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Abstract— In this paper, the problem of medium-scale MIMO
LTI systems approximation is addressed. The proposed method-
ology, inspired from recent developments in the model reduction
community (i.e. [1], [2], [3]), consists of combining the features
of the SVD reduction approach with the tangential interpolation
ones. The contributions of the paper are in two folds: (i) it
provides a simple but numerically robust and effective proce-
dure, namely, Iterative SVD-Tangential Interpolation Algorithm
(ISTIA), to approximate any medium-scale MIMO LTI system
and, (ii) it assesses the efficiency of the proposed methodology
on a medium-scale industrial aeroelastical aircraft model, on
which different H∞ control design methodologies are evaluated,
illustrating on a complex industrial framework, the efficiency
of the proposed approximation algorithm.

Index Terms— Model reduction, SVD, Tangential interpola-
tion, Flexible aircraft, H∞ control.

I. INTRODUCTION

A. Motivations

Computer-based dynamical system modeling softwares are

now classically used by engineers to simulate, analyse, con-

trol and optimize a large variety of systems and phenomena

with a high level of accuracy. The counterpart is that it

leads to models with an increasing number of variables and

resources to manage, resulting in an expensive numerical

cost. Moreover, from the control engineer side, modern

analysis and synthesis tools become drastically inefficient for

such high dimensional dynamical systems (e.g. µ-analysis,

H∞,2 control. . . ). This is especially true in the flight dynamic

domain where aircraft are modelled with high fidelity tools

to account for the flexible modes and aeroelastic delays,

which must be taken into consideration at the control design

step. These observations, supported by the industrial part-

ners demand for robust model reduction and control design

methodologies, are the underlying justification for this work.

The main contributions of this paper are (i) to propose a

new simple but effective mixed procedure gathering Singular

Value Decomposition (SVD) and Tangential Interpolation

techniques, called Iterative SVD-Tangential Interpolation Al-

gorithm (ISTIA), to approximate any medium-scale Multiple

Input Multiple Output (MIMO) Linear Time Invariant (LTI)

system, and, (ii) to validate the proposed algorithm on

a medium-scale industrial aeroelastical aircraft model, on
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which different H∞-based control design methodologies are

evaluated to achieve load alleviation and handling qualities.

B. Paper structure & Notations

The rest of the paper is organized as follows: Section

II reminds the MIMO LTI approximation problem and pre-

liminary results. Section III presents the main contribution

of the paper, namely, the ISTIA, with both implementation

issues and performance comparison with classical techniques

through usual model reduction benchmarks [4]. Section IV

provides then a complete evaluation of this new technique

on a complex industrial aeroelastic aircraft model plus a

comparison of some of the recent H∞ control design meth-

ods adjusted for load alleviation / handling quality purpose.

Conclusion and discussion are gathered in Section V.

Mathematical notations are standard: the original system

state is denoted x ∈ Rn, the reduced-order system one is

referred as x̂ ∈ Rr. Full order MIMO LTI state-space (resp.

transfer) form is denoted Σ := (A,B,C) (resp. H(s) :=
C(sI − A)−1B), and the reduced one Σ̂ := (Â, B̂, Ĉ)
(resp. Ĥ(s) := Ĉ(sI − Â)−1B̂). W and V denote the

left and right projectors, respectively. Vr denotes the first

r columns of V . V = span(v) means that the space V is

spanned by the column vectors of v. Then, λ(.) holds for the

eigenvalue operator, ∇(.) stands for the Laplacian operator.

The residual of the complex valued function f(s) at λ is

denoted res(f(s), λ) = lims→λ(s − λ)f(s), where s = jω

(with j =
√
−1) defines the Laplace variable. The conjugate

of v is denoted v∗.

II. MIMO LTI SYSTEMS APPROXIMATION PROBLEM

A. Preliminaries

Let consider a stable and strictly proper MIMO LTI

dynamical model Σ := (A,B,C) of order n defined as:

Σ :

{

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(1)

where A ∈ Rn×n, B ∈ Rn×nu and C ∈ Rny×n. The

projection-based approximation problem consists of finding

Σ̂ := (Â, B̂, Ĉ), a reduced-order model of order r ≪ n, as

Σ̂ :

{

˙̂x(t) = Âx̂(t) + B̂u(t)

ŷ(t) = Ĉx̂(t)
(2)

where Â = WTAV , B̂ = WTB and Ĉ = CV (with V,W ∈
Rn×r, WTV = Ir) such that Σ̂ well approximates Σ in the

sense of a given measure (evaluated here through a norm).

Since the aim of model approximation is to capture the

main system dynamics of interest and input/output behaviour,
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while guaranteeing stability and achieving minimal model

mismatch, the H2 optimal approximation problem is often

addressed. It consists of seeking an approximation Ĥ(s) of

H(s), such that,

min
Ĥ(s) (stable, order r)

||H(s)− Ĥ(s)||H2
(3)

Moreover, in a control design perspective, attention to the

H∞ error should also be paid. Similarly, the H∞ approxi-

mation problem thus consists of seeking Ĥ(s) such that,

min
Ĥ(s) (stable, order r)

||H(s)− Ĥ(s)||H∞
(4)

The latter problem (4) is practically very complex to achieve

for large(medium)-scale models due to the (iterative) nature

of theH∞ norm computation, while, even if it is non-convex,

first-order optimality conditions of the former one (3) can

practically be characterized and satisfied (see [5], [6], [7],

[3], [8], [9]). Let recall that the H2 norm of a n-th order

strictly proper stable system H(s) with simple poles at λ1,

λ2, . . . , λn ∈ C may be given as,

||H(s)||2H2
= trace(BTQB) = trace(CPCT )

=
n
∑

i=1

res(HT (s), λi)H(−λi)
(5)

where Q and P are the observability and controllability

Gramian. Then, based on these formulations, the following

theorems hold (due to [10], [1], [3]).

Theorem 1: Given H(s) := C(sI − A)−1B, Ĥ(s) :=
Ĉ(sI−Â)−1B̂, the controllability and observability Gramian

Pe =

[

P X

XT P̂

]

and Qe =

[

Q Y

Y T Q̂

]

, of H(s) −

Ĥ(s), if, Q̂P̂+Y TX = 0, Q̂B̂+Y TB = 0 and ĈP̂−CX =
0, then, with J = ||H(s)− Ĥ(s)||H2

,

∇ÂJ = 0 , ∇B̂J = 0 and ∇ĈJ = 0 , (6)

ensuring then the so-called Wilson first-order H2 conditions.

Based on Theorem 1, the reduced order model is obtained

by linking projectors and stationary conditions as follows.

Theorem 2: At every stationary point of functional J (i.e.

∇J = 0) where P̂ and Q̂ are invertible, we have the

following identities: Â = WTAV , B̂ = WTB and Ĉ = CV

with WTV = I , W = −Y Q̂−1, V = XP̂−1 and where X ,

Y , P̂ and Q̂ satisfies the Sylvester equations, related to the

error system H(s)− Ĥ(s),

AP + PA
T
+BB

T
= 0 QA+A

T
Q+ C

T
C = 0

ÂX
T
+X

T
A

T
+ B̂B

T
= 0 A

T
Y + Y Â− C

T
Ĉ = 0

ÂP̂ + P̂ Â
T
+ B̂B̂

T
= 0 Q̂Â+ Â

T
Q̂+ Ĉ

T
Ĉ = 0

(7)

Theorem 3: If ∇ÂJ = 0, ∇B̂J = 0 and ∇ĈJ = 0, then

the tangential interpolation conditions are satisfied for all λ̂i,

i = 1, . . . , r, i.e.

[H(−λ̂i)− Ĥ(−λ̂i)]b̂i = 0 , ĉ∗i [H(−λ̂i)− Ĥ(−λ̂i)] = 0

ĉ∗i
d

ds
[H(s)− Ĥ(s)]|

s=−λ̂i
b̂i = 0

(8)

where {b̂1, . . . , b̂r} = B̂TR and {ĉ1, . . . , ĉr} = ĈL (where

L and R are the left and right eigenvectors associated to λ̂i,

the eigenvalues of Â).

Then, [9] and [8] show that the Wilson conditions of

Theorem 1 are equivalent to the tangential interpolation

based optimality conditions of the Theorem 3. Now, Theorem

4 shows how to construct the projectors V and W to fulfil

any tangential interpolations [11], [3].

Theorem 4: Let V ∈ Cn×r and W ∈ Cn×r be matrices

of full rank r such that WTV = Ir. Let σi ∈ Cr, b̂i ∈ Cnu

and ĉi ∈ Cny (for i = 1, . . . , r) be given sets of interpolation

points and left and right tangential directions, respectively.

Assume that points σi are selected such that σiIn − A

are invertible. If, for i = 1, . . . , r, (σiIn − A)−1Bb̂i ∈
span(V ) and (σiIn − AT )−1CT ĉ∗i ∈ span(W ), then, the

reduced order system Ĥ , satisfies the tangential interpolation

conditions,

H(σi)b̂i = Ĥ(σi)b̂i , ĉ∗iH(σi) = ĉ∗i Ĥ(σi)

ĉ∗i
d

ds
H(σi)b̂i = ĉ∗i

d

ds
Ĥ(σi)b̂i

(9)

From Theorem 4, it turns that the H2 optimal problem

consists of finding σi, b̂i and ĉi to satisfy Theorem 3.

This question is the underlying idea of many recent model

reduction algorithms, aiming at finding the best interpolation

points and direction. With reference to Theorems 1 and 2,

similar research focus on the Gramian computations.

B. Some literature results

Methods allowing to reach these first-order optimality

conditions have been widely explored and still are of great

interest in both the numerical and control communities.

Significant results in this field propose an iterative procedure

allowing to converge toward a near optimal condition. The

underlying idea is either to construct X and Y (when using

the Sylvester-like approaches - Theorem 2) or to find the

optimal interpolation points and directions (when using the

Tangential approaches - Theorem 3). More specifically, from

the Tangential(Krylov)-like side, the following techniques

have retained our attention since they do exhibit very nice

results in practice:

• The Iterative Rational Krylov Algorithm (IRKA), ini-

tially set for SISO systems [11] which shows excellent

results on benchmarks but did not guarantee stability

(unless implementing specific restart techniques). Later,

in [12], authors extended it to MIMO systems, with

a complex Trust Region algorithm, which guarantees

convergence and preserves stability.

• At the same period, the Iterative Tangential Interpola-

tion Algorithm (ITIA) for MIMO systems, suggested

in [3], [8], was developed to handle the MIMO case.

Indeed, the ITIA is similar to the MIMO IRKA. As

the previous one, this procedure shows to be effective

in many classical benchmark [4] but does not preserve

stability, a priori. The contribution of [12] is to propose

a guaranteed descent algorithm.
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In parallel to the Tangent(Krylov)-like approaches, from the

Sylvester and SVD the sides, techniques have been developed

to approximate MIMO LTI systems (without always aiming

at guaranteeing H2 first-order optimality conditions), e.g.:

• The Balanced Truncation (BT), which is often consid-

ered as the gold standard since it preserves stability,

provides a bound on the H∞ error and a nearly optimal

H2 one [13], [6]. The drawback is that it may practically

fail when n > 500.

• The Low Rank Square Root Method (LRSRM), which

is a modification of the BT approach, is applicable

for large-scale models but did not guarantee stability

preservation [14].

• The Dominant Subspaces Projection Model Reduction

(DSPMR), which is an heuristic approach allowing to

handle large-scale systems. Unfortunately, this latter

cannot guarantee stability neither [14].

• The Two-Sided Iterative Algorithm (TSIA) [9], which

iteratively solves two Sylvester equations, is shown

to be equivalent to the tangential interpolation. This

procedure guarantees stability and provides nice results

for medium-scale problems but suffers of two main

drawbacks: first, it requires a good projector initiali-

sation (i.e. V and W ) to converge, and secondly, no

stopping criteria is described so far.

Many other methods exist, but the above ones catch our at-

tention because of their presented efficiency. In the following

section, grounded on [1], [3] and on [2] ideas, a simple but

very effective hybrid approach is proposed.

III. MAIN RESULT: ITERATIVE SVD-TANGENTIAL

INTERPOLATION ALGORITHM (ISTIA)

A. Main idea

In [2], the author proposes an iterative SVD-Rational

Krylov algorithm (ISRKA) to cope with instability problems

of the Rational Krylov based techniques. Indeed, one pro-

jector is designed by solving one single Lyapunov function,

guaranteeing system stability, while the second one is iter-

atively constructed through Rational Krylov techniques to

achieve multi-shift moment matching, guaranteeing accurate

(even if non H2-optimal) transfer matching (see also [15]).

So far, the technique was appropriate for SISO, MISO

and SIMO systems (for MIMO, deflation techniques were

required). At almost the same period, in [3], authors propose

a tangential interpolation approach to cope with the H2 first-

order optimality conditions for MIMO systems and suggest

an iterative algorithm to find the interpolation points and

directions. Here, the proposed idea consists of mixing these

two approaches to approximate MIMO LTI systems by

integrating both the SVD and the tangential interpolation

approaches in order to (i) guarantee one side tangential

interpolation at multiple shift points, iteratively selected to

nearly reach the first-order H2 optimality conditions, and,

(ii) guarantee the reduced system stability preservation at

each step of the procedure thanks to the computation of

one single Gramian. The proposed mixed approach, called

ISTIA, makes the solution easy to implement, provides an

almost monotonic convergence and is adapted to SISO and

MIMO LTI systems.

B. ISTIA procedure

Algorithm 1 Iterative SVD-Tangential Interpolation Algo-

rithm (ISTIA)

Require: A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n,

{σ(0)
1 , . . . , σ

(0)
r } ∈ Cn×r, {b̂1, . . . , b̂r} ∈ Cn×r, ε > 0

1: Construct,

span(V ) =
[

(σ
(0)
1 I−A)−1Bb̂1, . . . , (σ

(0)
r I−A)−1Bb̂r

]

2: Solve QA+ATQ+ CTC = 0 in Q

3: Compute W = QV (V TQV )−1

4: while |σ(i) − σ(i−1)| > ε do

5: i← i+ 1, Â = WTAV , B̂ = WTB

6: Compute ÂX = diag(λ(Â))X
7: Compute {b̂1, . . . , b̂r} = X−1B̂

8: Set σ(i) = −λ(Â)
9: Construct,

span(V ) =
[

(σ
(i)
1 I−A)−1Bb̂1, . . . , (σ

(i)
r I−A)−1Bb̂r

]

10: Compute W = QV (V TQV )−1

11: end while

12: Construct Σ̂ : (WTAV,WTB,CV )

Ensure: V,W ∈ Rn×r, WTV = Ir and Re
(

λ(Â)
)

< 0

With reference to Algorithm 1, the procedure constructs

the right projector V thought tangential interpolation sub-

space at step 1 and computes one single Gramian (here the

observability one) at step 2. Then, for numerical purpose, the

right projector W is obtained by enforcing orthogonality, as

in step 3. Then, from step 4 to 11, this procedure is repeated

by using as new interpolation, points the mirror images of

the eigenvalues of the reduced-order model, and, as new

interpolation directions, the right eigenvectors associated

with these eigenvalues (steps 6-8). The process is repeated

until the interpolation points variation is smaller than a given

tolerance ε.

C. Algorithm properties and Implementation issues

With reference to Algorithm 1, the following general

remarks and implementation issues can be addressed:

• Since the Gramian is involved, system stability is pre-

served. The proof is easily obtained by considering,

Q = In, thus W = V , which leads to AT +A+CTC =
0 or equivalently (by left and right multiplying by W

and V ), to ÂT + Â+ ĈT Ĉ = 0.

• As the MIMO IRKA, the algorithm should converge

toward optimal eigenvalues(vectors) and thus, ensure
(

H(−λ̂i)− Ĥ(−λ̂i)
)

b̂i = 0.

• Analogously, the controllability Gramian can be used

instead of the observability one. In this case, the

tangential subspace to be constructed is span(W ) =
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[

(σ
(i)
1 I − AT )−1CT ĉ1, . . . , (σ

(i)
r I − AT )−1CT ĉr

]

(where {ĉ1, . . . , ĉr} = ĈX). In practice, this choice

may be preferred when the observability Gramian is

not satisfactory.

• Even if no proof can be established so far, the H∞

system error remains quite reasonable as well. This

property may be due to the Gramian computation.

• As in all Krylov-like procedures, to obtain real valued

projection V and W matrices and increase computation

speed, the starting shift grid should be either real or

complex conjugate. Indeed, one can use the fact that,

if, v2 = v∗1 , then span[v1, v2] = span[Re(v1), Im(v1)].
• With reference to the ISTIA, experience shows that

span(V ) is much easily computed when the in-

put/output magnitudes are of the same range. As a mat-

ter of fact, for implementation purpose, author proposes

to pre-scale the B and C matrices.

• For computational improvements, it is possible to use

low rank approximations of the Q Gramian, but this

case, stability is no longer guaranteed.

D. Performance comparison on classical benchmark models

To evaluate the proposed algorithm with respect to other

literature methods, the ISTIA is applied on two benchmarks

[4], namely, the SISO ISS-1R Module and the MIMO CD

player. To evaluate the performances, the following relative

H2 and H∞ error metrics (in %) will be used:

εH2
= 100

||Σ− Σ̂||H2

||Σ||H2

, εH∞
= 100

||Σ− Σ̂||H∞

||Σ||H∞

(10)

1) SISO subsystem of ISS-1R Module: To compare with

respect to the complex but very powerful approach presented

in [12] (namely MIMO IRKA or ITIA), the SISO subsystem

of ISS-1R Module (n = 270) is considered. Table I compares

the two approaches for r = {2, 20}

Method (with r = 2) εH2
[%] εH∞

[%]

[12], MIMO IRKA 62.4 N.A.
MIMO IRKA (our implementation) 6.246× 10 2.917× 10

Algorithm 1, ISTIA 6.246× 10 2.917× 10

Method (with r = 20) εH2
[%] εH∞

[%]

[12], MIMO IRKA 7.0× 10
−1 N.A.

MIMO IRKA (our implementation) 5.034× 10
−1

1.741× 10
−1

Algorithm 1, ISTIA 5.034× 10
−1

1.741× 10
−1

TABLE I

REDUCTION TECHNIQUES COMPARISON FOR THE ISS-1R MODULE.

With reference to Table I, it appears that our implementa-

tion of the MIMO IRKA (also denoted ITIA) is good. Indeed,

for r = 2, results are very similar, and, for r = 20, even

better than the one provided in [12]. Note that this is may

be caused by the initial shift selection. Table I also illustrates

that ISTIA, even if theoretically less optimal in the H2 sense,

is very close to the optimal value (indeed, here it provides

the same results as the ITIA). Since no illustration of MIMO

cases are available in [12], next experiments will focus on a

MIMO benchmark without comparing with [12] but simply

our implementation of the MIMO IRKA (denoted ITIA).

2) MIMO CD player: The classical CD player model

(n = 120, nu = 2 and ny = 2) is used here. For comparison,

we apply the Balanced Truncation (BT, as implemented in

Matlab), the ITIA and the proposed ISTIA techniques. Figure

1 gathers the relative εH2
and εH∞

errors as a function of

the approximation order r.
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Fig. 1. εH2
(top) and εH∞

(bottom) relative approximation errors as a
function of the reduction order r for the MIMO CD player system [4].

With reference to Figure 1, it is clear that the proposed

ISTIA provides better εH2
results than the BT and is almost

similar to the ITIA in most of the cases. Similarly, concerning

the εH∞
error, the ISTIA provides comparable performances

with respect to the BT and is better than the ITIA. As a matter

of fact, the ITIA seems to provide a very good εH2
/ εH∞

error trade-off.

IV. APPLICATION TO AN INDUSTRIAL FLEXIBLE

AIRCRAFT MODEL & LOAD CONTROL DESIGN

A. Problem context

Aircraft weight is a crucial design parameter for consump-

tion and CO2 emission reduction. More specifically, wings

weight dimensioning is a very complex task subject to a

trade-off between Load Alleviation (LA) / Handling Qualities

(HQ). Indeed, while load alleviation should be achieved to

reduce the weight, load constraints level must be guaranteed

in order to allow for accurately control the aircraft to fulfil the

required flight quality level. Considering a flexible aircraft,

the LA / HQ trade-off is even more complex to handle due to

the closeness between flexible and rigid modes, and is thus

a very challenging task in the aircraft industry. Moreover,
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today’s available methods are not able to solve the robust

H∞ control design problem when the dimension of the

system is too large. Indeed, synthesis is easier when model

is low (i.e. n < 30). It is why, here, we first apply the

proposed reduction technique before synthesizing such a

controller through different approaches (e.g. Riccati, LMI-

based and non-smooth techniques), illustrating then the need

for accurate and robust model approximation.

B. Model description and approximation

The considered model is an industrial longitudinal aeroe-

lastic model with nu = 2 (the equivalent control surfaces and

wind disturbance) and ny = 4 (the vertical load factor, the

bending moment at the tail horizontal plan and wing/fuselage

positions, and the pitch rate). This model also includes an ac-

tuator and a von-Karman wind disturbance model. It is worth

being emphasized that approximating (and controlling) such

system is a challenging task since the model order is about

300, the conditioning number is very high and numerous

badly damped mode are present. The ISTIA (Algorithm 1)

approximation procedure is used on this industrial flexible

aircraft model, and benchmarked with respect to the BT

method. On Figure 2, the εH2
and εH∞

errors are plotted as

a function of the approximation order r.
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Fig. 2. εH2
(top) and εH∞

(bottom) relative approximation errors as a
function of the reduction order r for the MIMO Aircraft system.

Figure 2 shows that the proposed algorithm outperforms

the BT approach in term of error mismatch (εH2
) in all

situations and keep the worst-case mismatch (εH∞
) close

to the BT one. Note that here, the ITIA is not presented

due to stability issues encountered in many cases. Figure

3 compares the frequency responses and the pole locations

Method (based on Σ̂ with r = 16) γ∞ CPU [s] nc

[16]: hinfsyn (Matlab, LMI) 0.9022 2.91 20
[17]: hinfsyn (Matlab, Riccati) 0.9055 5.83 20

[18]: YALMIP with SDPT3 [19], [20] 1.2383 68.27 20
[18]: YALMIP with SeDuMi [19], [21] 1.2104 13.01 20
[22]: hinfstruct (Matlab, 3 restarts) 0.9026 3.93 20
[22]: hinfstruct (Matlab, 3 restarts) 0.9027 1.73 2

TABLE II

SYNTHESIS METHODS COMPARISON.

between the original and reduced (obtained with the ISTIA,

r = 16) systems. With reference to theses figures, is clear

that good fitting in term of frequency response and pole

location are achieved. This last point is crucial for engineers,

which are familiar with model modes physical meaning.

C. Comparison of H∞ control design methods

Finally, to illustrate the interest of the proposed model

reduction technique in a control framework, in this sub-

section we simply compare the closed-loop performances

achieved with controllers adjusted with different H∞ tuning

techniques. The synthesis problem simply consists of (i)

a load factor tracking and (ii) a wing/fuselage moment

level attenuation. For synthesis, the aircraft load factor and

wind/fuselage bending moments are considered to be mea-

sured, and the equivalent control surface is considered as

the control signal. Table II summarizes the performances

achieved by the different H∞ minimization algorithms,

where nc stands for the resulting controller order. Despite

the difference in the results, all the different method show

to successfully solve the considered problem (i.e. all con-

trollers interconnected with the original system provide good

closed-loop frequency responses). Nevertheless, the recently

developed non-smooth based approach [22] still provides

the best compromise between performance (i.e. γ∞), CPU

time and resulting controller complexity. Figure 4 shows

the frequency responses of the closed-loop including either

the reduced or original system with the controller of order

nc = 2, illustrating the fact that, by applying the controller

synthesized on the reduced order model, still provides very

satisfactory results on the original one (in term of the tracking

and bending moment objectives).

V. CONCLUSION

In this paper the medium-scale MIMO LTI approximation

problem is addressed. To handle practical problems, a simple

but effective mixed algorithm, namely ISTIA, involving the

SVD and the tangential interpolation techniques, is proposed.

The method is positively validated on both classical model

reduction benchmarks and on a complex industrial flexible

aircraft on which control techniques are designed and val-

idated (showing the consistency and the efficiency of the

ISTIA in the control framework).
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