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Abstract— In this paper, a new frequency weighted balanced
truncation based on Lin and Chiu’s technique [1] is pre-
sented. The method proposed is a modification to Sreeram and
Sahlan’s technique [2] by using the relationship between the
intermediate reduced order model and the final reduced order
model. A numerical example and comparison with other well-
known techniques shows that a significant approximation error
reduction can be achieved using this improvement.

I. INTRODUCTION

Frequency weighted balanced truncation was first intro-

duced by Enns [3] based on a modification of balanced

truncation [4]. The method may use input weighting, output

weighting or both. The stability of the reduced order model is

guaranteed only when one weighting is present. To overcome

the potential drawback of instability when both weightings

are present, the original Lin and Chiu’s technique [1] and

its generalization [5] present a simple modification to Enns’

technique provided that there are no pole-zero cancellations

between the original system and the weights [6]. Another

modification to Enns’ technique was proposed by Wang et

al. [7] which not only guarantees stability in the case of

double-sided weightings but also yields simple and elegant

error bounds. Although the stability of reduced order models

are guaranteed, but the reduction errors obtained from [1],

[5]–[7] are at best slightly lower than Enns’ method and

hence may be considered still too large in most applications.

Sreeram and Sahlan [2] improved Lin and Chiu’s tech-

nique by decomposing the transformed augmented system

in [1] into a new augmented system and new weights. Their

method does not only guarantee stability of the original

system in case of double-sided weightings, but also simple,

elegant and easily computable error bounds. However, the

method can only reduce the approximation error slightly

compared to Enns’ technique by varying free parameters

introduced in the technique. This is because, even though

theoretically the new weights obtained from their method

are supposed to be inner/co-inner functions [8], but they are

not as one of the conditions for inner/co-inner functions is

missing in their lemma.

However, the method of [2] is mathematically correct. A

modification to the technique gives a significant approxima-

tion error reduction as presented in this paper. The proposed

method is applicable to single-sided system and is illustrated

by an example.
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II. PRELIMINARIES

This section reviews some of the well-known frequency

weighted balanced truncation techniques. Let G(s), V (s) and

W (s) be the stable original system and the stable input and

output weights respectively. Let {A,B,C,D}, {Av,Bv,Cv,Dv}
and {Aw,Bw,Cw,Dw} be their corresponding minimal realiza-

tions respectively. Consider the augmented system G(s)V (s)
and W (s)G(s) represented by the following realizations:

G(s)V (s) =





A BCv BDv

0 Av Bv

C DCv DDv





=

[

Ãi B̃i

C̃i D̃i

]

W (s)G(s) =





Aw BwC BwD

0 A B

Cw DwC DwD





=

[

Ão B̃o

C̃o D̃o

]

.

The controllability and observability Gramians of the aug-

mented realization are given by:

P̃i =

[

PE P12

PT
12 Pv

]

Q̃o =

[

Qw Q12

QT
12 QE

]

(1)

where P̃i and Q̃o satisfy the following Lyapunov equations:

ÃiP̃i + P̃iÃ
T
i + B̃iB̃

T
i = 0 (2a)

ÃT
o Q̃o + Q̃oÃo +C̃T

o C̃o = 0. (2b)

Assuming that there are no pole-zero cancellations in

G(s)V (s) and W (s)G(s), the Gramians, P̃i and Q̃o are positive

definite.

A. Enns’ Technique

Expanding (1,1) block of (2a) and (2,2) block of (2b)

yield the following equations:

APE +PEAT +XE = 0 (3a)

AT QE +QEA+YE = 0 (3b)

where

XE = BCvPT
12 +P12CT

v BT +BDvDT
v BT

YE = CT BT
wQ12 +QT

12BwC+CT DT
wDwC.

Diagonalizing the weighted Gramians {PE ,QE} yielding

T−1
E PET−T

E = T T
E QETE = diag(σ1,σ2, . . . ,σr,σr+1, . . . ,σn)

where σ1 ≥ σ2 ≥ . . .≥ σr > σr+1 ≥ . . .≥ σn > 0.
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Transforming and partitioning the original system realiza-

tion, we have

[

T−1
E ATE T−1

E B

CTE D

]

=





A11 A12 B1

A21 A22 B2

C1 C2 D



 .

Enns’ reduced-order model is then given by GE(s) =
{A11,B1,C1,D}.

Essentially, Enns’ technique is based on diagonalizing si-

multaneously the solutions of Lyapunov equations as given in

(3). However, Enns’ technique cannot guarantee the stability

of reduced order models as XE and YE may not be positive

semidefinite. Several modifications to Enns’ technique are

proposed in the literature to overcome the stability problem.

B. Generalization of Lin and Chiu’s Technique

The generalization of Lin and Chiu’s technique [5] modi-

fied Enns’ technique [3] using the following transformation

matrices

Ti =

[

I X

0 I

]

To =

[

I −Y

0 I

]

where

X = P12P−1
v and Y = Q−1

w Q12, (4)

to transform the original Gramians of augmented system
{

P̃i, Q̃o

}

in (1) into block diagonal matrices as shown below:

P̂i = T−1
i P̃iT

−T
i =

[

PLC 0

0 Pv

]

Q̂o = T T
o Q̃oTo =

[

Qw 0

0 QLC

]

where PLC = PE −P12P−1
v PT

12 and QLC = QE −QT
12Q−1

w Q12.

The corresponding state-space realizations have the fol-

lowing structures:
[

Âi B̂i

Ĉi D̂i

]

=

[

T−1
i ÃiTi T−1

i B̃i

C̃iTi D̃i

]

=





A X23 X2

0 Av Bv

C Y2 DDv



 (5a)

[

Âo B̂o

Ĉo D̂o

]

=

[

T−1
o ÃoTo T−1

o B̃o

C̃oTo D̃o

]

=





Aw X12 X1

0 A B

Cw Y1 DwD



 (5b)

where

X23 = AX −XAv +BCv (6a)

X2 = BDv −XBv (6b)

Y2 = CX +DCv (6c)

D̂i = DDv (6d)

X12 = YA−AwY +BwC (6e)

Y1 = DwC−CwY (6f)

X1 = BwD+Y B (6g)

D̂o = DwD (6h)

The new realizations
{

Âi, B̂i

}

and
{

Âo,Ĉo

}

now satisfy

the following Lyapunov equations:

ÂiP̂i + P̂iÂ
T
i + B̂iB̂

T
i = 0

ÂT
o Q̂o + Q̂oÂo +ĈT

o Ĉo = 0

Diagonalizing the weighted Gramians {PLC,QLC} of the

new system {A,X2,Y1} which satisfy

APLC +PLCAT +X2XT
2 = 0

AT QLC +QLCA+Y T
1 Y1 = 0

yielding

T−1
LC PLCT−T

LC = T T
LCQLCTLC = diag(σ1,σ2, . . . ,σr,σr+1, . . . ,σn)

where σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 ≥ . . . ≥ σn > 0. Reduced

order model is then obtained by transforming, partitioning

and truncating the original system realization.

C. Influence of Cross-terms

As pointed out in [9], frequency weighted balanced trun-

cation technique has large frequency weighted error due to

nonzero P12 and Q12 in (1).

Lemma 2.1: [9] The class of input weight V (s) =
{Av,Bv,Cv,Dv} corresponding to P12 = 0 has to satisfy the

following two equations:

B(CvPv +DvBT
v ) = 0

AvPv +PvAT
v +BvBT

v = 0

The class of output weight W (s) = {Aw,Bw,Cw,Dw} cor-

responding to Q12 = 0 has to satisfy the following two

equations:

CT (BT
wQw +DT

wCw) = 0

AT
wQw +QwAw +CT

wCw = 0

Lemma 2.2: [8] V (s) = {Av,Bv,Cv,Dv} is a co-inner

function (V (s)V ∗(s) = I) if and only if

AvPv +PvAT
v +BvBT

v = 0

CvPv +DvBT
v = 0

DvDT
v = I

Similarly, W (s) = {Aw,Bw,Cw,Dw} is an inner function

(W ∗(s)W (s) = I) if and only if

AT
wQw +QwAw +CT

wCw = 0

BT
wQw +DT

wCw = 0

DT
wDw = I

Note that V ∗(s) and W ∗(s) are used to denote the complex

conjugate transpose of V (s) and W (s) respectively.

Remark 1: The matrices functions V (s) and W (s) need

not be square to be co-inner/inner function. If the co-inner

and inner matrices functions (V (s) and W (s)) are square then

they satisfy the following:

V (s)V ∗(s) =V ∗(s)V (s) =W ∗(s)W (s) =W (s)W ∗(s) = I
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which implies they are all-pass functions.

D. Sreeram and Sahlan’s Technique

Sreeram and Sahlan’s technique [2] improved Lin and

Chiu’s technique [5] using the properties of zero cross-terms

(see Lemma 2.1) and inner/co-inner function (see Lemma

2.2). In [2], the third equations (DvDT
v = I and DT

wDw = I)

of Lemma 2.2 are missing. Satisfying only the first two

equations of the lemma yielding V (s)V ∗(s) = DvDT
v and

W ∗(s)W (s) = DT
wDw, but they are not equal to identity

matrices implies they are not inner/co-inner functions.

Considering new conditions in Lemma 2.2, factorization

becomes harder than before to satisfy all the equations in

the lemma. So far, there is no way to decompose the original

augmented system into inner/co-inner function. Using special

weights (Cv and Bw are square and nonsingular, and Dv =
Dw = 0), [10] showed that the original model reduction

problem W (s)(G(s)− Gr(s)) and (G(s)− Gr(s))V (s) can

be decomposed into W (s)(Go(s) − Gr,o(s)) and (G(s) −
Gr,i(s))V (s) respectively where V (s) and W (s) are all-pass

functions (see Remark 1).

Considering the factors mentioned above, the mathemat-

ical derivation of Sreeram and Sahlan’s technique [2] is

modified here to single-sided case. In [2], they present an

improved Lin and Chiu’s technique by decomposing the

transformed augmented systems G(s)V (s) and W (s)G(s) in

(5) into new augmented systems as follows:

G(s)V (s) = Gi(s)V (s) (7a)

W (s)G(s) = W (s)Go(s) (7b)

where Gi(s) =
{

A,B,C,Di

}

and Go(s) =
{

A,B,C,Do

}

are

the new original systems and the new weights V (s) =
{

Av,Bv,Cv,Dv

}

and W (s) =
{

Aw,Bw,Cw,Dw

}

. In the new

weights,
{

Av,Bv,Cv,Dv

}

and
{

Aw,Bw,Cw,Dw

}

the cross

terms P12 = 0 and Q12 = 0 respectively.

The new parameters in the above equations are given by

B =
[

B −X AX
]

(8a)

Di =
[

D 0 CX
]

(8b)

Cv =





Cv

Av

I



 (8c)

Dv =





Dv

Bv

0



 (8d)

C =





C

−Y

YA



 (8e)

Do =





D

0

Y B



 (8f)

Bw =
[

Bw Aw I
]

(8g)

Dw =
[

Dw Cw 0
]

(8h)

Using the matrices defined in (8), the equations in (6) can

now be expressed as:

X23 = B Cv (9a)

X2 = B Dv (9b)

Y2 = DiCv (9c)

D̂i = DiDv (9d)

X12 = BwC (9e)

Y1 = DwC (9f)

X1 = BwDo (9g)

D̂o = DwDo (9h)

Diagonalizing the weighted Gramians
{

P,Q
}

of the new

system
{

A,B,C
}

which satisfy

AP+PAT +B B
T

= 0 (10a)

AT Q+QA+C
T

C = 0 (10b)

yielding

T−1
SS PT−T

SS = T T
SSQTSS = diag(σ1,σ2, . . . ,σr,σr+1, . . . ,σn)

where σ1 ≥ σ2 ≥ . . .≥ σr > σr+1 ≥ . . .≥ σn > 0. Instead of

reducing G(s), the technique reduce the new original system

Gx(s) by balanced truncation to obtain an rth intermediate

reduced-order model Gr,x(s) where x = i,o depending on

input or output weighting. The final reduced-order model

Gr,x(s) is obtained by simply deleting the extra rows in Cr,o

and Dr,o, and extra columns in Br,i and Dr,i. Although the

method is simple and elegant, approximation error reduction

obtained from this technique is very small and is often

negligible.

As disscussed in the next section, the method is modified

such that a significant approximation error reduction can be

achieved.

III. MAIN RESULTS

Instead of deleting extra rows or/and columns as in [2],

the proposed method computes the final reduced order model

Gr,x(s), from the following equation:

Gr,i(s)V (s) = Gr,i(s)V (s) (11a)

W (s)Gr,o(s) = W (s)Gr,o(s) (11b)

Let Gr,x(s) =Cr,x(sI−Ar,x)
−1Br,x+Dr,x and Dr,x = D, then

the augmented systems Gr,i(s)V (s) and W (s)Gr,o(s) are given

by:

Gr,i(s)V (s) =





Ar,i Br,iCv Br,iDv

0 Av Bv

DwCr,i DCv DDv





=

[

Ãr,i B̃r,i

C̃r,i D̃r,i

]

W (s)Gr,o(s) =





Aw BwCr,o BwD

0 Ar,o Br,o

Cw DwCr,o DwD





=

[

Ãr,o B̃r,o

C̃r,o D̃r,o

]
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where the Gramians

P̃r,i =

[

P11,r P12,r

PT
12,r Pv

]

Q̃r,o =

[

Qw Q12,r

QT
12,r Q22,r

]

satisfy the following:

Ãr,iP̃r,i + P̃r,iÃ
T
r,i + B̃r,iB̃

T
r,i = 0

ÃT
r,oQ̃r,o + Q̃r,oÃr,o +C̃T

r,oC̃r,o = 0

Similar to (7), Gr,i(s)V (s) and W (s)Gr,o(s) can also be

decomposed into Gr,i(s)V (s) and W (s)Gr,o(s) respectively,

where Gr,x(s) is an rth order model of Gx(s).

Let Tr,i =

[

I Xr

0 I

]

and Tr,o =

[

I −Yr

0 I

]

be the trans-

formation matrices required to take the Gramians
{

P̃r,i, Q̃r,o

}

into block diagonal matrices as follows:

P̂r,i = T−1
r,i P̃r,iT

−T
r,i =

[

P̂11,r 0

0 Pv

]

Q̂r,o = T T
r,oQ̃r,oTr,o =

[

Qw 0

0 Q̂22,r

]

then the corresponding state-space realizations can be written

as:

Gr,i(s)V (s) =

[

T−1
r,i Ãr,iTr,i T−1

r,i B̃r,i

C̃r,iTr,i D̃r,i

]

=





Ar,i X23,r X2,r

0 Av Bv

Cr,i Y2,r DDv



 (12a)

W (s)Gr,o(s) =

[

T−1
r,o Ãr,oTr,o T−1

r,o B̃r,o

C̃r,oTr,o D̃r,o

]

=





Aw X12,r X1,r

0 Ar,o Br,o

Cw Y1,r DwD



 (12b)

where

X23,r = Ar,iXr −XrAv +Br,iCv

X2,r = Br,iDv −XrBv

Y2,r = Cr,iXr +DCv

X12,r = YrAr,o −AwYr +BwCr,o

Y1,r = DwCr,o −CwYr

X1,r = BwD+YrBr,o

From (7), we can obtain W (s),V (s) and Gx(s). Similar

to [2], an rth intermediate reduced order model Gr,x(s)
can then be computed directly using balanced truncation

method [4]. Let Gr,i(s) =
{

Ar,i,Br,i,Cr,i,Dr,i

}

and Gr,o(s) =
{

Ar,o,Br,o,Cr,o,Dr,o

}

be the intermediate reduced order

model obtained from Gx(s), then we can write the augmented

systems as

Gr,i(s)V (s) =

[

Ar,i Br,i

Cr,i Dr,i

][

Av Bv

Cv Dv

]

=





Ar,i Br,iCv Br,iDv

0 Av Bv

Cr,i Dr,iCv Dr,iDv



 (13a)

W (s)Gr,o(s) =

[

Aw Bw

Cw Dw

][

Ar,o Br,o

Cr,o Dr,o

]

=





Aw BwCr,o BwDr,o

0 Ar,o Br,o

Cw DwCr,o DwDr,o



 (13b)

Equating equations (12) and (13) gives

X23,r = Br,iCv (14a)

X2,r = Br,iDv (14b)

X12,r = BwCr,o (14c)

Y1,r = DwCr,o (14d)

Y2,r = Dr,iCv (14e)

DDv = Dr,iDv (14f)

X1,r = BwDr,o (14g)

DwD = DwDr,o (14h)

Rewriting the first four of (14) we get

X23,r = Ar,iXr −XrAv +Br,iCv = Br,iCv (15a)

X2,r = Br,iDv −XrBv = Br,iDv (15b)

X12,r = YrAr,o −AwYr +BwCr,o = BwCr,o (15c)

Y1,r = DwCr,o −CwYr = DwCr,o (15d)

In (15), the matrices
{

Ar,i,Br,i,Ar,o,Cr,o

}

are obtained from

the intermediate reduced order model Gr,x(s). Solving (15)

for Xr,Br,i,Yr,Cr,o one can obtain Gr,i(s) = {Ar,i,Br,i,Cr,i,D}
or Gr,o(s) = {Ar,o,Br,o,Cr,o,D} depending on input or output

weighting.

Note that, since Dr,x = D, and to ensure the last four of

(14) are satisfied, the matrices Dr,i and Dr,o are defined as:

Dr,i =
[

D 0 Cr,iXr

]

Dr,o =





D

0

YrBr,o





using the matrices obtained from (15).

To solve the equations (15c) and (15d), we can rewrite

them as
[

−I ⊗Aw +AT
r,o ⊗ I I ⊗Bw

−I ⊗Cw I ⊗Dw

][

Vec(Yr)
Vec(Cr,o)

]

=

[

Vec(BwCr,o)
Vec(DwCr,o)

]

(16)

where Vec(X) denotes the vector formed by stacking the

columns of X into one long vector. The coefficient matrix

on the left of the above equation has full rank, guaranteeing

solvability of the equation when
[

−Aw +λI Bw

−Cw Dw

]

has full rank for all λ = λi(Ar,o), i = 1, . . . ,r [11], where

λ(X) denotes the eigenvalues of X . However, there is a

unique solution if and only if the matrix on the left of

(16) is square. Similarly Xr and Br,i, provided they exist,

are uniquely determined if and only if V (s) is square.
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Remark 2: The condition that
[

−Aw +λI Bw

−Cw Dw

]

has full rank at some λi is effectively a condition that W (λi)
has full rank there. This observation follows immediately

from the identity:
[

−Aw +λI Bw

−Cw Dw

]

=

[

I 0

Cw(Aw −λiI)
−1 I

][

−Aw +λI Bw

0 W (λi)

]

.

We say effectively, since there remains open the possibility

that W (s) could have a pole at λi. A similar remark applies

to the input weight V (λi).

Remark 3: Note that if the weights W (s) and V (s) have

full row and column rank respectively, the requirement for

them to have this property for the particular values of λ =
λi(Ar,o) will be generally satisfied.

Theorem 3.1: If G(s) = {A,B,C,D} is stable and minimal

then the final reduced order model Gr,x(s) obtained from the

proposed method is also stable and minimal.

Proof: It has been proven in [2] that for a stable and

minimal original system G(s) = {A,B,C,D}, the new real-

ization Gx(s) is also stable and minimal. Since Gr,x(s) is

obtained by balanced truncation of Gx(s), stability of Gr,x(s)
follows immediately. As a result, Gr,x(s) which is the reduced

order model obtained using the proposed technique is also

guaranteed to be stable for stable original systems as it has

the same Ar,x as Gr,x(s).

Theorem 3.2: If Gr,x(s) is an rth order model of the given

original system G(s) and Gr,x(s) is an rth order model of the

new system Gx(s), then

‖(G(s)−Gr,i(s))V (s)‖
∞

=
∥

∥(Gi(s)−Gr,i(s))V (s)
∥

∥

∞

‖W (s)(G(s)−Gr,o(s))‖∞
=

∥

∥W (s)(Go(s)−Gr,o(s))
∥

∥

∞

Proof: From (7), we have

G(s)V (s) = Gi(s)V (s) (17a)

W (s)G(s) = W (s)Go(s) (17b)

From (11) we also have

Gr,i(s)V (s) = Gr,i(s)V (s) (18a)

W (s)Gr,o(s) = W (s)Gr,o(s) (18b)

Substracting (18) from (17) we have

(G(s)−Gr,i(s))V (s) = (Gi(s)−Gr,i(s))V (s)

W (s)(G(s)−Gr,o(s)) = W (s)(Go(s)−Gr,o(s))

Corollary 1:

‖(G(s)−Gr,i(s))V (s)‖
∞

=
∥

∥(Gi(s)−Gr,i(s))V (s)
∥

∥

∞

≤ 2
∥

∥V (s)
∥

∥

∞

n

∑
i=r+1

σi

‖W (s)(G(s)−Gr,o(s))‖∞
=

∥

∥W (s)(Go(s)−Gr,o(s))
∥

∥

∞

≤ 2
∥

∥W (s)
∥

∥

∞

n

∑
i=r+1

σi

where σi are the singular values of Gx(s).

Remark 4: If the reduced order model Gr,x(s) is obtained

without frequency weighting, then V (s) = W (s) = I. The

following result of [3], [12] can be obtained easily:

‖(G(s)−Gr(s))‖∞ ≤ 2
n

∑
i=r+1

σi.

Algorithm A step-by-step algorithm for the proposed

method can be obtained as follows:

i) Given a stable and minimal G(s) and V (s) solve (2a)

for the Gramians P̃.

ii) Compute X from (4).

iii) Compute the fictitious input and output matrices B

from (8a).

iv) Calculate the transformation matrix, Ti which balance
{

A,B,C
}

to diagonalize the Gramians:

T−1PT−T = T T QT = diag{σ1,σ2, . . . ,σn}

v) Compute the frequency weighted balanced realization
[

T−1AT T−1B

CT Di

]

=





Ar,i A12 Br,i

A21 A22 B2

Cr,i C2 Dr,i



.

vi) Solve (15a) to (15b) for Br,i.

vii) An rth order model is given by Gr,i(s) =
{Ar,i,Br,i,Cr,i,D}.

viii) Calculate the weighted error =

‖(G(s)−Gr,i(s))V (s)‖
∞

Remark 5: To reduce the approximation error, the matri-

ces B and C used in the proposed algorithm can be made to

be functions of free parameter α as follows:

B =
[

B −αX AX
]

To ensure that equations in (9) are valid, we need to have

Cv =





Cv
Av
α

I



 Dv =





Dv
Bv
α

0





Note that, α can be any scalar values other than zeros. By

varying the scalar α, one can easily reduce the weighted

approximation errors.

Remark 6: Similar to [2], [7] the proposed method is

realization dependent. For different realization of input and

output weights, different reduced order models and weighted

approximation errors are obtained.

IV. EXAMPLE

For comparison purposes, we consider the fourth-order

system used in [1], [2], [5], [7] with the following input

weight [1]:

V (s) =
4.5

s+4.5
I2
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TABLE I

WEIGHTED ERRORS FOR SINGLE-SIDED

Enns’ [3] LC’s [5] VA’s [6] Wang’s [7] SS’s [2] Proposed

Order Error Error Error Error αSS Error α Error

1 0.5568 0.5605 0.5545 0.5556 4 0.5545 200 0.5368

2 0.0620 0.0619 0.0616 0.0663 54 0.0619 150 0.0602

3 0.0322 0.0314 0.0319 0.0326 39 0.0314 3 0.0285

where I2 denotes a 2nd order of identity matrix. The maxi-

mum singular value of input weight V (s) is given in Fig. 1.

From the figure, we can see that the considered weighting

function is a low pass filter with the passband frequency is

all frequencies lower than 4.5 rad/s.
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Fig. 1. Maximum singular value of input weight V(s)
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Fig. 2. Maximum singular value of reduction error for various methods

Table I shows the reduction errors ‖(G(s)−Gr(s))V (s)‖∞

obtained from the proposed method and other existing

techniques. It is clear from the table that the proposed

technique gives the lowest errors compared to other well-

known techniques. If we plot the same figure as in Fig. 5 of

[1], we can have a Fig. 2. The figure shows clearly that the

proposed method gives a significant improvement to existing

techniques in the selected band of frequencies.

V. CONCLUSIONS

An improved frequency weighted balanced truncation

based on Lin and Chiu’s technique is presented. The method

modified the technique in [2] using the relationship between

the intermediate and the final reduced order model. By

varying user chosen free parameter, the example indicates

a significant improvement over the existing techniques [1]–

[3], [5]–[7].
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