represents the cost of access to the channel,

and it can be interpreted as the punishment of the greedy

behavior:

J3
i (t) = kiqi(t). (4)

In (4), ki > 0 is the linear price of channel access attempt.

Overall, we have the following aggregate cost function:

Ji(qi, q−i) = J1
i (t) + J2

i (t) + J3
i (t). (5)

We are going to first analyze the game in every slot,

and hence we omit the time parameter t for brevity. Given
the strategy vector, q−i of all other users, i.e., q−i ,

(q1, ..., qi−1, qi+1, ..., qN ), each user i aims to solve the

following optimization problem:

min
qi

Ji(qi,q−i) (6)

1The negative sign here is due to the cost minimization convention
adopted in this paper as opposed to utility maximization.

We note that the players (users) are tightly coupled with

each other in the sense that the actions (transmission prob-

abilities) of each player affect the performance of others

significantly. In fact, a single player can even block access

to whole channel single-handedly if q = 1. Unsurprisingly,
overall throughput of users can only be achieved if the trans-

mission probabilities decrease proportional to the number of

users sharing the channel. The selfish nature of the players

may prevent obtaining (such) a mutually beneficial solution

by themselves as a result of a phenomenon well-known as

“tragedy of commons”, i.e. the (Nash) equilibrium outcome

of the game being very undesirable. Pricing schemes are

utilized in such cases to improve the outcome of the game.

In the next section, the (Nash equilibrium) solution of the

game and its properties are analyzed.

III. EQUILIBRIUM AND STABILITY ANALYSIS

A. Existence and Uniqueness of Nash Equilibrium

One of the fundamental issues in the random access game

is the analysis of equilibrium solutions, especially existence

and uniqueness of a Nash equilibrium (NE) solution. The

definition of the NE is provided below for completeness.

Definition 2. The strategy vectors, i.e. transmission proba-

bilities of wireless users, q∗, of the random access game Γ
defined in (1) is said to be in Nash Equilibrium if no user can

improve its cost function by deviating from Nash Equilibrium

point [5]. In other words,

Ji(q
∗
i ,q

∗
−i) ≤ Ji(qi,q

∗
−i), ∀qi ∈ si. (7)

In game Γ, since the user cost function is convex, the

NE solution may exist at the intersection of the player best-

responses [5], which follow from the first-order optimality

condition:

∂

∂qi
Ji(q

∗
i ,q

∗
−i) = 0, ∀i (8)

⇒ ki − Ci

∏

j 6=i

(1− q∗j )−
ηi
q∗i

= 0, ∀i.

Hence, the NE transmission probability, q∗i , is

q∗i =

[

ηi
ki − Ci

∏

j 6=i(1− q∗j )

]1

ǫ

, (9)

where [·]1ǫ = min(max(ǫ, ·), 1), for some ǫ > 0, i.e., the
value is bounded above and below, respectively.

As described in (9), the transmission probability at the

equilibrium of user i decreases in the linear price, ki, and
the transmission probability of other users, q∗j , ∀j 6= i. On
the other hand, an increase in the achievable transmission

rate, Ci, results in an increase in q∗i .
Next, we analyze the existence and uniqueness of the Nash

Equilibrium. Our analysis applies the results given in [6] and

[7] for our particular game.

Lemma 1. The strategy space of the game Γ, defined in (1),

Q = [ǫ, 1]N ⊂ R
N , is convex, compact, and has a nonempty

interior, provided that ǫ < 1.
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Lemma 2. The cost function of the ith player, Ji in (5), is

twice continuously differentiable and strictly convex in qi,
i.e., ∂2Ji/∂q

2
i > 0, and ∂2Ji/∂qi∂qj > 0 on Q.

Proof Note that ηi > 0 and ki > 0. The second partial

derivatives of cost function, Ji, are
∂2Ji

∂q2
i

= ηi

q2
i

, and ∂2Ji

∂qi∂qj
=

Ci

∏

n6=i,j(1−qn). Thus,
∂2Ji

∂q2
i

and ∂2Ji

∂qi∂qj
are always greater

than zero on Q.

Proposition 1. The random access game, Γ defined in (1),

admits at least one NE solution.

Proof According to Lemma 1 and 2, Ji is a differentiable

convex function. Hence, ∂Ji

∂qi
is a continuous function, and so

is its inverse
(

∂Ji

∂qi

)−1

. Note that the range of transmission

probabilities, [0, 1], is a connected and compact set. There-

fore, the range of
(

∂Ji

∂qi

)−1

is also a connected and compact

set. Based on Theorem 4.4 in [6] and Theorem 1 in [7], we

can conclude that there exists at least one NE solution.

Next, we investigate the conditions under which the game

admits a unique NE solution. Let g(q) = [g1(q), ..., gN (q)]
where gk(q) =

∂Jk

∂qk
, k = 1, ..., N and G(q) be the Jacobian

of g(q) which is defined as:

G(q) =











b1 a12 . . . a1N
a21 b2 . . . a2N
...

. . .
...

aN1 aN2 . . . bN











, (10)

where bi = ∂2Ji/∂q
2
i and aij = ∂2Ji/∂qi∂qj .

Definition 3. A matrix is said to be strictly diagonally

dominant if in every row of the matrix, the magnitude of

the diagonal entry in that row is larger than the sum of the

magnitudes of all the other (non-diagonal) entries in that

row.

In our case, the matrix G(q) is strictly diagonally domi-

nant if |bi| >
∑

j 6=i |aij |, ∀i.

Lemma 3. If qi <
√

ηi

Ci(N−1) , ∀i, then G(q) is strictly

diagonally dominant.

Proof

qi <

√

ηi

Ci(N − 1)
(11)

ηi

q2i
> Ci(N − 1) (12)

ηi

q2i
>
∑

j 6=i



Ci

∏

n 6=i,j

(1− qn)



 , (13)

bi >
∑

j 6=i

aij , (14)

where (13) follows from (1− qn) ≤ 1, and (14) is from the

proof of Lemma 2.

The following result, which is a variation of Theorem 2.1

in [8], is also needed to further the analysis.

Lemma 4. [9] A strictly diagonally dominant matrix is

non-singular.

We next establish the uniqueness of an inner NE solution

on a subset of the strategy space Q:

Theorem 1. The random access game Γ of Definition 1

admits an inner Nash equilibrium solution that is unique

on the strategy space

Q̄ :=

N
⊗

i=1

(

ǫ,

√

ηi
Ci(N − 1)

)

, (15)

where
⊗

denotes cross-product of the interval sets.

Proof Suppose that there are two inner equilibrium points,

represented by q
1 and q

0. Define the strategy vector q(θ) as
a convex combination of the two equilibrium points q1, q0:

q(θ) = θq1 + (1− θ)q0, (16)

where 0 < θ < 1. Note that q(θ) still satisfies the condition

in the theorem. When we take the derivative of g(q(θ)) with
respect to θ, we obtain

dg(q(θ))

dθ
= G(q(θ))

dq(θ)

dθ
= G(q(θ))(q1 − q

0). (17)

By integrating (17) over θ yields,

g(q1)− g(q0) =

[∫ 1

0

G(q(θ))dθ

]

(q1 − q
0). (18)

Recall that q1 and q
0 are equilibrium points, so g(q1) = 0

and g(q0) = 0. From Lemma 3, we know that G(q(θ))

is strictly diagonally dominant, and hence,
∫ 1

0
G(q(θ))dθ is

strictly diagonally dominant and it is also non-singular based

on Lemma 4. Thus, the matrix,
∫ 1

0
G(q(θ))dθ, is also non-

singular. Then, it is clear that (18) is equal to zero, only

when q
1 − q

0 = 0. Therefore, there cannot be more than

one equilibrium point.

Next, we include the boundary solutions of the game in

our investigation:

Theorem 2. The random access game Γ of Definition 1

admits a unique inner Nash equilibrium solution on the

strategy space

Q̃ :=
N
⊗

i=1

[

ǫ,

√

ηi
Ci(N − 1)

]

, (19)

if ǫ is chosen sufficiently small and

ki > Ci +
√

Ciηi(N − 1) ∀i.

Proof Notice that for a sufficiently small ǫ the players

can always improve their performance by increasing their

transmission rate when they transmit at the lower boundary,

which follows directly from (8). Likewise, the sufficient

condition on individual prices ki ensures that ∂Ji/∂qi > 0 at

the upper boundary points. Thus, any boundary solution on Q̄
cannot constitute a Nash equilibrium solution (by definition

of NE). The rest of the proof follows directly from the one

of Theorem 1.
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B. Convergence to Nash Equilibrium under Gradient Algo-

rithm

Once we establish that there is a unique Nash equilibrium

solution under certain conditions, the next question is to

determine a distributed algorithm achieving this solution,

since the unique Nash equilibrium solution given in (8)

cannot be explicitly found.

We consider a dynamic transmission probability update

mechanism, where each user utilizes a gradient algorithm to

solve its own optimization problem within a given time slot.

Let us assume that user i updates its transmission probability

according to the following dynamic equation:

d qi
d t

= −∂Ji
∂qi

=: φi, (20)

where φi = (−ki + Ci

∏

j 6=i(1− qj) +
ηi

qi
).

The dynamic system in (20) defines a method for user i
to update its transmission probability based on the channel

capacities and the transmission probabilities of the other

users in the system. This update is in the opposite direction

of the gradient of the total cost.

Note that both the users and the base station has sufficient

information to implement the algorithm. The users need to

measure their own throughput in order to update their trans-

mission probabilities. Likewise, by measuring the through-

puts of individual users, the base station can compute their

transmission probabilities without asking them explicitly, and

hence impose prices. The only information exchange, other

than measurements, in the system is due to base station

telling users their individual prices ki.

We next show that the dynamic update mechanism de-

scribed by (20) is asymptotically stable, and hence converges

to the unique inner NE of the game.

Theorem 3. Let qNE , [q∗1 , q
∗
2 , . . . , q

∗
N ] be the unique inner

NE of the game Γ, defined in (1), with the strategy space Q̃ in

(19). The system dynamics stated in (20) are asymptotically

stable, and converge to the unique NE, under the sufficient

conditions of Theorem 2, i.e., if ǫ is chosen sufficiently small

and

ki > Ci +
√

Ciηi(N − 1) ∀i.

Proof

Let us introduce a candidate quadratic Lyapunov function,

V , defined as,

V ,
1

2

∑

i

φ2
i . (21)

Note that since there is a unique equilibrium solution, q∗,
V = 0, if and only if q = q

∗ and V > 0 for all q 6= q
∗,

i.e., the equilibrium point corresponds to the lowest energy

state of the Lyapunov function defined in (21).

Next, we need to show that Lyapunov function is a

decreasing function for all values of q 6= q
∗. However, we

first need to calculate the first derivative of φi as:

dφi

d t
=

d2 qi
d t2

= −
∑

j 6=i

φjaij −
ηi
q2i

φi, (22)

where aij = Ci

∏

n6=i,j(1− qn) and φj =
d qj
d t

.

In order for V to be a decreasing function, its first

derivative should always be negative:

dV

d t
=
∑

i

φi

dφi

d t
, (23)

(a)
= −





∑

i

ηi

q2i
φ2
i +

∑

i

∑

j 6=i

aijφjφi



 ,

(b)
= −

(

∑

i

√
ηi

qi
φi

)2

−
∑

i

∑

j>i

|φiφj |
(

−aij − aji +
2
√
ηiηj

qiqj

)

,

(c)

≤ −
(

∑

i

√
ηi

qi
φi

)2

< 0, ∀q 6= q
∗, (24)

where (a) is obtained by inserting (22) into (23), (b) follows

from the square completion, and (c) follows by imposing

the assumption, aij + aji <
2
√
ηiηj

qiqj
. Note that, in (a), when

φiφj > 0,
dV

d t
is negative. Hence, in (b), we consider only

the case, when φiφj is negative.

Thus, the system is stable under the assumption of aij +

aji <
2
√
ηiηj

qiqj
. Now we investigate the conditions on Ci

and ki that realize this assumption. We claim that when

ki +
√
ηiηj

2 > Ci, then the above condition is satisfied.

Furthermore, this condition is superseded by the sufficient

condition for the uniqueness of the inner NE in Theorem 2.

2

(

ki +

√
ηiηj

2
− Ci

)(

kj +

√
ηiηj

2
− Cj

)

(a)
> 0

2(ki − Ci)(kj − Cj)−
√
ηiηj(Ci + Cj)

(b)
> 0

2
√
ηiηj



ki − Ci

∏

n 6=i

(1− qn)







kj − Cj

∏

m6=j

(1− qm)





(c)
>

∏

l 6=i,j

(1− ql)(Ci + Cj)

2
√
ηiηj

qiqj

(d)
>aij + aji.

where (a) follows from the condition, ki +
√
ηiηj

2 − Ci >
0, (b) follows from (ki + kj)

√
ηiηj +

ηiηj

2 > 0 and (c)

follows from ki−Ci

∏

n6=i(1−qn) > ki−Ci and
∏

l 6=i,j(1−
ql)(Ci +Cj) < Ci +Cj . In (d), we use the definitions of qi
and aij . Therefore, the gradient update algorithm converges

asymptotically to the unique NE of the game.

IV. STABILITY ANALYSIS OF USER QUEUES

In this section, we investigate how the pricing parameter,

ki should be chosen so that the user queues are stabilized.

We obtain an implicit relationship between ki’s that needs to
be satisfied to ensure that queue drift in each queue is zero,

i.e., ∆B∗
i = 0, when each user has potentially different set

of system parameters and costs. Secondly, we obtain closed

from solution of k for symmetric two user case, where the
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users are indistinguishable in terms of their cost and system

parameters.

In order for a queue to be stable at the equilibrium, the

drift of the queue should be negative or zero, i.e.,

∆B∗
i = Ai − Ciq

∗
i

∏

j 6=i

(1− q∗j ) ≤ 0. (25)

If the above is satisfied with equality, the queue size

neither decreases nor increases. In this case, one may assume

that there is always a packet in the queue. Here, we give

analysis when ∆B∗
i = 0.

Inserting equilibrium solution, q∗i , in (9) into the drift

equation in (25), we obtain

∏

j 6=i

(1− q∗j ) =
Aiki

(Ai + ηi)Ci

. (26)

Let αi = log(1 − q∗i ) and βi = log
(

Aiki

(Ai+ηi)Ci

)

. Then,

from (26), we obtain
∑

j 6=i αj > βi. Note that the trans-

mission probabilities vary with respect to k, which is the

variable used to punish the greedy behavior. Also as shown

in (26), the value of k affects the stability of the queues.

Let us define matrix E as a matrix with all entries except

diagonal ones are equal to 1, and diagonal entries are zero.

Also, define d = [α1, α2, . . . , αN ] and b = [β1, β2, . . . , βN ].
Then, (26) can be re-written in matrix form as:

E · dT = bT

dT = E−1 · bT . (27)

Note that E−1 is a matrix in which diagonal entries are
2−N
N−1 , and other entries are 1

N−1 .

Since (26) should be satisfied so that the user queues are

stable, the ith row of E−1 · bT should be equal to the ith

row of dT :

αi =
1

N − 1



βi(2−N) +
∑

j 6=i

βj



 . (28)

After some mathematical manipulations, we obtain the fol-

lowing equation of the equilibrium transmission probability

that ensures the stability of the queues as:

q∗i = 1−
(

Aiki
(Ai + ηi)Ci

)
2−N
N−1 ∏

j 6=i

(

Ajkj
(Aj + ηj)Cj

)
1

N−1

(29)

Unfortunately, the closed form solution of ki cannot be

obtained from (29) due to the nonlinear structure of the

inequality.

Aforementioned analysis can be extended to the case when

the queue drifts are negative. When the queue drifts are

negative, the user queues tend to get empty. Hence, some of

the users do not have sufficient number of packets to transmit

and it is not possible to guarantee an inner point Nash

equilibrium solution. In fact, those users with empty queues

are no longer part of the game, since they cannot transmit

with positive probability. As users with empty queues are

out of the game, the game is played only among those

players with non-empty queues. This new game can be

analyzed in exactly the same way as discussed before, but

obviously the game has fewer number of players. In this

case, both the Nash equilibrium transmission probabilities

and the access prices for ensuring negative queue drift need

to be re-calculated according to our results given in earlier

sections. As the queues get empty and get filled up again,

the whole analysis have to be repeated.

Note that, the queues in the system cannot be stabilized

for all arrival rates. Thus, a closed form solution can give

us intuition through which arrival rates, A, and prices, k,
the stability of the queues can be realized. Thus, we now

consider two user symmetric case, i.e., A1 = A2 = A, C1 =
C2 = C and η1 = η2 = η.
By solving (29) and equilibrium solution in (9) simultane-

ously, we obtain the following prices, k, which drives queue

drift to zero:

k =
0.5(C ∓

√
C2 − 4AC)(A+ η)

A
. (30)

It is easy to observe that the user queues are stable only

for A < C
4 . For symmetric case, the maximum rate is

achieved when q∗ = 1/2, which corresponds to a maximum

achievable rate of C/4. Thus, the condition A < C
4 suggests

that unless the arrival rate, A, is smaller than the maximum

achievable rate, the queues cannot be stabilized.

V. NUMERICAL ANALYSIS

The game theoretical framework and the resulting trans-

mission probability update algorithms are analyzed numer-

ically in MATLAB. We first investigate the rate of conver-

gence of the dynamic system in (20) for varying values

of step size λi. For this purpose, we consider a network

with 50 users. The value of channel capacity is uniformly

randomly chosen in [0, 10]. The maximum achievable rate

is 10 bits/channel use when the signal-to-noise-ratio (SNR)

is 30dB which is considered as an upper limit on SNR in

the literature. A slot time is taken to be 100 microseconds.

In the experiments, we observe that throughput converges

in approximately 105 slots which corresponds to 10 sec-

onds, when the number of users, N , is equal to 50. Thus,

users wait for 10 seconds corresponding to 105 slots before

updating their transmission probabilities. Meanwhile, the

pricing parameter k takes values uniformly randomly in

[1, 20]. In addition, we assume that the preferences of the

users towards channel access, i.e., ηi are identical, and

equal to one. We have performed the simulations for three

different step sizes (λ = 0.02, 0.01, 0.005), and plot the

transmission probabilities for a randomly selected user in

Figure 1a. Note that when the step size, λ, is equal to 0.02,

the convergence is faster. However, after convergence, the

transmission probability slightly oscillates. This oscillation

is due to the fact that the continuity assumption for discrete

variables is violated for large step sizes. The simulation is

repeated for different number of users, and the results are

similar to those presented in Figure 1a. Furthermore, we run

the simulations for different values of user preferences, η,
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Fig. 1. Numerical results

and the convergence rate remains approximately the same

for different values of η.
We next investigate the stability of user queues for the two-

user symmetric and asymmetric cases. For the symmetric

case, in which the system parameters are the same for all

users, we select k as in (30). The capacity, C, is equal to

0.5, and the packet arrival rate is 0.1. For asymmetric case, in

which users have different set of system parameter. We solve

(29) numerically to obtain the value of ki necessary to ensure

the stability of user queues. The values of Ci and Ai are

uniformly randomly selected in the intervals [0, 10] and [0, 1];
however, we also ensure that the queues can be stabilized

with the selected values. The step size is selected to be λ =
0.01 for both cases. For the convergence of throughput, users

wait for 1 second, since throughput converges more rapidly

for small number of users. Figure 1b shows that in both cases

the queue sizes first fluctuate as the algorithm converges to

the equilibrium solution, q∗. After that, they show no change

confirming theoretical results.

VI. RELATED WORK

A plethora of work have emerged on the issue of optimiz-

ing the medium access control mechanism, especially for

the slotted ALOHA systems. Here, we restrict ourselves to

cite a few that are most closely related to our work, i.e., we

focus on optimization of medium access mechanisms using

game theory. In [1], a stability region has been obtained for a

slotted multi-packet Aloha system with selfish users, perfect

information, and under the assumption of some well-known

channel models. [2] has considered both the cooperative team

problem as well as the noncooperative game problem to

minimize the delay in slotted ALOHA. Unlike these works,

[10] and [11] have studied distributed choices of transmission

probabilities in the slotted Aloha with partial information

with imposing priorities and random power. [12] has studied

noncooperative equilibria of Aloha networks and their local

convergence.

In addition to aforementioned works that focused on the

slotted ALOHA medium access mechanism, there are also

works investigating other MAC mechanisms. [13] has dis-

cussed selfish behavior in CSMA/CA networks using game

theoretical approach and proposed a distributed protocol to

guide the selfish nodes to a Pareto-optimal Nash equilibrium.

[14] has investigated the interaction among wireless nodes in

a game theoretical framework and designed medium access

methods that can stabilize the network around a steady state

with a target fairness and high efficiency.

VII. CONCLUSION

We have studied a noncooperative game among the users

of a contention-based wireless network. The outcome of the

game stabilizes the user queues based on the choice of pric-

ing parameters. We have characterized the Nash equilibrium

of the game and investigated the convergence properties of

a distributed gradient update algorithm to compute the Nash

equilibrium. In addition, we have shown that we can move

the equilibrium point to desirable regions characterized by

the stability of user queues.
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