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Abstract— In this paper, we revisit standard results for
singularly perturbed systems on the infinite time interval by
employing tools from nonlinear contraction theory. This allows
us to determine explicit bounds both on the rate of convergence
of trajectories to the slow manifold, and on the distance between
these trajectories and those of the reduced system. We illustrate
the application of the proposed technique to the problem of
retroactivity attenuation in biomolecular systems, that is, to
the problem of attenuating the effects of output loading due to
interconnection to downstream systems. By virtue of the explicit
bounds, we can single out the key biochemical parameters to
tune in order to enhance retroactivity attenuation. This provides
design guidelines for synthetic biology devices that are robust
to loading and can function as insulation devices just like
insulating amplifiers work in electronics.

I. INTRODUCTION

Multiple time-scales have been viewed as a key ingre-

dient of the modular architecture of complex systems ever

since [23]. In recent years, this perspective has been strength-

ened in the context of the flurry of research in systems biol-

ogy, most notably by [11, 13]. A mathematical formulation

in the context of interconnections between biomolecular net-

works has been provided by [5, 9, 10]. In these works, time-

scale separation was shown to be an effective mechanism

to provide dynamic insulation between components and to

enforce modular behavior. Modular behavior is particularly

appealing as it guarantees that a system input/output response

is not affected by interconnection to other systems. This

allows to easily predict the behavior of a large system from

the behavior of its subsystems. Modular behavior in the

context of biomolecular systems is especially important in

synthetic biology, in which researchers are engineering large

networks starting from small working circuits [2].

Mathematically, the standard description of dynamical

systems with multiple time-scales is based on singular per-

turbation theory, whose main results were established more

than 40 years ago [12, 15]. The main results state that the

trajectories of the system fast approach an ǫ-neighbor of

the slow manifold, in which ǫ quantifies the ratio between

slow and fast time scales. Convergence results on the finite

time interval require local exponential stability of the slow

manifold, while results on the infinite time interval also

require exponential stability of the equilibrium point of the

reduced system.

In this paper, we use comparatively recent convergence

analysis tools, based on nonlinear contraction theory and
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virtual dynamical systems, to revisit some results on sin-

gular perturbation. Nonlinear contraction theory [18, 25], a

viewpoint on incremental stability which we briefly review

in Section II, has emerged as a powerful tool in applications

ranging from Lagrangian mechanics to network control.

Historically, ideas closely related to contraction can be traced

back to [7] and even to [16] (see also [3, 21], and e.g. [17]

for a more exhaustive list of related references). In addition,

contraction is preserved through a large variety of systems

combinations, which may make it particularly suitable in the

context of biological systems [11], subject to evolution and

development mechanisms. Employing nonlinear contraction

theory, we provide a global convergence result on the infinite

time interval for singularly perturbed systems. Specifically,

assuming that the reduced system and the fast system are

each partially contracting, we give explicit bounds both on

the convergence rate to the slow manifold and on the distance

of the system trajectories from those of the reduced system.

Explicit bounds are particularly useful in design problems

in which specific values of ǫ can be chosen to obtain a desired

approximation of the system behavior on the slow manifold.

This is the case, for example, of methods for retroactivity

attenuation in biomolecular systems based on time scale sep-

aration as studied in [9, 10]. In these works, it was shown that

the interconnection structure between biomolecular systems

is such that making the time scale of an upstream system

sufficiently fast is an effective means for attenuating the

retroactivity to the output due to loading effects from a

downstream system. Here, we provide explicit bounds on the

rate of attenuation and the amount of retroactivity attenuation

as functions of system parameters and ǫ. We illustrate the ap-

plication of these tools to design an insulation system based

on phosphorylation, which attenuates retroacitivity based on

the fast time scales of the phosphorylation reactions.

This paper is organized as follows. In Section II, we

review basic tools in contraction theory. In Section III, results

on global convergence of singularly perturbed systems are

provided along with explicit convergence bounds. In Section

IV, we apply these tools to study modular interconnection in

biomolecular systems. In Section V, we provide a concrete

biomolecular system example.

II. BASIC CONTRACTION THEORY TOOLS

Recall that, given a norm |·| on the state space, and its

induced matrix norm ‖A‖, for an arbitrary square matrix A,

the associated matrix measure m is defined as (see [4],
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[20])

m(A) := lim
h→0+

1

h
(‖I+ hA‖ − 1) .

The basic result of nonlinear contraction analysis [18] which

we shall use in this paper can be stated as follows.

Theorem 1 (Contraction): Consider the m-dimensional

deterministic system

ẋ = f(x, t) (1)

where f is a smooth nonlinear function. The system is said to

be contracting if any two trajectories, starting from different

initial conditions, converge exponentially to each other. A

sufficient condition for a system to be contracting is the

existence of some matrix measure, m, such that

∃λ > 0, ∀x, ∀t ≥ 0, m

(

∂f(x, t)

∂x

)

≤ −λ. (2)

The scalar λ defines the contraction rate of the system.

The standard matrix measures are listed in Table I. More

generally, contraction may be shown by using matrix mea-

sures induced by the weighted vector norm |x|Θ,i = |Θx|i,
with Θ a constant invertible matrix and i = 1, 2,∞. Such

measures, denoted with mΘ,i, are linked to the standard

measures by:

mΘ,i(A) = mi

(

ΘAΘ−1
)

, ∀i = 1, 2,∞.

Note that for linear time-invariant systems, contraction

is equivalent to strict stability, and, using the Euclidean

vector norm, Θ can be chosen as the transformation matrix

which diagonalizes the system or puts it in Jordan form [18].

More generally, contraction can use time-varying and state-

dependent Θ(x, t), where Θ(x, t)TΘ(x, t) is uniformly pos-

itive definite and the so-called generalized Jacobian

F = Θ

(

∂f(x, t)

∂x

)

Θ−1 + Θ̇Θ−1

has a uniformly negative definite matrix measure [18].

TABLE I

STANDARD MATRIX MEASURES FOR A REAL n× n MATRIX, A = [aij ].

THE i-TH EIGENVALUE OF A IS DENOTED WITH λi(A).

vector norm, |·| induced matrix measure, m (A)

|x|1 =
∑n

j=1 |xj | m1 (A) = maxj

(

ajj +
∑

i6=j |aij |
)

|x|
2
=

(

∑n
j=1

|xj |
2
) 1

2
m2 (A) = maxi

(

λi

{

A+A∗

2

})

|x|∞ = max1≤j≤n |xj | m∞ (A) = maxi
(

aii +
∑

j 6=i | aij |
)

For convenience, we will also say that a function f(x, t)
is contracting if the system ẋ = f(x, t) satisfies the

sufficient condition above. Similarly, we will then say that

the corresponding Jacobian matrix ∂f
∂x (x, t) is contracting.

In the sequel, unless otherwise stated, norms are Euclidean

norms.

We shall also use the following two properties of contract-

ing systems, whose proofs can be found in [18, 24].

Lemma 1: (Robustness) Assume that the system

ẋ = f (x, t)

is contracting, with an associated metric transformation Θ

and contraction rate λ, and consider the “perturbed” system

ẋp = f (xp, t) + d(xp, t)

where d(xp, t) is bounded, that is,

∃ d ≥ 0, ∀xp, ∀t ≥ 0, |d(xp, t)| ≤ d.

Then, any trajectory of the perturbed system satisfies

|xp(t)− x(t)| ≤ χe−λt|xp(0)− x(0)|+ d χ

λ
, (3)

in which χ is an upper bound on the condition number of

Θ and k is the induced norm of Θ [18, 19].

Proof: With R(t) = |Θ (xp(t)− x(t)) | [18], one has

d

dt
R+ λR ≤ |Θd(xp, t)|.

III. MAIN RESULT

We revisit standard results on singular perturbation using

convergence analysis tools based on nonlinear contraction

theory and virtual dynamical systems.

We consider the standard singular perturbation frame-

work [12]

ẋ = f (x, z, t)
ǫ ż = g (x, z, ǫ)

(4)

with ǫ > 0 a constant, x ∈ Dx ⊆ R
n, and z ∈ Dz ⊆ R

m.

Definition 1: [25] System (4) is said to be partially

contracting in x if the virtual system

ẏx = f (yx, z(t), t) (5)

is contracting for any z(t) and for all t. Similarly, system (4)

is said to be partially contracting in z if the virtual system

ǫ ẏz = g (x(t),yz , ǫ) (6)

is contracting for any x(t) and for all ǫ > 0.

Proposition 1: If system (4) is partially contracting in z,

then equation

g (x, z, ǫ) = 0

can be equivalently written as z = γ(x, ǫ), i.e., there is a

unique, global mapping between x, ǫ and z.

Proof: The virtual system

ǫ ẏz = g (xo,yz , ǫ)

is contracting by hypothesis, for any xo(t). If we set xo equal

to some constant vector, this system is also autonomous, and

therefore tends to a unique equilibrium [18]. Thus for any

given xo, the algebraic equation g (xo,yz, ǫ) = 0 has a

unique solution, which we can denote yz = γ(xo, ǫ).
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Denote γ(x) := γ(x, 0) and assume it is globally differen-

tiable. Differentiating the relation g (x, γ(x), 0) = 0 with

respect to x then yields

∂γ(x)

∂x
= −

(

∂g

∂z

)

−1
∂g

∂x
(x, γ(x), 0), (7)

which is valid globally, as the matrix ∂g
∂z is uniformly

invertible. The set {(x, z) | z = γ(x)} is commonly referred

to as the slow manifold.

Lemma 2: Assume that system (4) is partially contracting

in z, with an associated metric transformation Θz , and let

λz/ǫ be the contraction rate of (6). Assume further that,

given (7), one can write

∃ d ≥ 0, ∀x, ∀z, ∀t ≥ 0,

∣

∣

∣

∣

∂γ(x)

∂x
f (x, z, t)

∣

∣

∣

∣

≤ d

and that g(x, z, ǫ) is Lipschitz in ǫ with constant K . Then,

any trajectory of (4) is such that

|z(t) − γ(x(t))| ≤ χze
−(λz/ǫ)t|z(0)− γ(x(0))|+

(d+K) χz

λz
ǫ ∀ t ≥ 0,

(8)

where χz is an upper bound on the condition number of Θz .

Proof: Note that yz = z(t) is a solution of the

contracting virtual system

ǫ ẏz = g (x(t),yz , ǫ)

while yzd = γ(x(t)) is a solution of the “perturbed”

contracting virtual system

ǫ ẏzd = g (x(t),yzd, ǫ) + ǫ
∂γ(x)

∂x
f (x(t), z(t), t) +

(g (x(t),yzd, 0)− g (x(t),yzd, ǫ)) .

Applying the basic robustness result (3) of Section 2 yields

the bound (8).

Theorem 2: Assume, in addition to the hypotheses of the

previous Lemma, that system (4) is partially contracting in

x, with an associated metric transformation Θx, and let

λx be the contraction rate of (5). Assume furthermore that

f (x, z, t) is Lipschitz in z, with Lipschitz constant α and

that γ(x) is Lipschitz with Lipschitz constant αγ . Let xγ be

a solution of the reduced system

ẋγ = f (xγ , γ(xγ), t) . (9)

Then, any trajectory of (4) satisfies

|x(t)− xγ(t)| ≤ χx|x(0)− xγ(0)|e−λxt+

ǫ
(

C1(e
−λxt − e−(λz/ǫ)t) + C2(1− e−λxt)

)

, ∀ t ≥ 0,

(10)

and

|z(t)− γ(xγ(t))| ≤ χze
−(λz/ǫ)t|z(0)− γ(x(0))|+

(d+K) χz

λz
ǫ+ αγχx|x(0)− xγ(0)|e−λxt+

αγǫ
(

C1(e
−λxt − e−(λz/ǫ)t) + C2(1− e−λxt)

)

, ∀ t ≥ 0,

(11)

in which

C1 =
χx α χz|z(0)− γ(x(0))|

(λz − ǫλx)
, C2 =

χx α χz (d+K)

λz λx
,

and χx is an upper bound on the condition number of Θx.

Proof: Using bound (8), one can write ẋ = f (x, z, t) =
f (x, γ(x) + ∆1(t), t) = f (x, γ(x), t) + ∆2(t), where

∆2(t) = f (x, γ(x) + ∆1(t), t)− f (x, γ(x), t) and ∆1(t) =

χze
−(λz/ǫ)t|z(0)− γ(x(0))|+ (d+K) χz

λz
ǫ. Since f is Lips-

chitz in z, we have that

|∆2(t)| ≤ α|∆1(t)| ≤ αχz|z(0)− γ(x(0))|e−(λz/ǫ)t+

α (d+K) χz

λz
ǫ, ∀t ≥ 0.

Letting R = |Θx(x − xγ)|, we have that (see [18])

d

dt
R+ λxR ≤ |Θx∆2(t)|, (12)

which, given the bound on ∆2(t), gives

d

dt
R + λxR ≤ Kxαχz|z(0)− γ(x(0))|e−(λz/ǫ)t+

Kx
α (d+K) χz

λz
ǫ,

in which Kx is the maximum singular value of Θx. Let

c0 := αχz |z(0) − γ(x(0))| and c1 := α (d+K) χz

λz
ǫ. Then,

equation (12) leads to

R(t) ≤ R(0)e−λxt +
c0Kx ǫ

λz − ǫ λx
(e−λxt − e−(λz/ǫ)t)+

c1Kx

λx
(1− e−λxt).

From this equation, using that R(0) ≤ Kx|x(0)−xγ(0)| and

that R(t) ≥ K ′

x|x(t) − xγ(t)|, in which K ′

x is the smallest

singular value of Θx, we obtain inequality (10) with χx =
Kx/K

′

x the condition number of Θx.

Finally, since |z(t) − γ(xγ(t))| ≤ |z(t) − γ(x(t))| +
|γ(x(t)) − γ(xγ(t))| and γ(x) is Lipschitz with Lipschitz

constant αγ , inequality (11) follows from Lemma 2 and

inequality (10).

Remark 1: In the standard singular perturbation frame-

work, we have that x(0) = xγ(0) and that ǫ ≪ 1. Under

these conditions, Theorem 2 implies that for any given

tb > 0, there is an ǫ∗ > 0 such that for all ǫ ≤ ǫ∗ we

have that |z(t) − γ(xγ(t))| = O(ǫ) for all t ≥ tb and that

|x(t) − xγ(t)| = O(ǫ) for all t ≥ 0. This is consistent with

standard singular perturbation results [12]. The advantage of

the approach through contraction theory is that ǫ does not

need to be small for the provided bounds to hold and the

bounds are quantified exactly in terms of known parameters

and ǫ. The conditions required by the contraction approach

are, however, stronger than the local exponential stability

requirements in standard singular perturbation theory.

Theorem 3: Under the hypotheses of the two previous

theorems, denote the overall system’s generalized Jacobian

by

F(x, z, t) =

[

F11 F12

F21 F22

]

.
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The overall system is contracting if

σ2
max

(

F12 + FT
21

)

≤ 4λxλz,

where σmax denotes a uniform upper bound on the largest

singular value.

Proof: Use an extra coordinate transformation

diag(Ix,
√
ǫIz) and the small-gain theorem [25].

IV. ATTAINING MODULARITY IN

BIOMOLECULAR SYSTEMS THROUGH

TIMESCALE SEPARATION

Here, we illustrate how the tools developed in the pre-

vious sections can be applied to obtain explicit bounds on

retroactivity attenuation as studied in earlier work [9, 10].

Let u ∈ Du ⊂ R
q
+, y ∈ Dy ⊂ R

n
+, and v ∈ Dv ⊂ R

p
+ be

vectors whose components denote concentrations of chemi-

cal species, such as proteins, enzymes, DNA sites, etc. We

consider the following model for an isolated biomolecular

system (similar to that of metabolic networks [14]):

u̇is = h(uis, t) +G1A r(yis,uis)

ẏis = G1B r(yis,uis) +G1l(yis,uis), (13)

in which r(y,u) ∈ R
r is a reaction rate vector modeling

the interaction of species in the vector u with species in the

vector y, l(y,u) ∈ R
n is a reaction rate vector driving the

dynamics of y, A ∈ R
r×q, B ∈ R

r×n, and G1 is a positive

constant. Consider next the interconnection of this system

with a downstream system whose vector of species is v:

u̇ = h(u, t) +G1A r(y,u)

ẏ = G1B r(y,u) +G1 l(y,u) +G2C s(y,v)

v̇ = G2D s(y,v), (14)

in which s(y,v) ∈ R
s is a reaction rate vector modeling the

interaction between the y-subsystem and the v-subsystem.

Here, G2 is a positive constant such that G2 = βG1 with

β > 0. We assume that u(0) = uis(0) and y(0) = yis(0).
System (14) is a general model for a biomolecular system.

Interconnections always occur through reactions, whose rates

(r and s, in this case) appear in both the upstream and the

downstream systems with different coefficients (captured by

matrices A, B, C, and D). Constant G1 models the timescale

of the system. We are interested in those cases in which the

system evolves on a faster timescale than that of its input,

that is, G1 ≫ 1. This situation is encountered, for example,

when the y dynamics model protein modification processes

(such as phosphorylation, allosteric modification, dimeriza-

tion, etc.), while the dynamics of u model slower processes

such as protein production and decay or signaling from

outside the cell (here modeled by h(u, t)) [1, 8, 22]. Constant

G2 models the timescale of the interconnection mechanism

of the y-subsystems with the v-subsystem. For example,

when this downstream system models gene expression, s

models the binding and unbinding process of transcription

factors to DNA binding sites. This reaction is faster than

expression and degradation of proteins and therefore we also

have that G2 ≫ 1 [1, 6].

Definition 2: (Functionally Modular Interconnection) We

say that the interconnection of system (14) is functionally

modular provided there are constants K0,K1, λ > 0 (not

depending on G1 and G2) such that

|y(t) − yis(t)| ≤ K0e
−λG1t +

K1

G1
.

Basically, functional modularity means that if one can in-

crease the gain G1, then the interconnection to downstream

systems does not affect the output y of the system. That is,

loading effects on the output can be arbitrarily attenuated

by increasing gain G1. Note that system (14) can be viewed

as a perturbed version of system (13). Hence, one could,

in principle, apply the robustness result given in Lemma

1. Assuming that the isolated system is contracting with

contraction rate λG1, one would obtain that the trajectories

of the perturbed system exponentially converge with rate

λG1 to a neighbor of the isolated system trajectory of

amplitude aG2/G1 for a suitable a > 0. This would not show

that the interconnection is functionally modular because this

neighbor cannot be made arbitrarily small by increasing G1

given that G2 = βG1. We show in what follows that even if

G2 is as large as G1, the structure of the interconnection and

the application of the results of the previous section lead to

showing that the interconnection is functionally modular.

In order to proceed, we assume that system (14) has the

two following properties (see [10]).

P1 There is an invertible matrix T ∈ R
q×q and a matrix

M ∈ R
n×q such that

T A+M B = 0;

M l(y,u) = 0 for all (y,u);
M C = 0.

P2 ker(D) ⊆ ker(C).

Using the change of variables x = T u + M y in both

isolated and connected systems, using Property P1, and

letting ǫ = 1/G1, we obtain

ẋis = T h(T−1(xis −M yis), t)

ǫ ẏis = B r(yis,T
−1(xis −M yis))+

l(yis,T
−1(xis −M yis)),

(15)

and

ẋ = T h(T−1(x−M y), t)

ǫ ẏ = B r(y,T−1(x−M y)) + l(y,

T−1(x−M y)) + βC s(y,v)
(16)

ǫ v̇ = βD s(x,v).

In biomolecular systems, these properties are often satisfied

because of the physical mechanism of the interconnection. In

particular P1 is satisfied because the interconnection occurs

through reversible binding, which implies that rates r will

be found with opposite signs in the equation of u and in the

equation of y. Property P2 is also satisfied because all the

components of the rate D s usually appear in the components

of the rate C s. These properties can be easily verified by

inspection.
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Lemma 3: Assume that system (15) is partially contract-

ing in yis, with an associated metric transformation Θy , and

let λy/ǫ be the contraction rate. Let y = γy(x) be the

globally unique and differentiable solution of

B r(y,T−1(x −M y)) + l(y,T−1(x−M y)) = 0.

Assume that there is d > 0 such that

∀y, ∀x, ∀t ≥ 0,

∣

∣

∣

∣

∂γy(x)

∂x
T h(T−1(x−M y), t)

∣

∣

∣

∣

≤ d.

(17)

Further, assume that system (15) is partially contracting in

xis, with an associated metric transformation Θx, and let

λx be the contraction rate. Let T h(T−1(x − M y), t) be

Lipschitz in y, with Lipschitz constant α and let γy(x) be

Lipschitz with constant αγ . Let xγ be the solution of the

reduced system

ẋγ = T h(T−1(x−M γy(x)), t), xγ(0) = x(0). (18)

Then, for all t ≥ 0 we have that

|yis(t)− γy(xγ(t))| ≤ χye
−(λy/ǫ)t|yis(0)− γy(x(0))|+

d χy ǫ

λy
+ αγǫ

(

C1(e
−λxt − e−(λy/ǫ)t) + C2(1− e−λxt)

)

,

in which

C1 =
χx α χy|yis(0)− γy(xis(0))|

(λy − ǫλx)
, C2 =

χy α χx d

λy λx
,

with χy and χx upper bounds on the condition numbers of

Θy and Θx, respectively.

Proof: Apply Theorem 2 to system (15) with x =
xis, z = yis, f(x, z, t) = T h(T−1(xis − M yis)), and

g(x, z, ǫ) = B r(yis,T
−1(xis −M yis)) + l(yis,T

−1(xis −
M yis)).

Lemma 4: Let the assumptions of Lemma 3 be satisfied.

Let system (16) be partially contracting in z = (y,v) with

associated metric transformation Θz and let λz/ǫ be the

contraction rate. Let z = γz(x) be the globally unique

solution of

Ds(x,v) = 0

Br(y,T−1(x−My))+l(y,T−1(x−My))+βCs(y,v) = 0.

Assume that there is d′ > 0 such that

∀z, ∀x, ∀t ≥ 0,

∣

∣

∣

∣

∂γz(x)

∂x
Th(T−1(x−M y), t)

∣

∣

∣

∣

≤ d′.

Let γz(x) be Lipschitz with constant α′

γ . Let xγ be the

solution of the reduced system (18). Then, for all t ≥ 0
we have that

|y(t)− γy(xγ(t))| ≤ χze
−(λz/ǫ)t|z(0)− γ(z(0))|+

d χz ǫ

λz
+ α′

γǫ
(

C′

1(e
−λxt − e−(λz/ǫ)t) + C′

2(1− e−λxt)
)

,

in which

C′

1 =
χz α χx|z(0)− γz(x(0))|

(λz − ǫλx)
, C′

2 =
χz α χx d′

λz λx
,

with χz and χx upper bounds on the condition numbers of

Θz and Θx, respectively.

Proof: Apply Theorem 2 with f(x, z, t) =
T h(T−1(x − M y), t), g(x, z, ǫ) = (Br(y,T−1(x −
My))+ l(y,T−1(x−M y))+βCs(y,v), βD s(y,v)) and

take into account that Ds(y,v) = 0 implies Cs(y,v) = 0
by Property P2 so that γz(x) = (γy(x), γv(x)) with γy(x)
as in Lemma 3.

Theorem 4: Let the assumptions of Lemma 3 and Lemma

4 hold. Then, the interconnected system (14) satisfies the

modular interconnection property.

Proof: It follows from Lemma 3, Lemma 4, and the

triangular inequality.

V. EXAMPLE

As an example, we consider a phosphorylation cycle and

demonstrate that the interconnection to downstream targets

is modular. For simplicity, we consider a one-step reaction

model for phosphorylation. For any species X, we denote

by X (italics) its concentration. Let Z be a kinase expressed

at (time-varying) rate k(t) and degraded at rate δ. Let its

substrate be X and let X* denote the phosphorylated version

of X. Let the total amount of X be constant and denoted

by XT . Let Y be the phosphatase in total amount YT .

Then, the phosphorylation reactions are given by Z+X
k1−→

X∗ + Z, Y + X∗ k2−→ X + Y and the binding reaction

with downstream targets p is given by X∗ + p
kon−−⇀↽−−
koff

C. We

denote the total concentration of downstream targets by pT .

With conservation laws pT = C + p, XT = X∗ +X + C,

and assuming that pT /XT ≪ 1, we have the following

expression for the isolated system

Ż = k(t)− δZ

Ẋ∗ = k1XTZ

(

1− X∗

XT

)

− k2YTX
∗,

and for the interconnection

Ż = k(t)− δZ

Ẋ∗ = k1XTZ

(

1− X∗

XT

)

− k2YTX
∗

−konX
∗(pT − C) + koffC

Ċ = konX
∗(pT − C)− koffC.

In this system, we have k1, k2, kon, koff ≫ δ, k(t). Define

G1 := k1XT and let α := k2/G1. Define G2 := kon and let

kd := koff/G2. Letting also u := Z, y := X∗, and v := C,

the isolated system can be re-written as

u̇ = k(t)− δu

ẏ = G1

(

u

(

1− y

XT

)

− αYT y

)

, (19)

and the interconnection with downstream targets is given by

u̇ = k(t)− δu

ẏ = G1

(

u

(

1− y

XT

)

− αYT y

)

−G2(y(pT − v)− kdv) (20)

v̇ = G2(y(pT − v)− kdv),
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which are in the forms (13)-(14) with

r(y, u) = 0, h(u, t) = k(t)− δu,

l(y, u) =

(

u

(

1− y

XT

)

− αYT y

)

,

s(y, v) = y(pT − v)− kdv.

Note that system (19) is already in the form (15) and system

(20) is already in the form (16) with ǫ = 1/G1 and G2 =
βG1. Hence, we can take T = I and M = 0. One can

easily verify the assumptions of Theorem 4. In particular, the

isolated system is partially contracting in z = y and in x = u
with Θx = Θy = I. The function f(x, z, t) = k(t) − δu is

Lipschitz and γy(u) is given by γy(u) = u
((u/XT )+αYT ) ,

which is globally defined for u ∈ R+, differentiable, and

Lipschitz. Assuming that k(t) is bounded, we also have that
∣

∣

∣

∂γy(u)
∂u f(x, z, t)

∣

∣

∣
< d for some suitable d > 0.

The connected system is partially contracting in z =
(y, v) with measure m2 and Θz = I. This can be seen

by computing the eigenvalues of the symmetric part of the

Jacobian J given by

J =

(

−(u/XT )− αYT − β(pT − v) βy + βkd
β(pT − v) −βy − βkd

)

.

Denoting a := (u/XT ) + αYT , b = β(pT − v), and

c = β(y + kd), we have that the eigenvalues of 1
2 (J +

JT ) are negative provided det(12 (J + JT )) > 0, which is

satisfied whenever 4c(a + b) > (c + b)2. This is, in turn,

satisfied if a is sufficiently large, which can be guaranteed

by taking YT sufficiently large. Furthermore, we have that

γz(u) =
(

u
(u/XT +αYT ) ,

pT y
y+kd

)

, with y = u
u/XT +αYT

,

which is uniquely defined, differentiable everywhere and

globally Lipschitz for u ∈ R+. Assuming that k(t) is

bounded, we also have that |∂γz(u)
∂u f(x, z, t)| is uniformly

bounded.

Hence, we conclude that the system satisfies the modular

interconnection property as the assumptions of Theorem 4

are satisfied. In particular, the difference between the isolated

and connected system behavior can be rendered smaller by

increasing the values of G1, which can be performed by

increasing the amounts of total substrate XT . Furthermore,

to guarantee contraction of the interconnection, one needs

to guarantee a large enough, which can be obtained by

employing sufficiently large amounts of phosphatase YT .

In turn, large amounts of substrate and phosphatase in

phosphorylation cycles have been shown to be at the basis

of a fundamental principle for insulation from retroactivity

[5, 10].

VI. CONCLUSIONS

In this paper, we have revisited standard singular pertur-

bation results by employing tools from contraction theory.

Assuming that the fast and slow subsystems are each partially

contracting, we obtained a global result about the conver-

gence of the system trajectories to the slow manifold on

the infinite time interval. Furthermore, explicit bounds on

the convergence rate and on the asymptotic error between

the trajectories of the singularly perturbed system and the

reduced system were obtained. These results were applied

to obtain explicit bounds and a global result on retroactivity

attenuation in biomolecular systems.
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