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Abstract— This papers proposes new ways to enforce con-
vergence to equilibria for Economic Model Predictive Control
schemes. Economic Model Predictive Control is a control
technique capable of optimizing an economic performance
index while enforcing state and input constraints. For nonlinear
systems and/or non-convex cost functionals, performance opti-
mization may result in non converging behaviours. While this
might be acceptable in some cases (i.e. operation of chemical
reactors), it may be undesirable for other types of applications.
In the present paper we discuss ways of enforcing convergence
to equilibrium by trading it off with asymptotic performance.
Indeed, while all trajectories converging to a given equilibrium
yield the same asymptotic average cost, transient costs may
differ and trade-offs are naturally highlighted between the
latter and speed of convergence.

I. INTRODUCTION

Control engineers are often facing trade-offs in the design
of controllers, the most typical one being the trade-off be-
tween cost and performance. Cost is usually meant in terms
of some norm of the control signal, while performance is
often inversely proportional to the norm of the output signal
(assuming 0 as a target for the design). This view is to some
extent more motivated by mathematical and physical insight
than by economic considerations. In fact, the true economic
cost of operating a system can often be very different from
the simplistic convex and quadratic design criteria which are
commonly used in control design. Economic criteria, if ever
taken into account, are usually addressed only at the level
of set-point planning. The so-called Real Time Optimization
layer (RTO for short) determines, among all feasible steady-
state plant operating conditions those with minimal cost; see
for instance [3, 8, 7, 6, 2].

Economic Model Predictive Control [9] is motivated by
the need to reconcile ‘control design’ and ‘system eco-
nomics’. In particular, previous contributions to this field
have shown how improvement of performance both in terms
of average or transient costs can be achieved when control
design is carried out by taking into account directly the true
economics of a plant while designing a receding horizon
feedback controller. Due to potential nonconvexity of costs
considered as well as nonlinearity of the underlying dy-
namics, convergent behaviors are not always optimal and/or
desirable [1]. One peculiar feature of this method is to go
beyond the usual static optimization layer that is adopted in
standard plant operation in many industrial processes. While
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this is reasonable for applications in which outputs are mate-
rial/physical outflows that lend themselves to the possibility
of storage, in many other contexts convergence to an equilib-
rium is a requirement that cannot be sacrificed by trading it
off with economics. For these cases, then, it makes sense to
investigate ways of fulfilling convergence requirements while
still optimizing transient economic performance. This is the
goal of this note, in which two methods are discussed and
compared to systematically enforce convergence to the best
equilibrium provided by the static optimization layer while
still employing an economic MPC scheme.

II. PROBLEM FORMULATION

We consider a nonlinear finite dimensional discrete time
control system:

x+ = f(x, u) (1)

with state x ∈ X ⊆ Rn and control u ∈ U ⊆ Rm, for some
closed sets X, U. We seek to optimize a cost-functional∑

k

`(x(k), u(k)) (2)

along solutions of (1) and subject to point-wise in time
constraints:

(x(k), u(k)) ∈ Z ⊆ X× U. (3)

for some compact Z. Due to the nonlinearity of the system
and the fact that neither constraints nor cost functionals
are required to be convex, the optimal solution need not
correspond to a steady state of the system. In particular, while
it is possible to define the set of best steady states (which
for the sake of simplicity we assume to be a singleton):

(xs, us) = arg min
(x,u)∈Z

{`(x, u) | x = f(x, u)} (4)

better average performances can often be encountered along
periodic or complex transients that never approach xs. While
this can be acceptable in certain types of applications (for
instance in the production of chemicals, or more generally for
plants in which outputs are truly outflows which can easily
be stored and dispatched at some later time) in other types of
applications it is instead crucial to converge to equilibrium
within a specified amount of time. We investigate below
how to achieve this goal by comparing different types of
techniques. The first is already proposed in [1] and amounts
to adjusting the stage cost in order to enforce a certain
type of dissipativity that is known to imply convergence in
Economic MPC schemes. The second exploits the possibility
of imposing average constraints in order to impose a zero
variance constraint that may enforce asymptotic convergence
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to the desired equilibrium. The following notion of average
was introduced in [1]:

Av[v] =
{

v̄ ∈ Rnv | ∃ {tn}+∞n=1 :

tn → +∞ and limn→+∞
Σtn

k=0v(k)

tn+1 = v̄
}

,
(5)

where {tn}+∞n=1 denotes any sequence with values in N.
Moreover, an Economic MPC algorithm was proposed in
order to fulfill, together with point-wise in time constraints,
average output constraints for systems of the following type:

x+ = f(x, u)
y = h(x, u). (6)

In particular, the output y is controlled so as to fulfill:

Av[y] ⊆ Y (7)

where Y is a closed, convex set that contains h(xs, us).
For the sake of completeness we recall here the details
of the algorithm. At each time t we solve the following
optimization problem:

min
u

N−1∑
k=0

`(z(k), v(k)) (8)

subject to the following constraints

z+ = f(z, v)
(z(k), v(k)) ∈ Z, k ∈ I0:N−1

z(N) = xs, z(0) = x(t)∑N−1
k=0 h(z(k), v(k)) ∈ Yt

(9)

The time-varying output constraint set is the new feature of
this problem. To enforce the average constraints, we define
the constraint sets recursively

Yi+1 = Yi ⊕ Y	 {h(x(i), u(i))} for i ∈ I≥0 (10)

in which the symbols ⊕ and 	 denote set addition, and
subtraction, respectively,

V⊕W = {z = v + w | v ∈ V, w ∈ W}
V	W = {z | {z} ⊕W ⊆ V}

We initialize the recursion using

Y0 = NY + Y00 (11)

in which the set Y00 ⊂ Rp is an arbitrary compact set con-
taining h(xs, us). As shown in [1], this algorithm preserves
feasibility and guarantees fulfillment both of pointwise in
time and average constraints. For the following developments
it is useful to introduce a weaker notion of asymptotic
convergence.

Definition 2.1: We say that the sequence v(t), t = 0, 1, . . .
is essentially converging to 0 if the following is true:

∀ ε > 0 : lim sup
T→+∞

card({t ≤ T : |v(t)| ≥ ε})
T + 1

= 0. (12)

To clarify this concept and illustrate a fundamental tech-
nical subtlety when trying to impose convergence by means

of average constraints, consider the following discrete-time
sequence:

v(t) =
{

1 if t = 2n for n ∈ N
0 otherwise (13)

It is easy to see that v(t) has all average moments equal to
zero:

lim
T→+∞

∑T
0 v(t)k

T + 1
= 0 (14)

for all k ∈ N; it is however not a convergent signal in
the standard sense. It is worth pointing out that v(t) is
essentially converging to zero. The following Lemma shows
that zero even moments are indeed enough to guarantee
essential convergence.

Lemma 2.2: A sequence v(t) with a zero even moment is
essentially converging to its average value.

Proof: Let ε > 0 be arbitrary. The following equality
follows from the definition of cardinality:

card({t ≤ T : |v(t)− v̄| ≥ ε}) =
∑

t≤T :|v(t)−v̄|≥ε

1 (15)

Consequently, for any even positive integer n:

εncard({t ≤ T : |v(t)− v̄| ≥ ε})
=

∑
{t≤T : |v(t)−v̄|≥ε}

εn

≤
∑

{t≤T : |v(t)−v̄|≥ε}

|v(t)− v̄|n

≤
T∑

t=0

|v(t)− v̄|n (16)

Thanks to (16), and choosing v̄ such that the n-th moment
of v centered at v̄ is zero, we may conclude:

lim supT→+∞
card({t≤T :|v(t)−v̄|≥ε})

T+1

≤ lim supT→+∞
1

εn

ΣT
t=0|v(t)−v̄|n

T+1 = 0.
(17)

Notice that the recursion in (10) can be solved explicitly,
giving:

Yt = (t + N)Y⊕ Y00 	 {
t−1∑
τ=0

h(x(τ), u(τ))} (18)

We propose the following variant to (18) for reasons which
will be clearer later:

Yt = (t + N)Y⊕ (1 + tα)Y00 	 {
t−1∑
τ=0

h(x(τ), u(τ))} (19)

with α ∈ [0, 1). It will be shown that (19) retains the
capability of enforcing average constraints when used in
conjunction with the Economic MPC algorithm.

Proposition 2.3: Consider the MPC algorithm described
in (8) and (9) where the set Yt is defined according to
equation (19) for some convex compact sets Y and Y00

(the latter containing the origin). Then, if x(0) is a feasible
initial condition, all subsequent values x(t) are feasible and
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constraints satisfaction is guaranteed, namely: (x(t), u(t)) ∈
Z and Av[y] ⊆ Y.

Proof: The proof is as usual by induction.
1) Feasibility: Let z?(0), z?(1), . . . , z?(N), and

v?(0), v?(1), . . . , v?(N − 1) fulfill all the constraints
in (9), including the average constraint. Then, applying
the control u(t) = v?(0) we have x(t + 1) = z?(1)
and the shifted sequence: z?(1), z?(2), . . . , z?(N), xs,
v?(1), . . . , v?(N−1), us is again feasible. In particular
it fulfills the constraint:

N−1∑
k=1

h(z?(k), v?(k)) + h(xs, us)

=
N−1∑
k=0

h(z?(k), v?(k)) + h(xs, us)− h(x(t), u(t))

∈ Yt ⊕ Y	 {h(x(t), u(t))} (20)
= (t + N)Y⊕ (1 + tα)Y00 ⊕ Y

	{
t−1∑
τ=0

h(x(τ), u(τ))} 	 {h(x(t), u(t))}

⊆ (t + 1 + N)Y⊕ (1 + (t + 1)α)Y00

	{
t∑

τ=0

h(x(τ), u(τ))} = Yt+1

2) Average constraints: We show next that average con-
straints are fulfilled (asymptotically). To this end, at
any time t it holds:∑t−1

k=0 h(x(k), u(k)) +
∑N−1

k=0 h(z(k), v(k))

∈ (t + N)Y⊕ (1 + tα)Y00

(21)
where z and v denote respectively an arbitrary virtual
state and control sequence that is feasible at time t.
Notice that, due to compactness of the set Z, for any
sequence of feasible virtual states and control moves
it holds:

lim
t→+∞

∑N−1
k=0 h(z(k), v(k))

t
= 0 (22)

In particular then, taken any time sequence tn → +∞
such that

lim
n→+∞

∑tn−1
k=0 h(x(k), u(k))

tn
exists, (23)

it holds:

lim
n→+∞

∑tn−1
k=0 h(x(k), u(k))

tn

∈ lim
n→+∞

(tn + N)Y⊕ (1 + tαn)Y00

tn
= Y.

This concludes the proof of the claim.

As anticipated, one way of enforcing convergence is to
ensure a zero variance constraint:

y = h(x, u) = |x− xs|2 Av[y] ⊆ {0}, (24)

where xs is the best feasible equilibrium as defined in (4).

We remark that when definition (19) is adopted to declare
Yt, feasible initial states give rise to essentially converging
trajectories, by virtue of Lemma 2.2 and Proposition 2.3.
When Yt is defined as in (18), instead, more can be expected,
as shown in the following Proposition.

Proposition 2.4: Consider the algorithm described in (8),
where y is defined as in equation (24), while Yt is updated
according to equations (10) and (11), with Y = {0}. Then,
given a feasible initial state x(0), the corresponding closed-
loop solution is defined for all subsequent times, fulfills
point-wise in time constraints, and x(t) → xs as t → +∞.

Proof: Feasibility and satisfaction of point-wise in time
constraints are proven in [1]. Convergence to xs can be
shown considering that

Yt = Y00 	
t−1∑
τ=0

|x(t)− xs|2.

As a consequence, for every t:
N−1∑
k=0

|z(k)− xs|2 +
t−1∑
τ=0

|x(τ)− xs|2 ∈ Y00. (25)

In particular then:
+∞∑
t=0

|x(t)− xs|2 < +∞ (26)

and this implies x(t) → xs asymptotically.
Remark 2.5: It is worth pointing out that Proposition (2.4)

is still valid provided one defines a vector output constraint:

y =


...

|xi − xi
s|2

...

 : Av[y] ⊆ {0n}. (27)

III. EXAMPLE: CSTR WITH PARALLEL REACTIONS

We consider the control of a nonlinear continuous flow
stirred-tank reactor with parallel reactions [4].

R → P1

R → P2

The primary objective of such processes is a desirable
distribution of products in the effluent. The dimensionless
heat and mass balances for this problem are

ẋ1 = 1− 104x2
1e
−1/x3 − 400x1e

−0.55/x3 − x1

ẋ2 = 104x2
1e
−1/x3 − x2

ẋ3 = u− x3

where x1 is the concentration of the component R, x2 is
the concentration of the desired product P1 and x3 is the
temperature of the mixture in the reactor. P2 is the waste
product. u, which is the heat flux through the reactor wall is
the manipulated variable, and is constrained to lie between
0.049 and 0.449, while x is considered non-negative. The
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1: Closed-loop input (a) and state (b), (c), (d) profiles for
economic MPC with different initial states

primary objective of the process is to maximize the amount
of P1 (`(x, u) = −x2). Previous analysis [4] has clearly
highlighted that periodic operation can outperform steady-
state operation. The steady-state problem has a solution xs =[
0.0832 0.0846 0.1491

]′
and us = 0.1491.

We solve the dynamic regulation problem using the simul-
taneous approach [5]. The time axis of the control horizon
is divided into a fixed number of finite elements covering
the control horizon. The state profiles are approximated by
a family of polynomials on the finite elements. The input is
parametrized according to zero order hold with the input
value constant across a finite element. A terminal state
constraint is used in all the simulations.

A control horizon of N = 150 is chosen with a sample
time Ts = 1/6. The system is initialized at three different
initial states. The closed loop system under the economic
control is seen to jump between the input bounds and hence
is unstable (Figure 1).

To enforce convergence, we first add a convex term in the
stage cost as prescribed by Angeli et al. [1]

VN (x,u) =
N∑

k=0

−x2(k) + |u(k)− u(k − 1)|2S

For S = 0.17, we observe a stable solution (Figure 2), and
the closed loop system converges to the optimal steady state.

We can also penalize the distance from the steady state
for the convex term in the objective

VN (x,u) =
N∑

k=0

−x2(k) + |u(k)− us|2R

For R = 0.15, we again observe that the closed loop system
converges to the optimal steady state (Figure 3).

Next we enforce convergence without modifying the
objective function, by enforcing the zero variance con-
straint (27) using the iteration scheme (10). Figure 4 shows
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2: Closed-loop input (a) and state (b), (c), (d) profiles for
economic MPC with a convex term, with different initial
states.
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3: Closed-loop input (a) and state (b), (c), (d) profiles for
economic MPC with a convex term, with different initial
states.

closed loop profiles with the tuning parameter Y00 defined
as

Y00 = {y | −w ≤ y ≤ w} (28)

in which w =
[
0.5 0.05 0.018

]′
. The solution is also seen

to converge to the optimal steady state.
Also note that the rate of convergence depends on the

tuning parameter Y00, which is the initial variance allowance
for the system. If the initial allowance is larger, iteration
scheme (10) takes a longer time to converge and hence the
system is in transient for a longer time, slowing down the
rate of convergence. Figure 5 shows closed loop profiles for
Y00 defined by (28) and w =

[
0.5 0.07 0.07

]′
.
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4: Closed-loop input (a) and state (b), (c), (d) profiles for
economic MPC with a convergence constraint, with different
initial states.
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5: Closed-loop input (a) and state (b), (c), (d) profiles for
economic MPC with a convergence constraint.

IV. CONCLUSIONS

Two strategies for enforcing convergence to equilibria in
Economic Model Predictive Control schemes are discussed
and compared by means of a simulation example taken from
the chemical process control literature. The process would
naturally exhibit non-converging behavior if the standard
Economic MPC feedback law was to be applied. The trade-
off between rate of convergence and economic performance
is highlighted in both approaches. In particular, by using
average constraints it is possible to enforce convergence
without modifying the stage cost. The transient duration can
be adjusted by suitably choosing the initial set Y00. The
larger the set the slower the convergence to equilibrium. On
the other hand, slower convergence yields in such cases better
transient performance as the system is free to indulge a little

longer in proximity of some optimal (or at least cheaper)
oscillating solution.
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