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Abstract— Motivated by various problems such as distributed
computation and multiagent coordination, an optimal coordi-
nated resource allocation problem under dynamically changing
environment has been solved by means of a sequential, two-
stage, optimal semistable control approach. Technically we
formulate this resource allocation problem into a linear, time-
varying quadratic semistabilization problem with topologically
changing, distributed iterative algorithms for resource allo-
cation in peer-to-peer networks. To solve this problem, we
propose a novel, sequential two-stage design. The first stage
is to guarantee the convergence of the optimal policy while the

second stage is to derive the explicit recursive formulas for
optimal strategies under a finite set of convergence-guaranteed
candidate policies.

I. INTRODUCTION

Motivated by various problems such as distributed com-

putation in computer science [1], multiagent coordination in

control and automation [2], mobile sensing and detection in

defense industry [3], and resource allocation in the military

[4], we consider an optimal coordinated resource allocation

problem in ad hoc or peer-to-peer network systems. More

specifically, the objective here is to develop some optimal

strategies for a simplified optimal coordinated resource allo-

cation problem in [5].

Mathematically, this problem can be formulated into opti-

mal semistable control [6]–[9]–an optimal search algorithm

in a topologically graph-related network so that available re-

sources in different locations of the network can be relocated

via some linear, iterative laws to optimize certain cost crite-

rion. The cost functional here is defined to balance both fast

convergence of the state and relocating control effort at each

location, that is, we want to achieve the fastest convergence

of the resource allocation process by using the least effort we

need. The time-invariant optimal semistable control problem

has been solved in [6]–[9]. However, optimal semistable

control over network topologies undergoing switching or

time-dependent communication links still remains an open

problem. One may argue that this problem looks quite similar

to the classical LQR problem. However, we argue that there

are some big differences between the proposed optimal

control problem and LQR that we shall address as follows.

First, we point out that unlike the classical LQR problem,

the steady-state value of the optimal policy in our problem

is a Nash-type equilibrium [10], which implies that the
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equilibrium status depends on both initial conditions and

the choice of the optimal policy, and hence, is not fixed

and is unknown a priori. Consequently, neither can one

shift the equilibrium state to turn in into a classical LQR

problem, nor can formulate our problem into a nonzero set

point regulation or a signal tracking problem. Moreover,

the overall optimal task cannot be directly decomposed into

several optimal subtasks by use of dynamic programming

since these subtasks are generally coupled with each other

due to this nondeterministic equilibrium state.

Secondly, since we consider an optimal policy under

a dynamically changing environment, that is, the network

graph topology is not necessarily fixed, the whole problem

becomes time-dependent, which leads to a time-dependent

optimal control law. In such a scenario, generally there does

not exist a time-independent matrix transformation to convert

the problem into quotation space to discuss its solution,

which however, is quite common for the time-invariant case

[11], [12].

Thus, all the existing methods cannot be applied to our

proposed problem. In this paper, we propose a new, sequen-

tial two-stage approach to obtain a set of optimal solutions

for the proposed optimization problem by decoupling the

intrinsic link between Nash-type equilibria and designed

update laws. More specifically, in the first stage we guarantee

the convergence of the state to its equilibrium by restricting

the designed update law into a set of candidate update laws

after certain time instant. This restriction is natural since

network resource is always limited for resource allocation.

Then in the next stage we solve the optimization problem

by using the equilibrium obtained in the first stage and a

sequential optimization technique.

II. PROBLEM FORMULATION

In this section, first we introduce the notation we use in

this paper. Specifically, R denotes the set of real numbers,

Rn denotes the set of n-dimensional real vectors, Rm×n

denotes the set of m by n real matrices, Z+ denotes the

set of nonnegative integers, Z+ denotes the set of positive

integers, and ‖ · ‖ denotes the Euclidean vector norm or the

induced 2-norm of a matrix. Furthermore, for A ∈ Rm×n,

A(i,j) denotes the (i, j)th entry of A, R(A) denotes the range

space of A, N (A) denotes the null space of A, and rank(A)
denotes the rank of A. Finally, for A ∈ Rn×n, spec(A)
denotes the spectrum of A, ρ(A) denotes the spectrum radius

of A, and A# denotes the group inverse of A1.

1For A ∈ Rn×n, the group inverse is a matrix X ∈ Rn×n satisfying
XAX = X, AX = XA, and AXA = A.
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An ad hoc network is characterized by a strongly con-

nected digraph G = (V , E) consisting of the set of nodes

V = {1, . . . , q} and the set of edges E ⊆ V ×V , where each

edge (i, j) ∈ E is an ordered pair of distinct nodes. The set of

neighbors of node i is denoted by Ni = {j ∈ V : (i, j) ∈ E}.

Finally, we denote the value of the node i ∈ {1, . . . , q} at

time t by xi(t) ∈ R.

In this paper, we consider distributed linear iterations given

by the form

xi(t + 1) = W(i,i)(t + 1)xi(t) +
∑

j∈Ni

W(i,j)(t + 1)xj(t),

xi(0) = xi0, i = 1, . . . , q, t ∈ Z+, (1)

where W(i,j) : Z+ → R denotes the weight on xj at node

i. Letting W(i,j)(·) = 0 for j 6= Ni, this iteration can be

rewritten as a compact form

x(t + 1) = W (t + 1)x(t), x(0) = x0, t ∈ Z+, (2)

where x(t) = [x1(t), . . . , xq(t)]
T ∈ Rq . The constraint

on the matrix W : Z+ → Rq×q can be expressed as

W (·) ∈ W , where W = {W ∈ Rq×q : W(i,j) = 0 if (i, j) 6∈
E and i 6= j}. In this paper, we relax this restriction on W by

considering all possible topological graphs, not necessarily

some predetermined connected ones.

The aim of this paper is to design the weight matrix W (·)
so that for any initial value x0, limt→∞ x(t) = xe, xe 6= 0,

xe 6= x0, and the cost functional

JN =

N
∑

t=0

[(x(t) − xe)
TQ(t)(x(t) − xe)

+(x(t + 1) − xe)
TR(t + 1)(x(t + 1) − xe)] (3)

is minimized, where N ≥ 1 is a given positive integer,

Q(t) = QT(t) > 0, and R(t + 1) = RT(t + 1) > 0,

t ∈ {0, . . . , N}. Here xe can be viewed as a generalized

Nash equilibrium [10].

The constant matrix case where W (t+1) ≡ W , Q(t) ≡ Q,

and R(t + 1) ≡ R has been solved in [6], [7]. In this case,

the property that x(t) = W tx(0) has been heavily used

to simplify the form of the cost functional. Unfortunately,

this property is not true for the time-varying case. Hence,

it is quite challenging to solve the time-varying matrix case

given by (2) and (3). In this paper, we propose a sequential

two-stage approach to obtain a set of optimal solutions

for this optimization problem by decoupling the intrinsic

link between generalized Nash equilibria and W (·). More

specifically, in the first stage we guarantee the convergence

constraint limt→∞ x(t) = xe by restricting W (·) into a set

of special matrices after the time instant t ≥ N + 1. This

restriction is natural since network resource is always limited

for resource allocation. Then in the next stage we solve the

minimization of JN over the finite horizon {0, 1, . . . , N} in

a sequential way. The key difficulty here is that xe is not a

fixed point, but a function of W (·), depending on the choices

of the sequence {W (t)}∞t=1 and x(0).
It is important to note that we do not assume W (·) is a

stochastic or nonnegative matrix [13]. Hence, many prevalent

methods based on nonnegative matrix theory cannot be used

to solve our problem. Here we use the recently developed

semistability theory for linear time-invariant systems [14]

and switched linear systems [15] to obtain the convergence

result for W (·) in the first stage.

III. THE FIRST STAGE: CONVERGENCE

In this section, we first introduce the notion of discrete-

time semistability [14], [16] which is needed in the paper.

Definition 3.1: A matrix A ∈ Rq×q is called discrete-time

semistable if spec(A) ⊆ {s ∈ C : |s| < 1} ∪ {1}, and if

1 ∈ spec(A), then 1 is semisimple. A matrix A ∈ Rq×q is

called nontrivially discrete-time semistable if A is semistable

and A 6= Iq .

Since a nontrivially discrete-time matrix is a discrete-

time matrix, all the properties for discrete-time semistable

matrices hold for nontrivially discrete-time matrices. Note

that the notion of semistable matrices is much weaker than

the notion of stochastic matrices [1], [2], [17] in the literature

since no nonnegativity constraint is required for the elements

of a semistable matrix. There are a lot of useful properties

of discrete-time semistable matrices [14], [16]. In particular,

we have the following two results.

Lemma 3.1 ([14]): If W ∈ R
q×q is discrete-time

semistable, then Iq−W is group invertible, that is, (Iq−W )#

exists. Alternatively, W is discrete-time semistable if and

only if limk→∞ W k exists. Furthermore, if W is discrete-

time semistable, then limk→∞ W k = Iq − (Iq − W )(Iq −
W )#.

Lemma 3.2 ([14]): If W ∈ Rq×q is discrete-time

semistable, then N (Iq −W ) = R(Iq − (Iq −W )(Iq −W )#)
and R(Iq − W ) = N (Iq − (Iq − W )(Iq − W )#).

The next result gives a necessary and sufficient condition

to characterize discrete-time semistable matrices using eigen-

vectors.

Lemma 3.3: Let W 6= Iq . Then W ∈ Rq×q is discrete-

time semistable if and only if for any x ∈ Rq , Wx 6= x is

equivalent to ‖Wx‖ < ‖x‖.

Alternatively, we have additional necessary and suffi-

cient conditions to guarantee a matrix to be discrete-time

semistable. To state this result, first, we need the following

technical lemma.

Lemma 3.4: Assume A, B ∈ Rq×q are both idempotent

matrices. If R(A) ⊆ R(B) and N (A) ⊆ N (B), then A =
B.

Now we present a necessary and sufficient condition in

terms of null and range spaces for a discrete-time semistable

matrix.

Proposition 3.1: For any x ∈ Rq , there exists a unit vector

α ∈ Rq such that limt→∞ W tx = ααTx if and only if W
is discrete-time semistable, R(W − Iq) ⊆ N (ααT), and

N (W − Iq) ⊆ R(ααT).
Proposition 3.1 states a relationship between the limiting

state of (2), that is, limt→∞ x(t) = xe and the constant

discrete-time semistable matrix W (t) = W . This result can

be used to design the desired steady-state pattern ααT for

the constant iteration x(t + 1) = Wx(t) by focusing on
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the null and range spaces of W − Iq . Note that if α =
(1/

√
q)[1, . . . , 1]T, then Proposition 3.1 becomes agreement

algorithms [1] or linear averaging [18] in distributed systems

and consensus [2] in multiagent coordination.

Let M1, . . . , Mn be finite, nontrivially discrete-time

semistable matrices that are nonzero and mutually different

and let M = {M1, . . . , Mn}. From now on, we make the

following standing assumption as our design requirement in

the paper.

Assumption 3.1: There exist T ∈ Z+ and K ∈ Z+ such

that
∏K

k=1 W (T + nK − k) ∈ M for every n ∈ Z+.

Assumption 3.1 is related to the notion of joint spectral

radius [19]. Specifically, Assumption 3.1 assumes that the

joint spectral radius of
∏K

k=1 W (T + nK − k) has an upper

bound less than or equal to 1 for every n ≥ 1. Note that

T is not specified here. In fact, T needs to be designed in

this paper. By introducing this T , we relax the restriction

on W so that each W need not be a nontrivially discrete-

time semistable matrix at every instant of time to guarantee

the convergence of (2) as in [20], but the combination of

series of matrices over a time range needs be nontrivially

discrete-time semistable. Such a weaker assumption is widely

adopted in distributed systems [1], [21] as well as multiagent

coordination [2].

Let I denote the index set of nontrivially discrete-time

semistable matrices Mi that appear infinitely often in the se-

quence {∏K

k=1 W (T +nK−k)}∞n=1. Define Li = Iq−(Iq−
Mi)(Iq−Mi)

# for every i = 1, . . . , n. Clearly, L2
i = Li, that

is, Li is a projection for every i = 1, . . . , n. Assumption 3.1

itself is not enough to guarantee the convergence of (2). The

following assumption provides additional requirements on

the null space and boundedness of each W (t), t ≥ T .

Assumption 3.2:
⋂

i∈I
N (Iq − Mi) ⊆ N (W (t)) and

W (t) is bounded for all t ≥ T .

The following result is the main convergence result for (2)

with weak conclusions.

Theorem 3.1: Consider (2). Assume that Assumptions 3.1

and 3.2 hold. Then for any x0 ∈ Rq, limt→∞ x(t) = x∞ ∈
⋂

i∈I
N (Iq − Mi) =

⋂

i∈I
R(Li).

Theorem 3.1 is a general but weak result about the con-

vergence of (2) which is not easy to be used in our problem.

This is due to the fact that there is no strong relationship

between x∞ and Mi although x∞ ∈ ⋂

i∈I
N (Iq−Mi) gives

a soft connection. To explore a stronger result, let M =
⋂n

i=1 N (Iq − Mi), M c = span{R(Iq − Mi) : 1 ≤ i ≤ n},

and PM,Mc be the projection on M along M c. The following

recurrence assumption is used to further characterize the

structure of
⋂

i∈I
R(Li) in Theorem 3.1.

Assumption 3.3: Each matrix Mi in M appears infinitely

often in the sequence {∏K

k=1 W (T + nK − k)}∞n=1.

Under this assumption,
⋂

i∈I
R(Li) can be simplified into

a projection.

Theorem 3.2: Consider (2). Assume that Assumptions

3.1–3.3 hold. Then x∞ = PM,Mcx(T − 1) =

PM,Mc [
∏T−1

k=1 W (T − k)]x0.

For the case where each W (t), t ≥ T , is a constant

nontrivially discrete-time semistable matrix, we end up with

the known result.

Corollary 3.1: Consider (2). Assume that Assumption 3.1

holds with n = 1 and K = 1. Then x∞ = L1x(T − 1) =
L1[

∏T−1
k=1 W (T − k)]x0.

To explicitly derive an optimal matrix sequence

{W (t)}∞t=1, a clear relationship between x∞ and W (t) is

needed. However, PM,Mc in Theorem 3.2 is still not very

convenient due to its implicit connection with M . Next,

we introduce the following assumption to overcome this

difficulty.

Assumption 3.4: There exists j ∈ {1, . . . , n} such that

M = N (Iq − Mj) and N (Iq − Mj) ∩R(Iq − Mj) = {0}.

Using Assumption 3.4, one can alleviate the complexity

of PM,Mc in Theorem 3.2 by a much simpler form, which

will be given in Theorem 3.3. At the same time, this

simplified problem is still quite challenging without losing

its physical and technical significance. Before proceeding,

next, we give three sufficient conditions to guarantee that

N (Iq −Mj)∩R(Iq −Mj) = {0} so that Assumption 3.4 is

technically feasible. To state these results, however, we need

the following definition first.

Definition 3.2 ([6], [9], [14]): Let A ∈ Rq×q and

C ∈ R
l×q . The pair (A, C) is semiobservable if

⋂q

i=1 N
(

C(Iq − A)i−1
)

= N (Iq − A). The pair (A, C) is

weakly semiobservable if
⋂q

i=1 N
(

C(Iq − A)i
)

= N (Iq −
A).

Semiobservability and weak semiobservability are exten-

sions of observability and detectability. In particular, semiob-

servability is an extension of zero-state observability to

equilibrium observability, whereas weak semiobservability is

an extension of detectability to equilibrium detectability. The

following two results give sufficient conditions to guarantee

N (Iq − Mj) ∩R(Iq − Mj) = {0}.

Lemma 3.5 ([14]): Let A ∈ Rq×q . If there exist a q × q
matrix P ≥ 0 and an l × q matrix C such that (A, C) is

semiobservable and P = ATPA + R, where R , CTC,

then N (Iq − A) ∩R(Iq − A) = {0}.

Lemma 3.6 ([9]): Let A ∈ Rq×q . If there exist a q × q
matrix P ≥ 0 and an l × q matrix C such that (A, C) is

weakly semiobservable and (Iq − A)TP (Iq − A) = (Iq −
A)T(ATPA + R)(Iq − A), where R , CTC, then N (Iq −
A) ∩R(Iq − A) = {0}.

Theorem 3.3: Consider (2). Assume that Assumptions

3.1–3.4 hold. Then x∞ = Ljx(T − 1) = Lj [
∏T−1

k=1 W (T −
k)]x0.

To illustrate Theorem 3.3, we provide the following exam-

ple to end the discussion on convergence part of the design.

Example 3.1: Consider (2) with

W (t + 1) =
1

8

[

6 + (−1)t 2 − (−1)t

2 − (−1)t 6 + (−1)t

]

. (4)

Clearly, W (t + 1) ∈ {M1, M2} for all t ∈ Z+, where

M1 =
1

8

[

7 1
1 7

]

, M2 =
1

8

[

5 3
3 5

]

. (5)

Moreover, M1 and M2 are nontrivially discrete-time

semistable. Note that N (I2 − Mi) = {α[1, 1]T : α ∈ R}
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and N (I2 − Mi) ∩ R(I2 − Mi) = {0} for every i = 1, 2.

Hence, Assumptions 3.1–3.4 hold with K = T = 1. Now

it follows from Theorem 3.3 that lim∞ x(t) = Lix(0) for

every i = 1, 2, where L1 = L2 = 1
2

[

1 1
1 1

]

.

IV. THE SECOND STAGE: OPTIMALITY

In this section, we derive explicit necessary conditions

for optimality. The most famous optimality technique is

the Bellman principle or dynamic programming [22]. In

this method, the minimization of JN can be viewed as an

N + 1-step decision process in which the N + 1 decisions

W (1), W (2), . . . , W (N + 1) are to be made such that the

given quadratic cost functional (3) is minimized. Rather than

attempting to make the N + 1 decisions simultaneously, it

would be desirable to develop a procedure for making the

decisions one at a time, that is, to reduce the N + 1 step

problem to N + 1 one-step problems [23], [24].

However, this idea is generally not valid in this problem

due to the fact that these N+1 one-step problems are coupled

with each other. For example, at each step, x∞ is not a fixed

point, but a function of the sequence {W (t)}∞t=1 and the

initial value x(0). Hence, one cannot simply treat the steady-

state value as constant and use the dynamic programming to

obtain the optimal solution.

Our idea here is to weaken this coupling by taking x∞ to

be a function of {W (t)}∞t=T , where T > N . In this case, we

can take the N+1 decisions sequentially. Here we consider a

simplified two-substage optimal policy process, that is, T =
N + 1 and T = N + 2. The case where T ≥ N + 3 can be

discussed in a similar way as T = N + 1 and T = N + 2.

Hence, without loss of generality, we assume T = N + 1 or

T = N + 2.

A. Single-Step

We begin by assuming that Assumptions 3.1–3.4 hold.

Define

V1 = min
W (N+1)

[(W (N + 1)x(N) − x∞)T

R(N + 1)(W (N + 1)x(N) − x∞)

+(x(N) − x∞)TQ(N)(x(N) − x∞)]. (6)

Next, we consider two choices on T , that is, T = N +1 and

T = N + 2.

Case 1. T = N + 1.

Under such a circumstance, it follows from Theorem 3.3

that x∞ = Ljx(N) for some j ∈ {1, . . . , n}. In this case,

V1 = min
W (N+1)

[xT(N)(W (N + 1) − Lj)
TR(N + 1)

×(W (N + 1) − Lj)x(N) + xT(N)(Iq − Lj)
T

×Q(N)(Iq − Lj)x(N)]. (7)

Hence, if we drop the time index, then V1 can be written as

V1 = min
W

[xT(W − Lj)
TR(W − Lj)x

+xT(Iq − Lj)
TQ(Iq − Lj)x]

= xT(Iq − Lj)
TQ(Iq − Lj)x. (8)

Thus,

Wmin(N + 1) = Lj. (9)

Case 2. T = N + 2.

For the case where T = N + 2, it follows from Theo-

rem 3.3 that x∞ = Ljx(N + 1) = LjW (N + 1)x(N) for

some j ∈ {1, . . . , n}. In this case,

V1 = min
W (N+1)

[xT(N)WT(N + 1)(Iq − Lj)
T

R(N + 1)(Iq − Lj)W (N + 1)x(N)

+xT(N)(Iq − LjW (N + 1))TQ(N)

(Iq − LjW (N + 1))x(N)]. (10)

Hence, if we drop the time index, then V1 can be written as

V1 = min
W

[xTWT(Iq − Lj)
TR(Iq − Lj)Wx

+xT(Iq − LjW )TQ(Iq − LjW )x]. (11)

Lemma 4.1: Consider V1 given by (11). Then (Iq −
Lj)

TR(Iq − Lj) + LT
j QLj > 0 and

Wmin = arg V1

= [(Iq − Lj)
TR(Iq − Lj) + LT

j QLj]
−1LT

j Q.

Thus,

Wmin(N + 1) = [(Iq − Lj)
TR(N + 1)(Iq − Lj)

+LT
j Q(N)Lj ]

−1LT
j Q(N). (12)

Note that in both cases, V1 can be rewritten as

V1 = xT(N)WT
min(N + 1)(Iq − Lj)

T

R(N + 1)(Iq − Lj)Wmin(N + 1)x(N)

+xT(N)(Iq − LjWmin(N + 1))TQ(N)

(Iq − LjWmin(N + 1))x(N). (13)

Defining

L(N + 1) = Lj , (14)

S(N + 1) = (Iq − L(N + 1))TR(N + 1)

(Iq − L(N + 1)), (15)

U(N + 1) = 0, (16)

U(N) = WT
min(N + 1)S(N + 1)Wmin(N + 1)

+(Iq − L(N + 1)Wmin(N + 1))TQ(N)

(Iq − L(N + 1)Wmin(N + 1)), (17)

we have

Wmin(N + 1) =






L(N + 1), T = N + 1,
[S(N + 1) + LT(N + 1)Q(N)
L(N + 1)]−1LT(N + 1)Q(N), T = N + 2.

(18)

and V1 = xT(N)U(N)x(N).
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B. Double-Step

Now we turn to the question of optimal policy for a two-

step process. Define

V2 = min
W (N)

min
W (N+1)

{[(W (N)x(N − 1) − x∞)T

R(N)(W (N)x(N − 1) − x∞)

+(x(N − 1) − x∞)TQ(N − 1)(x(N − 1) − x∞)]

+[(W (N + 1)x(N) − x∞)TR(N + 1)

(W (N + 1)x(N) − x∞) + (x(N) − x∞)T

Q(N)(x(N) − x∞)]}. (19)

Then it follows from the principle of dynamic programming

that

V2 = min
W (N)

{[(W (N)x(N − 1) − x∞)T

R(N)(W (N)x(N − 1) − x∞)

+(x(N − 1) − x∞)TQ(N − 1)

(x(N − 1) − x∞)] + V1}. (20)

Case 1. T = N + 1.

Define L(N) = Lj = L(N + 1)Wmin(N + 1). Since

V1 = xT(N − 1)WT(N)U(N)W (N)x(N − 1) and x∞ =
Ljx(N) = L(N)W (N)x(N − 1), it follows that

V2 = min
W (N)

{[xT(N − 1)WT(N)(Iq − L(N))T

R(N)(Iq − L(N))W (N)x(N − 1)

+xT(N − 1)[Iq − L(N)W (N)]Q(N − 1)

[Iq − L(N)W (N)]x(N − 1)]

+xT(N − 1)WT(N)U(N)W (N)x(N − 1)}
= min

W (N)
{[xT(N − 1)WT(N)S(N)W (N)x(N − 1)

+xT(N − 1)[Iq − L(N)W (N)]Q(N − 1)

[Iq − L(N)W (N)]x(N − 1)]}, (21)

where we defined S(N) = U(N)+(Iq−L(N))TR(N)(Iq−
L(N)).

Hence, if we drop the time index, then V2 can be rewritten

as

V2 = min
W

{xTWTSWx

+xT(Iq − LW )Q(Iq − LW )x}. (22)

Lemma 4.2: Consider V2 given by (22). Then S +
LTQL > 0 and

Wmin = arg V2 = [S + LTQL]−1LTQ.
Thus,

Wmin(N) = [S(N) + LT(N)Q(N − 1)L(N)]−1

LT(N)Q(N − 1). (23)

Case 2. T = N + 2.

Define L(N) = LjWmin(N+1) = L(N+1)Wmin(N+1).
Then x∞ = Ljx(N + 1) = L(N)W (N)x(N − 1). In this

case, V2 is given by the same form as (21) and Wmin(N)

is given by the same form as (23). Finally, we have V2 =
xT(N − 1)U(N − 1)x(N − 1), where

U(N − 1) = WT
min(N)S(N)Wmin(N)

+(Iq − L(N)Wmin(N))TQ(N − 1)

(Iq − L(N)Wmin(N)). (24)

C. m − 1 Steps

We derive the general formula by using mathematical

induction. Consider the optimal policy at time N − m + 1
for a process involving m − 1 steps for m ≥ 3. Define

L(N − m + 2) = L(N − m + 3)Wmin(N − m + 3).
Then for both T = N + 1 and T = N + 2, we have

x∞ = L(N − m + 2)W (N − m + 2)x(N − m + 1). Thus,

by mathematical induction, one can assume that the optimal

policy is characterized by a set of coupled recursive equations

Wmin(N − m + 2) =

[S(N − m + 2) + LT(N − m + 2)

Q(N − m + 1)L(N − m + 2)]−1

LT(N − m + 2)Q(N − m + 1), (25)

S(N − m + 2) =

U(N − m + 2) + (Iq − L(N − m + 2))T

R(N − m + 2)(Iq − L(N − m + 2)), (26)

U(N − m + 1) =

WT
min(N − m + 2)S(N − m + 2)Wmin(N − m + 2)

+(Iq − L(N − m + 2)Wmin(N − m + 2))T

Q(N − m + 1)

(Iq − L(N − m + 2)Wmin(N − m + 2)), (27)

Vm−1 =

xT(N − m + 1)U(N − m + 1)x(N − m + 1). (28)

D. m Steps

Now we need to prove that for m steps of optimal policy,

we should have the similar forms as the case of m− 1 steps

except for the time index. For m steps of optimal policy, it

follows from the Bellman principle that

Vm = min
W (N−m+1)

{[(W (N − m + 1)x(N − m) − x∞)T

R(N − m + 1)(W (N − m + 1)x(N − m)

−x∞) + (x(N − m) − x∞)TQ(N − m)

(x(N − m) − x∞)] + Vm−1}
= min

W (N−m+1)
{[xT(N − m)WT(N − m + 1)

(Iq − L(N − m + 1))TR(N − m + 1)

(Iq − L(N − m + 1))W (N − m + 1)x(N − m)

+xT(N − m)[Iq − L(N − m + 1)

W (N − m + 1)]Q(N − m)[Iq − L(N − m + 1)

W (N − m + 1)]x(N − m)] + xT(N − m)

WT(N − m + 1)U(N − m + 1)

W (N − m + 1)x(N − m)}
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= min
W (N−m+1)

{[xT(N − m)WT(N − m + 1)

S(N − m + 1)W (N − m + 1)x(N − m)

+xT(N − m)[Iq − L(N − m + 1)

W (N − m + 1)]Q(N − m)[Iq − L(N − m + 1)

W (N − m + 1)]x(N − m)]}, (29)

where

S(N − m + 1) = U(N − m + 1)

+(Iq − L(N − m + 1))T

R(N − m + 1)(Iq − L(N − m + 1)), (30)

L(N − m + 1) = L(N − m + 2)

Wmin(N − m + 2). (31)

Hence, this case is identical to the double-step case. Using

the similar arguments, one can obtain

Wmin(N − m + 1) =

[S(N − m + 1) + LT(N − m + 1)

Q(N − m)L(N − m + 1)]−1

LT(N − m + 1)Q(N − m), (32)

U(N − m) =

WT
min(N − m + 1)S(N − m + 1)Wmin(N − m + 1)

+(Iq − L(N − m + 1)Wmin(N − m + 1))T

Q(N − m)(Iq − L(N − m + 1)Wmin(N − m + 1)),

(33)

Vm = xT(N − m)U(N − m)x(N − m). (34)

Thus, by mathematical induction, we have the following

result for optimality.

Theorem 4.1: Assume that Assumptions 3.1–3.4 hold.

Then for k = N, N − 1, . . . , 1, the optimal policy for (2)

is given by (14)–(16), (18), and

Wmin(k) = [S(k) + LT(k)Q(k − 1)

L(k)]−1LT(k)Q(k − 1), (35)

S(k) = U(k) + (Iq − L(k))TR(k)(Iq − L(k)), (36)

L(k) = L(k + 1)Wmin(k + 1), (37)

U(k) = WT
min(k + 1)S(k + 1)Wmin(k + 1)

+(Iq − L(k + 1)Wmin(k + 1))T

Q(k)(Iq − L(k + 1)Wmin(k + 1)). (38)
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