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Abstract— This paper gives an account of the nonlinear
superposition principle for classes of nonlinear systems. The
existence of a nonlinear superposition principle is ensured by
a Lie algebraic analysis of the nonlinear system, whereas the
nonlinear superposition formulas are obtained in closed form
by computing some functionally independent first integrals of
an auxiliary system that can be associated with the given one.

I. INTRODUCTION

The purpose of this paper is to briefly review the nonlinear
superposition principle for classes of nonlinear differential
equations and to apply such a principle to some physically
motivated examples, thus showing its applicability and em-
phasizing the related computational procedures.

In general, after the works of S. Lie [1], by nonlinear
superposition principle, it is understood a pair of formulas
(the explicit and implicit nonlinear superposition formulas)
that allow one to express the general solution of a system of
ordinary differential equations in terms of a finite number
of particular solutions and a certain number of arbitrary
constants. The system of linear time-invariant differential
equations is a remarkable case, in which the explicit super-
position formula allows one to expresses the general solution
as a linear combination of n particular solutions, with n
arbitrary constants, where n is the dimension of the state.
Other remarkable classes of systems admitting a nonlinear
superposition principle are given the bilinear ones [2] and by
the switched systems [3]. Other related references are [4]-[8].

The existence of explicit and implicit nonlinear super-
position formulas can be ensured on the basis of a Lie
algebraic analysis, whereas the computation of such formulas
in closed form has been done only for certain classes of
functions [9], [10]. The knowledge of an explicit nonlinear
superposition formula is important not only for the possibility
of computing any solution of the considered system, but also
for the possibility of deducing some properties of the general
solution (such as stability and attractivity), on the basis of
the properties of some particular solutions.

II. PRELIMINARIES

Given an open and connected set U ⊆ Rn, the set An
of all analytic functions α(x) : U → R, endowed with the
usual operations of sum and product between functions, is
a ring; denote by Kn the set of all functions α = a

b , with
a, b ∈ An, with b that is not identically equal to 0; then, Kn is
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a field (the quotient field of the ring of analytic functions):
α ∈ Kn is called meromorphic. Actually, similarly to the
field of rational functions, Kn is a field under the equivalence
relation ∼ defined as follows: α1, α2 ∈ Kn, αi = ai

bi
, ai, bi ∈

An, bi not identically equal to 0, are equivalent, α1 ∼ α2,
if a1(x)b2(x) = a2(x)b1(x),∀x ∈ U ; one can say that α1

and α2 coincide on U . In the following, all the functions are
assumed to be meromorphic.

Given two vector functions f(x), g(x) ∈ Rn, Lfg is the
directional derivative of g by f , and [f, g] = Lfg−Lgf is the
Lie bracket of f and g. A scalar function h(x) ∈ R is a first
integral associated with f if Lfh = 0. Given two matrices
(not necessarily constant) A,B ∈ Rn×n, [A,B] = BA−AB
is the Lie bracket of A and B.

Some analytic functions hi(x) ∈ R, i = 1, ...,m, m ≤ n,
are functionally independent [11], [12] if and only if, letting
h =

[
h1 ... hm

]>
, the Jacobian matrix ∂h

∂x of h has
full rank over the field Kn of meromorphic functions, i.e.,
∂h
∂x has full rank for all x in some open and connected set.

III. NONLINEAR SUPERPOSITION

Consider the class of time-varying nonlinear systems

dx(t)

dt
= f(t, x(t)), (1)

where x(t), f(t, x) ∈ Rn. A special subclass of systems
belonging to class (1) is constituted by the linear ones:

dx(t)

dt
= A(t)x(t), (2)

where A(t) ∈ Rn×n. Class (2) is very important because of
the linear superposition principle; given n solutions ξi(t) ∈
Rn, i = 1, ..., n, of (2),

dξi(t)

dt
= A(t)ξi(t), i = 1, ..., n, (3)

such that det
([

ξ1(t0) ... ξn(t0)
])
6= 0, for some initial

time t0, the linear superposition principle allows one to
express any solution x(t) ∈ Rn of (2) as a linear combination
of ξ1(t), ..., ξn(t),

x(t) = k1ξ
1(t) + ...+ knξ

n(t), (4)

where k :=
[
k1 ... kn

]> ∈ Rn is given by

k =
[
ξ1(t) ... ξn(t)

]−1
x(t), (5)

and the inverse
[
ξ1(t) ... ξn(t)

]−1
exists for all t in a

sufficiently small open interval Tt0 containing the initial time
t0. Equation (4) is the explicit linear superposition formula
and equation (5) is the implicit linear superposition formula
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for system (2). It is worth pointing out that each entry of the
vector on the right-hand side of equation (5) is a first integral
of the extended system constituted by system (2) and by its
replicas (3), i.e.,

∂k

∂x
A(t)x+

n∑
i=1

∂k

∂ξi
A(t)ξi = 0, ∀t ∈ Tt0 .

Example 1: Consider a linear oscillator with time-varying
frequency, {

dx1

dt = x2,
dx2

dt = −ω(t)x1,
(6)

where ω(t) is the time-varying oscillation frequency. Con-
sider two replicas of the oscillator,{

dξ11
dt = ξ1

2 ,
dξ12
dt = −ω(t)ξ1

1 ,{
dξ21
dt = ξ2

2 ,
dξ22
dt = −ω(t)ξ2

1 .

The explicit and implicit superposition formulas are, respec-
tively, [

x1

x2

]
= k1

[
ξ1
1

ξ1
2

]
+ k2

[
ξ2
1

ξ2
2

]
,

[
k1

k2

]
=

 ξ22x1−ξ21x2

ξ11ξ
2
2−ξ21ξ12

ξ11x2−ξ12x1

ξ11ξ
2
2−ξ21ξ12

 .
In this paper, only time-varying nonlinear systems (1) that

are sufficiently “close” to class (2) are considered: in partic-
ular, only those nonlinear systems that admit superposition
formulas similar to (4) and (5).

Consider m particular solutions of (1), i.e., m functions
ξi(t) ∈ Rn, i = 1, ...,m, such that

dξi(t)

dt
= f(t, ξi(t)), i = 1, ...,m; (7)

conditions on integer m and functions ξi(t) will be given in
the following.

Following Lie (see [13], [14]), equation (1) admits a
nonlinear superposition principle if there exists a function
Ψ : Rn(m+1) → Rn such that any solution x(t) of (1) can
be written for all t in a sufficiently small open interval Tt0
containing the initial time t0 as

x(t) = Ψ
(
ξ1(t), ..., ξm(t), k

)
, (8)

where k ∈ Rn is constant; in particular, it is required
that (8) computed at t = t0 is locally invertible with
respect to k, so that k can be expressed as a function
of x(t0), ξ1(t0), ..., ξm(t0). It is worth pointing out that
function Ψ does not depend explicitly on time t. Equation (8)
is called an explicit nonlinear superposition formula. By the
Implicit Function Theorem [15], the explicit superposition
formula (8) can be locally inverted with respect to k, i.e.,

there exists a function Θ : Rn(m+1) → Rn such that the
following equation holds for all t ∈ Tt0 :

k = Θ
(
x(t), ξ1(t), ..., ξm(t)

)
; (9)

equation (9) is called an implicit nonlinear superposition
formula. In general, the implicit nonlinear superposition
formula (9) holds on an open dense subset of Rn(m+1) rather
than the whole Rn(m+1). It is worth pointing out that formula
(9) is invariant with respect to any permutation of the m+ 1
vector arguments of Θ; for example, in case m = 1, if
Θ
(
x(t), ξ1(t)

)
is a first integral, then Θ

(
ξ1(t), x(t)

)
is a

first integral too.
Example 2: Consider the single-input linear control sys-

tem dx(t)
dt = Ax(t) + Bu(t), x(t) ∈ Rn, A ∈ Rn×n,

u(t) ∈ R, B ∈ Rn; let t0 = 0. Consider m = n+1 particular
solutions ξi(t) ∈ Rn, i = 0, ..., n, of such a control system,
i.e., such that dξi(t)

dt = Aξi(t) +Bu(t), i = 0, ..., n. Clearly,
letting γi(t) = ξi(t) − ξ0(t), one has dγi(t)

dt = Aγi(t),
i = 1, ..., n, and therefore letting Γ :=

[
γ1 ... γn

]
,

one has dΓ(t)
dt = AΓ(t), which yields Γ(t) = eAtΓ(0);

this implies eAt = Γ(t)Γ−1(0), under the assumption that
det (Γ(0)) 6= 0 (this is the condition to be satisfied in order
that the particular solutions ξ0(t), ..., ξn(t) can be used in the
superposition formula). Finally, since x(t) = eAtc + ξ0(t),
for some constant c ∈ Rn, the explicit and implicit nonlinear
superposition formulas are, respectively, obtained:

x = ξ0 +
[
ξ1 − ξ0 ... ξn − ξ0

]
k

= ξ0 +

n∑
i=1

(
ξi − ξ0

)
ki,

and

k =
[
ξ1 − ξ0 ... ξn − ξ0

]−1 (
x− ξ0

)
.

The following theorem goes back to Lie [13].
Theorem 1: Equation (1) admits the superposition formu-

las (8), (9) if and only if

f(t, x) =

r∑
i=1

ui(t)fi(x), (10)

where ui(t) ∈ R, i = 1, ..., r, are some functions of time
and f1(x), ..., fr(x) ∈ Rn are time-invariant vector functions
such that the smallest Lie algebra over R that contains
f1(x), ..., fr(x) is finite dimensional.

The interested reader is referred to [16] for a clear and
modern proof of Theorem 1, whereas in [17] the ideas of
the classical proof are sketched.

Remark 1: According to Theorem 1, for any time-varying
linear system (2), one can write

A(t)x(t) =

n∑
i=1

n∑
j=1

Ai,j(t)Mi,j ,

where the n2 matrices Mi,j := eie
>
j constitute a basis of the

matrix Lie algebra Rn×n.
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Since functions Ψ and Θ appearing in the nonlinear
superposition formulas (8) and (9) are independent of time,
the expressions of Ψ and Θ do not depend on scalar
functions ui(t) ∈ R, i = 1, ..., r, but only on vector
functions f1(x), ..., fr(x) ∈ Rn; two systems dx(t)

dt =∑r
i=1 ui(t)fi(x) and dx(t)

dt =
∑r
i=1 vi(t)fi(x) are described

by the same superposition formulas, by the arbitrarines of
functions ui and vi.

By (9), it is easy to see that the entries Θi, i = 1, ..., n,
of Θ are functionally independent first integrals of the
extended system constituted by equations (1), (7), whence,
by the arbitrariness of the scalar functions ui(t), they are
functionally independent joint first integrals associated with
the extended vector functions

f1,e =


f1(x)
f1(ξ1)

...
f1(ξm)

 , ..., fr,e =


fr(x)
fr(ξ

1)
...

fr(ξ
m)

 ,

which certainly exist when m is taken sufficiently
high, because f1,e, ..., fr,e generate a finite dimensional
Lie algebra over R. In particular, taking into
account that fi,e

(
xo, ξ

1
o , ..., ξ

m
o

)
∈ Rn(m+1), if

there exists a point (xo, ξ
1
o , ..., ξ

m
o ) such that

f1,e

(
xo, ξ

1
o , ..., ξ

m
o

)
, ..., fr,e

(
xo, ξ

1
o , ..., ξ

m
o

)
are linearly

independent, then the number of first integrals associated
with f1,e, ..., fr,e, being functionally independent about
point (xo, ξ

1
o , ..., ξ

m
o ), is n(m+1)−r, which must be greater

than or equal to n, thus yielding the inequality nm ≥ r.
Some techniques for the computation in closed-form of
first integrals can be found in [18], [19], [20] starting from
the knowledge of Lie symmetries and in [21], where a
computationally valid procedure is given.

Remark 2: Two operations preserve the structure of Lie
algebra, whence the existence of nonlinear superposition
formulas, although their expression in closed-form may
change: a nonlinear transformation on the state x, and a linear
transformation on the time functions ui.

(2.1) Given a finite dimensional Lie algebra over R
spanR{f1, ..., fr} and a diffeomorphism y = ϕ(x), ones
has that spanR{ϕ∗f1, ..., ϕ∗fr} is a finite dimensional Lie
algebra over R, characterized by the same characteristic con-
stants as spanR{f1, ..., fr} (here ϕ∗f(y) =

(
∂ϕ
∂x f

)
◦ϕ−1(y)

denotes the push-forward of f by ϕ).

(2.2) Given an invertible matrix Q ∈ Rr×r,
u = QV , where u =

[
u1 ... ur

]>
and

v =
[
v1 ... vr

]>
, (10) can be recast as follows:

f(t, x) =

r∑
i=1

ui(t)fi(x)

=

r∑
i=1

r∑
j=1

Qi,jvj(t)fi(x)

=

r∑
j=1

r∑
i=1

Qi,jfi(x)vj(t)

=

r∑
j=1

vj(t)gj(x),

where gj(x) :=
∑r
i=1Qi,jfi(x), j = 1, ..., r. The two Lie

algebras spanR{f1, ..., fr} and spanR{g1, ..., gr} over R are
isomorphic, but in general they are described by different
structure constants.

Example 3: Consider the case n = 1. By [13], it is known
that any Lie algebra over R spanned by scalar functions is
at most three-dimensional. Hence, assume that X is three-
dimensional, i.e., X = spanR{f1, f2, f3}, with {f1, f2, f3}
being a basis of X, and that rankKn

{f1, f2, f3} = 1. About
a regular point of fi, apart from a diffeomorphism, it can
be assumed that fi = 1; by [1, g] = ∂g

∂x , one concludes
that any g commuting with fi satisfies g = cfi, for some
constant c. Therefore, it can be assumed that [fi, fj ] is not
identically zero, because otherwise {f1, f2, f3} is not a basis
of X. If f1, f2, f3 are scalar functions of x ∈ R, then it can be
shown [13] (see also [22]) that, apart from a proper choice
of the Lie algebra basis, the only Lie algebra satisfying
the conditions [fi, fj ] 6= 0, i, j ∈ {1, 2, 3}, i 6= j, is the
split three-dimensional simple Lie algebra, described by the
commutation relations

[f1, f2] = 2f1, [f1, f3] = f2, [f2, f3] = 2f3.

Assume, apart from a diffeomorphism about any regular
point, that f1(x) = 1. Condition [f1, f2] = 2f1 implies

∂f2(x)

∂x
= 2 =⇒ f2(x) = 2x+ c2;

condition [f1, f3] = f2 implies

∂f3(x)

∂x
= 2x+ c2 ⇒ f3(x) = x2 + c2x+ c3;

condition [f2, f3] = 2f3 implies

c22 − 4c3 = 0⇒ c3 =
1

4
c22;

therefore, {1, 2x + c2, x
2 + c2x + 1

4c
2
2} is a basis of X;

another basis of X is {1, x, x2}, which shows that any scalar
differential equation, which admits nonlinear superposition
formulas, is diffeomorphic to a scalar Riccati differential
equation (see [10] and [23])

dx(t)

dt
= u1(t) + u2(t)x+ u3(t)x2, (11)
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with a proper choice of functions ui(t). Let f1(x) = 1,
f2(x) = x, f3(x) = x2 and define the extended vector
functions

f1,e =


1
1
1
1

 , f2,e =


ξ0

ξ1

ξ2

ξ3

 , f3,e =


(
ξ0
)2(

ξ1
)2(

ξ2
)2(

ξ3
)2
 ,

where ξ0 = x. All first integrals associated with f1,e are
given by arbitrary functions of ξi− ξj , for i, j ∈ {0, 1, 2, 3};
all first integrals associated with f2,e are given by arbitrary
functions of ξi−ξj

ξh−ξk for i, j, h, k ∈ {0, 1, 2, 3}, (i, j) 6= (h, k);
all first integrals associated with f3,e are given by arbitrary
functions of 1

ξi −
1
ξj = ξj−ξi

ξiξj , for i, j ∈ {0, 1, 2, 3}. Hence,
these three vector functions admit as joint first integrals the
arbitrary functions of the following quantity, which is often
referred to as the cross ratio,

Θ =
(ξ0 − ξ1)(ξ2 − ξ3)

(ξ0 − ξ2)(ξ1 − ξ3)
.

This gives the implicit nonlinear superposition formula k =
Θ; by solving such an equation by x = ξ0, one obtains the
explicit nonlinear superposition formula x = Ψ, with

Ψ =
kξ2

(
ξ1 − ξ3

)
− ξ1

(
ξ2 − ξ3

)
k (ξ1 − ξ3)− (ξ2 − ξ3)

.

Similar explicit nonlinear superposition formulas can be eas-
ily determined by a permutation of the solutions ξ1, ξ2, ξ3;
for instance, if the triplet (ξ1, ξ2, ξ3) is replaced with the
triplet (ξ2, ξ3, ξ1), one obtains the explicit nonlinear super-
position formula

x =
kξ3

(
ξ2 − ξ1

)
− ξ2

(
ξ3 − ξ1

)
k (ξ2 − ξ1)− (ξ3 − ξ1)

.

Now, consider a planar linear system ẏ = A(t)y, where y ∈
R2 and

A(t) =

[
A1,1(t) A1,2(t)
A2,1(t) A2,2(t)

]
.

Since [A(t), E] = 0 for any t ∈ R, consider the projection
x = y1

y2
, which transform ẏ = A(t)y into

dx

dt
=

[
1
y2
− y1
y22

] [ A1,1(t) A1,2(t)
A2,1(t) A2,2(t)

] [
y1

y2

]
= A1,2(t) + (A1,1(t)−A2,2(t))

y1

y2
−A2,1(t)

y2
1

y2
2

= A1,2(t) + (A1,1(t)−A2,2(t))x−A2,1(t)x2,

i.e., the Riccati differential equation (11) with u1(t) =
A1,2(t), u2(t) = A1,1(t) − A2,2(t) and u3(t) = −A2,1(t).
Therefore, this shows that any scalar differential equation
that admits nonlinear superposition formulas can be im-
mersed into a planar linear system (see [13]), thus justifying
the assertion that the scalar nonlinear systems that admit
nonlinear superposition formulas are “close” to the linear
ones.

If one of the scalar functions ui(t) appearing in (10) is
identically zero, the computation of the explicit and implicit

nonlinear superposition formulas can be simplified. Note that
the explicit and implicit nonlinear superposition formulas,
also modulo permutation of the particular solutions, are not
unique.

IV. PHYSICALLY MOTIVATED EXAMPLES

Example 4: Consider again the linear oscillator with time-
varying frequency (6). Define the vector functions

f1(x) =

[
x2

0

]
, f2(x) =

[
0
x1

]
.

Compute the Lie bracket

[f1(x), f2(x)] =

[
−x1

x2

]
and let f3(x) = [f1(x), f2(x)]. Since [f1, f2] = f3,
[f1, f3] = −2f1 and [f2, f3] = 2f2, X = spanR{f1, f2, f3}
is a three-dimensional Lie algebra. Compute the extended
vector functions

f1,e(x, ξ
1, ξ2) =


x2

0
ξ1
2

0
ξ2
2

0

 , f2,e(x, ξ
1, ξ2) =


0
x1

0
ξ1
1

0
ξ2
1


(there is no need to compute f3,e). Two joint functionally
independent first integrals associated with f1,e and f2,e

are given by x1ξ
1
2 − ξ1

1x2 and x1ξ
2
2 − ξ2

1x2. The implicit
superposition formula is

k1 = x1ξ
1
2 − ξ1

1x2,

k2 = x1ξ
2
2 − ξ2

1x2;

by the inverse with respect to x, it is obtained the explicit
superposition formula:

x1 =
k1ξ

2
1 − k2ξ

1
1

ξ1
2ξ

2
1 − ξ1

1ξ
2
2

,

x2 =
k1ξ

2
2 − k2ξ

1
2

ξ1
2ξ

2
1 − ξ1

1ξ
2
2

,

under the assumption that det
([

ξ1 ξ2
])

= ξ1
1ξ

2
2 − ξ1

2ξ
2
1

is not identically zero.
Example 5: (A knife edge) Consider the kinematic equa-

tions of motion of a knife edge [24]

dx1

dt
= cos(x3)u1(t),

dx2

dt
= sin(x3)u1(t),

dx3

dt
= u2(t).

Define

f1(x) =

 cos (x3)
sin (x3)

0

 , f2(x) =

 0
0
1

 .
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Since

[f1(x), f2(x)] =

 sin (x3)
− cos (x3)

0

 ,
define f3(x) = [f1(x), f2(x)]. Since [f1, f2] = f3,
[f1, f3] = 0 and [f2, f3] = −f1, one concludes that X =
spanR{f1, f2, f3} is a three-dimensional Lie algebra over
R. Compute the extended vector functions

f1,e(x, ξ
1) =


cos(x3)
sin(x3)

0
cos(ξ1

3)
sin(ξ1

3)
0

 , f2,e(x, ξ
1) =


0
0
1
0
0
1


(there is no need to compute f3,e). Three joint function-
ally independent first integrals associated with f1,e and
f2,e are x1 − ξ1

1 cos
(
ξ1
3 − x3

)
− ξ1

2 sin
(
ξ1
3 − x3

)
, x2 +

ξ1
1 sin

(
ξ1
3 − x3

)
− ξ1

2 cos
(
ξ1
3 − x3

)
and

(
x3 − ξ1

3

)
, thus ob-

taining the implicit nonlinear superposition formula:

k1 = x1 − ξ1
1 cos

(
ξ1
3 − x3

)
− ξ1

2 sin
(
ξ1
3 − x3

)
,

k2 = x2 + ξ1
1 sin

(
ξ1
3 − x3

)
− ξ1

2 cos
(
ξ1
3 − x3

)
,

k3 = x3 − ξ1
3 ;

by the inverse, it is obtained the explicit nonlinear superpo-
sition formula:

x1 = ξ1
1 cos (k3)− ξ1

2 sin (k3) + k1,

x2 = ξ1
1 sin (k3) + ξ1

2 cos (k3) + k2,

x3 = ξ1
3 + k3.

Example 6: (Chained system) Consider a three-
dimensional chained system: [24]

dx1

dt
= u1(t),

dx2

dt
= u2(t),

dx3

dt
= x2u1(t).

Define

f1(x) =

 1
0
x2

 , f2(x) =

 0
1
0

 .
Letting

f3(x) =

 0
0
1

 ,
it is easy to see that [f1, f2] = −f3, [f1, f3] = 0 and
[f2, f3] = 0, whence that X = spanR{f1, f2, f3} is a
three-dimensional Lie algebra over R. Compute the extended

vector functions

f1,e(x, ξ
1) =


1
0
x2

1
0
ξ1
2

 , f2,e(x, ξ
1) =


0
1
0
0
1
0


(there is no need to compute f3,e). Three joint functionally
independent first integrals associated with f1,e and f2,e are
given by x1 − ξ1

1 , x2 − ξ1
2 and x3 − ξ1

3 − ξ1
1x2 + ξ1

1ξ
1
2 , thus

obtaining the implicit nonlinear superposition formula:

k1 = x1 − ξ1
1 ,

k2 = x2 − ξ1
2 ,

k3 = x3 − ξ1
3 − ξ1

1x2 + ξ1
1ξ

1
2 ;

by the inverse, it is obtained the explicit nonlinear superpo-
sition formula:

x1 = ξ1
1 + k1,

x2 = ξ1
2 + k2,

x3 = ξ1
3 + ξ1

1k2 + k3.

Example 7: (DC-to-DC electric power conversion sys-
tems) Consider a DC-to-DC electric power conversion sys-
tems described by [2]

dx1

dt
=

u(t)− 1

L
x2 +

E

L
,

dx2

dt
= −u(t)− 1

L
x1 −

1

RC
x2,

where the DC supply is E and the load resistance is R. The
state variables are the current x1 through the inductor L and
the output voltage x2 on the capacitor C; u(t) is a piecewise
constant function of time, u(t) ∈ {0, 1}. Since the system
parameters E,L,R and C my be subject to time-varying
uncertainties, it would be nice to obtain a superposition
formula independent of them. Define

f1(x) =

[
x1

0

]
, f2(x) =

[
x2

0

]
, f3(x) =

[
0
x1

]
,

f4(x) =

[
0
x2

]
, f5(x) =

[
1
0

]
, f6(x) =

[
0
1

]
,

which span a six-dimensional Lie algebra over R, described
by the commutation relations [f1, f2] = −f2, [f1, f3] = −f3,
[f1, f4] = 0, [f1, f5] = −f5, [f1, f6] = 0, [f2, f3] = f4 − f1,
[f2, f4] = −f2, [f2, f5] = 0, [f2, f6] = −f5, [f3, f4] =
f3, [f3, f5] = −f6, [f3, f6] = 0, [f4, f5] = 0, [f4, f6] =
−f6, [f5, f6] = 0. Proceeding as in the previous examples,
explicit and implicit nonlinear superposition formulas are,
respectively, obtained:

x1 = ξ1
1 +

(
ξ2
1 − ξ1

1

)
k1 +

(
ξ3
1 − ξ1

1

)
k2,

x2 = ξ1
2 +

(
ξ2
2 − ξ1

2

)
k1 +

(
ξ3
2 − ξ1

2

)
k2,
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and

k1 =
−ξ3

2x1 + ξ1
1ξ

3
2 + ξ1

2x1 + ξ3
1x2 − ξ3

1ξ
1
2 − ξ1

1x2

−ξ2
1ξ

3
2 + ξ2

1ξ
1
2 + ξ1

1ξ
3
2 + ξ3

1ξ
2
2 − ξ3

1ξ
1
2 − ξ1

1ξ
2
2

,

k2 =
ξ2
2x1 − ξ1

1ξ
2
2 − ξ1

2x1 − ξ2
1x2 + ξ2

1ξ
1
2 + ξ1

1x2

−ξ2
1ξ

3
2 + ξ2

1ξ
1
2 + ξ1

1ξ
3
2 + ξ3

1ξ
2
2 − ξ3

1ξ
1
2 − ξ1

1ξ
2
2

.

V. CONCLUSIONS

In this paper we have reviewed the nonlinear superposition
principle for classes of nonlinear systems: the existence
of a nonlinear superposition principle can be ensured by
a Lie algebraic analysis of the nonlinear system, whereas
the nonlinear superposition formulas can be obtained in
closed form by computing some functionally independent
first integrals of an auxiliary system that can be associated
with the given one.
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