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Abstract— In this paper we show that certain piecewise-
linear Lyapunov functions are preserved for LTI systems
under Padé approximations. In particular, we present a
simple method to find a piecewise-linear Lyapunov function
that is so preserved under the Padé discretization of any
order and sampling time. This result may be of interest in the
discretisation of switched linear systems for both simulation
and control design.

I. INTRODUCTION

The investigation of the properties of control systems

when passing from the continuous-time analysis to the

discrete-time one has been subject of particular attention

in the literature of control theory. The general framework

is the following: given a time-continuous control system

ẋ = fc(x, u),

we look for a discrete-time control system

xk+1 = fd(xk, uk)

that shares some properties with the original one (e.g.

behavior of trajectories, or stability), and such that fd is

easily computable.

This general goal is almost completely understood for

the investigation of stability of linear time-invariant (LTI)

systems ẋ = Acx. In this context, the natural choice

for the discretization is to fix a sampling time h > 0
and define xk+1 = Adxk with Ad = eAch. Since the

exponential of matrices is hard to compute (see [1]), it

can be replaced by its diagonal Padé approximation of a

given order p. The choice of the Padé approximation is

very common in engineering. For example, the Tustin or

bilinear approximation is a particular Padé approximation,

and even the expm function in MATLAB is realized by

Padé approximation. It is also intensively studied from the

numerical viewpoint, see [2], [3].

Our goal is to study the more general problem of

good discretization of switched linear systems (SLS). This

problem is new but is emerging as a topic of increasing

interest in the control and simulation communities; see for

example [4], [5], [6], [7]. We recall that SLS are particular

cases of hybrid systems in which the dynamics f changes

(i.e. it switches) between different possible linear laws
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{A1, . . . , Am}, that are fixed a priori. The set of rules that

orchestrate the switching among is the set of all possible

time-dipendent laws. The continuous-time case is

ẋ = Aσ(t)
c x where σ : [0, T ] → {1, . . . ,m} measurable,

while the discrete-time case is

xk+1 = Aσk

d xk where σ : {0, . . . ,K} → {1, . . . ,m} .

Then, the problem of good discretization of SLS can be

restated as following: find a rule for time discretization

[0, T ] → {0, . . . ,K} and a method to compute Ai
d from

Ai
c. The first idea, coming from LTI system, is to fix

a sampling time h > 0 and to compute each Ai
d as

the diagonal Padé approximation of Ai
c. Surprisingly, this

discretization method fails to preserve stability of SLS.

Examples can be found in [8], [4].

Even though this negative result is known, it is still

unclear in which cases stability is preserved when dis-

cretization is computed via the diagonal Padé approxima-

tion. Our contribution is a first step in this direction. We

thus focus our attention on the preservation of piecewise-

linear Lyapunov function under Padé approximation. Our

contribution is to show that, given a stable LTI system,

it is always possible to find a particular piecewise-linear

Lyapunov that is preserved for all kind of Padé approxi-

mations, regardless to the order p and the sampling time

h.

Beside being interesting directly in the context of LTI

systems, the existence of such a piecewise-linear Lyapunov

function can be a starting point to investigate the stability

of SLS.

II. DEFINITIONS AND KNOWN RESULTS

A. Padé discretization

Consider a linear autonomous system

ẋ(t) = Acx(t) (1)

where x(t) ∈ Rn and assume that the system is asymptot-

ically stable, i.e. matrix Ac is Hurwitz (all eigenvalues in

the open left half of the complex plane). It is well known

that the motion of the state, associated with an initial

state x(0) = x0, can be written as x(t) = eActx0. The

exponential matrix eAct can be numerically approximated

in a variety of different ways. In this paper we focus on

the most popular one, that is diagonal Padé approximation

approximation of pth order, see e.g. [2], [3]. This operator

is well known to engineers and is commonly used by
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both the control and signal processing community. To be

precise, taking a sampling time h, the pth order Padé

discretization of eAch is defined as

Ad = Z(Ach)Z(−Ach)
−1 (2a)

Z(X) =

p
∑

i=0

ciX
i, ci =

(2p− i)!p!

(2p)!i!(p− i)!
(2b)

Hence, it is possible to associate with system (1), its

discrete approximation

xk+1 = Adxk (3)

where xk approximates x(kh) = (eAchk)x0. It is well

known that the Padé discretization preserves the stability

properties. As a matter of fact, Ac is Hurwitz if and only

if Ad is Schur stable (all eigenvalues inside the open unit

disc), for any given sampling times h > 0. Moreover,

the eigenvalues of Ac and Ad are related by the same

transformation induced by (2), and the eigenstrucure is

preserved. If λ is an eigenvalue of Ac associated with an

eigenvector x̄, then z = Z(λh)Z(−λh)−1 is an eigenvalue

of Ad associated with the same eigenvector x̄. Even more,

the transformation is basis independent, i.e.

Z(TAcT
−1h)Z(−TAcT

−1h)−1 =

= TZ(Ach)Z(−Ach)
−1T−1 = TAdT

−1

Finally, if TAcT
−1 is a Jordan form for Ac, then TAdT

−1

is a Jordan form for Ad. A particular Padé transformation

is the celebrated bilinear transformation (or Tustin trans-

formation), that is given by (2) with p = 1, i.e.

Ad = (I +
h

2
Ac)(I −

h

2
Ac)

−1 (4)

B. Piecewise-linear Lyapunov functions

Consider system (1) and its Padé discretization (3).

Assume that Ac is Hurwitz stable, so that Ad is Schur

stable for each h > 0. Also, Let Xij be the entries of a

square matrix X . We define the ∞-measure as

µ∞(X) = max
i



Xii +
∑

j 6=i

|Xij |





and the ∞-norm as

‖X‖∞ = max
i

∑

j

|Xij |

The main known results about stability of LTIs that we

will use are recalled below, see e.g. [10]. The same refer-

ence recalls results about existence of quadratic Lyapunov

functions.

Lemma 2.1: (i) Ac is Hurwitz stable if and only

if there exists a full column rank matrix Wc ∈
RN×n, N ≥ n, and Qc such that

WcAc = QcWc, µ∞(Qc) < 0. (5)

(ii) Ad is Schur stable if and only if there exists a

full column rank matrix Wd ∈ RN×n, N ≥ n,

and Qd such that

WdAd = QdWd, ‖Qd‖∞ < 1. (6)

Remark 2.2: Notice that WcAc = QcWc always imply

that WdAd = QdWd with Wd = Wc and Qd = Z(Qch).
However it is not true in general that µ∞(Qc) < 0 implies

‖Qd‖∞ < 1, unless h is small. A counterexample is given

in [9].

The Lyapunov functions associated with Lemma 2.1 are

piecewise-linear, i.e. ‖Wcxc‖∞, resp. ‖Wdxd‖∞, where

the number of vertices of the polyhedra is 2N . In general

N > n, and the minimal N for which (5), (6) are verified

depends on the location of the eigenvalues of Ac, Ad in the

complex plane. It can be proved, see [11], that for a matrix

Ac with distinct eigenvalues a necessary and sufficient

condition for N = n is that the complex eigenvalues

λ = −α+ jβ, α > 0, belong to the sector |β|α−1 < 1.

C. Computation of piecewise-linear Lyapunov function

In this section we look for matrices Wc satisfying (5),

and matrices Wd satisfying (6). We recall two results

available in the literature, [12] for the continuous-time and

[13] for the discrete-time case. They have been shown to

be valid also in case of multiple eigenvalues. However, for

the sake of simplicity, we assume that the eigenvalues are

distinct.

We start with the continuous-time setting. Given a stable

matrix Ac, we provide a method to compute a particular

Wc.

Lemma 2.3 (Existence for continuous-time LTI):

Consider a Hurwitz stable matrix Ac, with distinct

eigenvalues, with nr real and 2nc complex eigenvalues. For

each pair of conjugate complex eigenvalue λi = αi ± jβi,

i = 1, 2, · · · , nc, take an integer mi such that λi lies in

the sector Sc(mi), where

Sc(m) = {λ = −α+ jβ : α > 0, |β| < sin( π
m
)

1− cos( π
m
)
α}.
(7)

Then there exist Wc ∈ RN×n and Qc ∈ RN×N , with

N =
∑k

i=1 mi + nr, satisfying (5).

In Figure 1, the sectors Sc(m) are drawn for m = 2 (angle

π/4), m = 3 (angle π/3), m = 4 (angle 3π/8) and m = 5
(angle 4π/10). One can remark that the minimum number

m such that an eigenvalue λ lies in Sm is increasing for

λ approaching the imaginary axis. Nevertheless, a finite m
exists for each λ with negative real part.

Lemma 2.4 (Computation for continuous-time LTI):

Consider a Hurwitz stable matrix Ac as in the previous

lemma. Take Tc the state-space transformation that puts

Ac in its real Jordan form, i.e.

TcAcT
−1
c =















Hc1 0 · · · 0 0
0 Hc2 · · · 0 0
...

...
. . .

...
...

0 0 0 Hcnc
0

0 0 0 0 Rc














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Fig. 1. The sectors Sc(m) for m = 2 (angle π/4), m = 3 (angle
π/3), m = 4 (angle 3π/8) and m = 5 (angle 4π/10).

where

Hci =

[

−αi βi

−βi −αi

]

and Rc is a nr × nr diagonal matrix accounting for the

real eigenvalues. Define

W̃c =















Wc,1 0 · · · 0 0
0 Wc,2 · · · 0 0
...

...
. . .

...
...

0 0 0 Wc,nc
0

0 0 0 0 I















with

Wc,i =















1 0
cos( π

mi
) sin( π

mi
)

cos( 2π
mi

) sin( 2π
mi

)
...

...

cos( (mi−1)π
mi

) sin( (mi−1)π
mi

)















.

Then Wc := W̃cTc defines a Lyapunov function F (x) =
‖Wcx‖∞ for the system ẋ = Acx.

We now state the corresponding results for the discrete-

time case.

Lemma 2.5 (Existence for discrete-time LTI):

Consider a Schur stable matrix Ad, with distinct

eigenvalues, with nr real and 2nc complex eigenvalues. For

each pair of conjugate complex eigenvalue λi = σi ± jωi,

i = 1, 2, · · · , nc , take an integer mi such that λi lies in

the interior of the regular polygon Pol(mi), where

Pol(m) = int conv
{

ej
pπ

m

}2m−1

p=0
. (8)

Then there exists Wd ∈ RN×n and Qd ∈ RN×N , with

N =
∑k

i=1 mi + nr, satisfying (6).

In Figure 2 the polygons Pol(m) are depicted for m = 2
(square), m = 3 (hexagon), m = 4 (octagon), m = 5
(decagon).

Fig. 2. The polygons for m = 2 (square), m = 3 (hexagon), m = 4
(octagon), m = 5 (decagon).

Lemma 2.6 (Computation for discrete-time LTI):

Consider a Schur stable matrix Ad as in the previous

lemma. Take Td the state-space transformation that puts

Ad in its real Jordan form, i.e.

TdAdT
−1
d =















Hd1 0 · · · 0 0
0 Hd2 · · · 0 0
...

...
. . .

...
...

0 0 0 Hdnc
0

0 0 0 0 Rd















where

Hdi =

[

−αi βi

−βi −αi

]

and Rd is a nr × nr diagonal matrix accounting for the

real eigenvalues. Define

W̃d =















Wd,1 0 · · · 0 0
0 Wd,2 · · · 0 0
...

...
. . .

...
...

0 0 0 Wd,nc
0

0 0 0 0 I















with

Wd,i =















1 0
cos( π

mi
) sin( π

mi
)

cos( 2π
mi

) sin( 2π
mi

)
...

...

cos( (mi−1)π
mi

) sin( (mi−1)π
mi

)















.

Then Wd := W̃dTd defines a Lyapunov function F (x) =
‖Wdx‖∞ for the system xk+1 = Adxk .

We refer to the original papers [12], [13] for the proofs

of the results. Nevertheless, we point out the key idea of
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these proofs. Given Ac, pass to the real Jordan form via

Tc. For each submatrix Hci, find Wci and Qci. Then find

the global Wc and Qc by applying the inverse change

of coordinate T−1
c (being careful about covariant and

contrvariant matrices). The same idea is applied in the

discrete-time setting, for which it is a bit harder to find

Qd.

III. MAIN RESULT

In this section we state the main result of the paper.

Given a matrix Ac and its diagonal Padé approximation

Ad of a given order p and sampling time h, the function

F computed in Lemma 2.4 is a Lyapunov function both

for Ac and Ad. As already stated, this implies that F is a

Lyapunov function for Ac and all its Padé approximations.

We first prove that, given an integer m, the image of

Sc(m) under a Padé approximation is contained in Pol(m).
We only give a graphical idea of the proof, since it is rather

technical. The complete proof is given in [14].

Lemma 3.1: Let m be a positive integer number,

Sc(m) defined in (7) and Pol(m) defined in (8). Fix a

sampling time h > 0 and consider Sd(m,h) the image of

Sc(m) under the Padé transformation (2), i.e.

Sd(m,h) = {z = Z(λh)Z(−λh)−1, λ ∈ Sc(m)}

Then

Sd(m,h) ⊆ Pol(m).
Sketch of the proof. Take the two half-lines Λm,Λm that

are the boundaries of Sc(m). Their precise expression is

Λm =

{

−α+ jβ | β =
sin( π

m
)

1− cos( π
m
)
α

}

and Λm = {z |z ∈ Λm}. First prove that Sd(m,h) ⊆
Pol(m) if and only if the image of Λm,Λm under the Padé

approximation is contained in Pol(m). Due to invariance

of Pol(m) under complex conjugation, it is equivalent

to prove that Z(Λmh)Z(−Λmh)−1 ∈ Pol(m). Due to

invariance of Λm with respect to rescaling, it is equivalent

to prove that Z(Λm)Z(−Λm)−1 ∈ Pol(m). This result

being technical, we only show some images of Λ2 under

Padé approximations of order p = 1, 2, 3 and images of

Λ2,Λ3,Λ4 under Padé approximation of order p = 2. For

a complete proof, see [14].

We now state precisely the main result of the paper.

Theorem 3.2: Consider a Hurwitz stable matrix Ac of

dimension n and its Padé discretization Ad of order p and

sampling time h > 0. Let nr be the number of real negative

eigenvalues, and 2nc be the number of pairs of complex

eigenvalues −αi ± jβi, i = 1, 2, · · · , nc. For each pair of

complex eigenvalues, let mi be an integer greater than one

such that −αi ± jβi belongs to the sector

|βi| <
sin( π

mi
)

1− cos( π
mi

)
αi.

Then there exist W = Wc = Wd ∈ RN×n, with N =
∑k

i=1 mi + nr such that F (x) = ‖Wx‖∞ is a Lyapunov

Fig. 3. The curve z = Z(Λm)Z(−Λm)−1 for m = 2, 3, 4 and p = 2.

Fig. 4. The curve z = Z(Λm)Z(−Λm)−1 for m = 2 and p = 1, 2, 3.

function both for ẋ = Acx and xk+1 = Adxk . Moreover,

W can be computed as in Lemma 2.4.

Proof. First recall that the Padé transformation preserves

the Jordan form of Ac and Ad. Now take T such that

both Jc = TAcT
−1 and TAdT

−1 are in the real Jordan

form. Compute Wc as in Lemma 2.4. For each pair of

complex eigenvalue λi = −αi±βi, the expression of Wci

is uniquely determined by mi such that −αi±βi ∈ Sc(mi).
Now consider the expression of Wd, computed as in

Lemma 2.6. Applying Lemma 3.1, we have that µi lies in

the interior of the regular polygon Pol(mi), with the same

mi of the eigenvalue λi of the continuous system. As a

consequence, the expression of Wdi can be chosen to be

identical to Wci. Thus Wd = WcT
−1
c Td. Since Tc = Td,

we have the conclusion.

Comment : The result above says that there always

exists a common piecewise-linear Lyapunov function

‖Wx‖∞ for Ac and Ad. Moreover, the construction of W
is based on the matrix Ac only, and the previous theorem
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shows ‖Wx‖∞ is a piecewise-linear Lyapunov function

for Ad computed with a Padé approximation of any

order p. As a consequence, the piecewise-linear Lyapunov

function is common to Ac and all Padé approximants,

of any order p and with any sampling time h. In all

these cases, it is the matrix Qd that changes its expression.

IV. EXAMPLES

In this section, we give two examples that highlight

some implications of our main result. The first, positive

result, comes from [9].

Example 1: Consider the Hurwitz matrix

Ac =

[

−1 0
−2.4 −3

]

In [9], the authors show that a piecewise linear Lyapunov

function is given by choosing Wc = I , with Qc = Ac.

Now, take Ad given by the 1st order Padé approximation

with h = 2, namely

Ad = (I +Ac)(I − Ac)
−1 =

[

0 0
−0.6 −0.5

]

and notice that Qd = (I+Qc)(I−Qc)
−1 satisfies AdWd =

WdQd, with Wd = Wc. However, ‖Qd‖∞ > 1. From this

the authors in [9] concluded that Wc = I is not preserved.

Nevertheless, using our result, it is possible to find

another W = Wc = Wd that is preserved. A choice is

given by

W =

[

−1 0
1.2 1

]

,

Qc =

[

−1 0
0 −3

]

, Qd =

[

0 0
0 −0.5

]

.

Remark that W has be computed as follows: first

compute Ãc = TcAcT
−1
c the real Jordan form of Ac.

Then compute the minimum m such that Sm contains the

eignevalues of Ac (in this case, m = 2). Finally, define W̃
via Lemma 2.4 and W = W̃Tc.

Our first example highlights the fact that some poly-

hedral Lyapunov functions are preserved by Padé trans-

formations. This result is interesting as it says that Padé

transformations preserve all quadratic functions, and some

polyhedral Lyapunov functions. This observation is most

interesting in the context of switched systems as it implies

that Padé methods will preserve the stability of certain

switched systems even if they are not quadratically stable

to begin with. That much work remains to be done is

illustrated by the following example. We start from an

example given by [8], with the parameter a = 7.

Example 2: The switching system is given by two

matrices

Ac1 =

(

−1 1
−1 −1

)

, Ac2 =

(

−1 1/7
−7 −1

)

.

As already stated in [8], the switching system is asymptot-

ically stable. One can compute explicitly the Padé approx-

imation of order 1 of Aci as a function of the sampling

time h, that are

Ad1 =

(

2−h2

h2+2h+2
2h

h2+2h+2

− 2h
h2+2h+2

2−h2

h2+2h+2

)

,

Ad2 =

(

2−h2

h2+2h+2
2h

7(h2+2h+2)

− 14h
h2+2h+2

2−h2

h2+2h+2

)

.

One can observe that for small h the system is stable, while

for h = 1 we have instability, since one of the eigenvalues

of Ad2Ad1 is

−93 + 16
√
29

175
< −1.

To study stability for h ∈ [0, 1], one can look for a

piecewise linear Lyapunov function for the continuous-

time system Aci that is preserved under Padé approxima-

tion. Since the eigenvalues of both Ac1 and Ac2 lie in

Sc(3), our method provides the following matrices Wci,

one for each matrix Aci:

Wc1 =







1 0
1
2

√
3
2

− 1
2

√
3
2






,

Wc2 =







7 1
7
2 − 7

√
3

2
1
2 +

√
3
2

− 7
2 − 7

√
3

2 − 1
2 +

√
3
2






.

One can then check if one of the two, say Wc1, defines

a Lyapunov function for the other system, say Ac2. It is

easy to see that it is not the case. Then one can check for

a linear combination of the two, but also in this case we

are unable to find a common piecewise linear Lyapunov

function. Then, since Sc(3) ⊂ Sc(4) ⊂ . . ., one can

increase the dimension of Wci and use the method to

find other candidate piecewise linear Lyapunov functions.

We do not go further in this direction, since the method

becomes increasingly hard from the computational point

of view.

It is immediately clear from the above example that the

fact that some Lyapunov functions are preserved is not

enough to guarantee that the discrete time system will be

stable. Thus, Padé, while being well suited to discretis-

ing LTI systems, is somewhat lacking when applied to

switched systems. Future work will look at the problem

of developing discretisation methods that are suited for the

discretisation of switched linear systems.

V. CONCLUSIONS

In this paper we present a method to compute a

piecewise-linear Lyapunov function F for a continuous-

time LTI system ẋ = Acx. F is moreover preserved under

Padé approximation of Ac of any order and sampling time.

This result is a first step in the context of switching linear

systems. Some examples show applications of the method,

as well as some negative results.
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