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Abstract— Robust L2−L∞ consensus control is studied for the
second-order multi-agent systems with external disturbances
and parameter uncertainties. By defining an appropriate con-
trolled output, the consensus problem of the systems is trans-
formed into a normal L2−L∞ control problem, and distributed
state feedback protocols with time-delay are proposed. Suffi-
cient conditions are established for the convergence to consensus
of the network under fixed or switching topology. Numerical
simulations are provided to demonstrate the effectiveness of our
theoretical results.

I. INTRODUCTION

Coordination control of a group of agents has received

compelling attentions within the control community. Its

broad applications involve satellite clusters [1], unmanned air

vehicles [2], formation control [3], distributed sensor network

[4], rendezvous in space [5] and so forth. As one of the most

important issues in the coordination control, consensus for

the multi-agent systems means that all the agents could reach

an agreement on certain quantities of interest by employing

the appropriate control protocols based on local information.

In the past decades, consensus problems for multi-agent

system have been studied by many researchers [6]-[15].

However, the multi-agent systems are often subject to ex-

ternal disturbances and parameter uncertainties in practical

applications, such as actuator bias, measurement or calcula-

tion errors and the variation of communication links, which

might usually destroy the convergence performance of multi-

agent systems. For such cases, several research has been

done. For example, Ren considered the actuator saturation

that might cause time-delay or uncertainties and proposed

several consensus algorithms for second-order multi-agent

systems in the absence or presence of a group reference

velocity, respectively [12]. In [13], Lin et al. introduced H∞

method into the consensus problem of multi-agent systems
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with external disturbances and parameter uncertainties for

directed networks with zero and nonzero time-delay on fixed

and switching topologies. In [15], Liu et al. designed the H∞

controller and obtained consensus condition with the desired

performance to impair the external disturbances for the multi-

agent system with first-order, second-order, high-order and

linear coupling dynamics. [13] and [15] both employed the

H∞ control method to attenuate the external disturbance

signal. Whereas, the peak value of the controlled output in

many projects is required to be within a certain range, when

the impact of external disturbances and time-delays to the

performance of the system is taken into account. Here we try

to solve these problem by L2 −L∞ control method. L2 −L∞

control not only resembles H∞ control that can attenuate the

external disturbance signal but also minimizes the controlled

output value for a multi-agent system.

In this paper, the L2 − L∞ control method is adopted to

solve the consensus problem of second-order multi-agent

systems with external disturbances and parameter uncertain-

ties in presence of time-delay. By defining an appropriate

controlled output, the consensus problem of multi-agent

systems is transformed into the L2 − L∞ control problem.

In doing the analysis, we turn the original system with a

singular Laplacian matrix into a reduced order system that

can be stabilized. Then we derive sufficient conditions in

terms of bilinear matrix inequalities (BMIs) with the desired

L2 −L∞ performance.

Throughout this paper, 1n denotes the column vector of

n dimension whose elements are all ones. ∗ denotes the

symmetric part of a symmetric matrix. diag{m1, · · · ,mn}
denotes a block-diagonal matrix whose diagonal blocks are

given by m1, · · · ,mn. The symmetric matrix X > 0 means that

X is positive definite.

II. PRELIMINARIES

Let G = (V ,ε,A ) be a directed graph of order n with

the set of nodes V = {s1, · · · ,sn}, set of edges ε ⊆ V ×V ,

and a weighted adjacency matrix A = [ai j] with nonnegtive

adjacency elements ai j. The node indexes belong to a finite

index set I = {1,2, · · · ,n}. In particular, it is assumed that

aii = 0 for ∀i ∈ I . In graph G , node si represents the ith

agent, and the set of neighbors of node si is denoted by Ni =
{s j ∈ V : (si,s j) ∈ ε}. The out-degree is defined as do(si) =

∑n
j=1 ai j. The Laplacian with the directed graph is defined

as L = ∆−A , where ∆ = [∆i j] is a diagonal matrix with

∆ii = do(si). A directed path is a sequence of ordered edges

of the form (si1 ,si2),(si2 ,si3), · · · , where si j
∈ V . If there is

a directed path from every node to every other node, the
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graph is said to be strongly connected. Moreover, if there

exists a node such that there is a directed path from every

other node to this node, the directed graph is said to have

spanning trees.

Lemma 1: [10] Let L be the Laplacian associated with the

directed graph G . Then L has at least one zero eigenvalue

and all of the nonzero eigenvalues are in the open right-half

plane. Furthermore, matrix L has exactly one zero eigenvalue

if and only if the directed graph G has a spanning tree, and

1n is the corresponding eigenvector, i.e., L1n = 0.

Lemma 2: [13] Given the symmetry matrix Lc =
[Lci j

]ni, j=1 ∈ R
n×n,

Lci j
=











n−1

n
, i = j,

−1

n
, i 6= j,

then the following statements hold:

1) The eigenvalues of Lc are 1 with multiplicity n−1 and 0

with multiplicity 1. The vectors 1T
n and 1n are the left and the

right eigenvectors of Lc associated with the zero eigenvalue,

respectively.

2) There must exist an orthogonal matrix U such that

UT LcU =
[

In−1 0

∗ 0

]

and the last column is
1n√

n
. Furthermore,

let L ∈ R
n×n be the Laplacian of any directed graph, then

UT LU =
[ L̄ 0

UT
2 LU1 0

]

, where L̄ = UT
1 LU1 and L̄ ∈ R

n×(n−1).

For convenience, we denote U = [U1 U2], U1 ∈ R
n×(n−1)

and U2 =
1n√

n
∈ R

n×1.

III. CONTROL PROTOCOL AND SYSTEM

DYNAMICS

A. L2 −L∞ control and problem statement

We consider the multi-agent system consisting of n iden-

tical agents subject to external disturbances. Suppose the ith

agent (i ∈ I ) has the dynamics

ẋi(t) =vi(t),

v̇i(t) =ui(t)+ωi(t),
(1)

where xi(t) ∈ R and vi(t) ∈ R are the position and velocity

state of the ith agent, respectively. ωi(t) ∈ L2[0,∞) is the

external disturbance and L2[0,∞) denotes the space of

square integrable vector functions over [0,∞), and ui(t) is

control input.

According to the special control objective, zi(t) =
[zi1(t) zi2(t)]

T ∈R
2 for i ∈I is defined as controlled output

functions, and it is appropriate to analyze the effect of

external disturbances and parameter uncertainties.

zi1(t) =xi(t)−
1

n

n

∑
j=1

x j(t),

zi2(t) =vi(t)−
1

n

n

∑
j=1

v j(t),

(2)

and z(t) = [zT
1 (t),z

T
2 (t), · · · ,zT

n (t)]
T ∈ R

2n, i = 1,2, . . . ,n.

It is obvious that consensus of the second-order

multi-agent system (1) can be achieved if and only if

limt→+∞ z(t) = 0, i.e.

lim
t→+∞

[xi(t)− x j(t)] = 0, lim
t→+∞

[vi(t)− v j(t)] = 0, (3)

for all i, j ∈ I .

And the attenuating ability of the multi-agent system

against external disturbances can be quantitatively measured

by the L2−L∞ performance index of the closed-loop transfer

function matrix from the external disturbance input ω(t) to

the controlled output z(t) shown as

‖Tzω‖L2−L∞ = sup
0 6=ω(t)∈L2[0,∞)

‖z(t)‖∞

‖ω(t)‖2
, (4)

where, ‖z(t)‖2
∞ = sup

t
zT (t)z(t), ‖ω(t)‖2

2 =
∫ ∞

0
ωT (t)ω(t)dt.

Therefore we should design the protocol ui(t) meeting the

following two conditions simultaneously:

1). The states of second-order multi-agent system is

asymptotically stable, i.e. limt→+∞ z(t) = 0, without external

disturbances;

2). Under the zero-valued initial state condition, ui(t)
can make the closed-loop transfer function Tzω satisfy the

following condition

‖Tzω‖L2−L∞ < γ , (5)

here γ is a given positive scalar.

B. Control Protocol and System Dynamics

To solve consensus problem of the second-order multi-

agent system, we design the following protocol

ui(t) =− vi(t)+K1 ∑
j∈Ni

(ai j +∆ai j(t))[x j(t − τ)− xi(t − τ)]

+K2 ∑
j∈Ni

(ai j +∆ai j(t))[v j(t − τ)− vi(t − τ)]

(6)

where K1 > 0, K2 > 0 are protocol parameters and τ is

time-delay. ai j is the weight of edge, ∆ai j(t) denotes the

uncertainty of ai j with |∆ai j(t)| ≤ ψi j for i 6= j and ai j 6= 0,

and |∆ai j(t)| = 0 otherwise, where ψi j is a constant for

i, j ∈ I .

In the multi-agent system (1), denote

η(t) = [x1(t),v1(t), . . . ,xn(t),vn(t)]
T ∈ R2n,

A =

[

0 1

0 −1

]

,

B1 =

[

0 0

K1 K2

]

, B2 =

[

0

1

]

.

Then we can get the second-order multi-agent system

dynamics of time-delay with protocol (6)

η̇(t) =(In ⊗A)η(t)− [(L+∆L)⊗B1]η(t − τ)+(In ⊗B2)ω(t)

z(t) =(Lc ⊗ I2)η(t)
(7)

where ω(t) = [ω1(t) ω2(t) . . .ωn(t)]
T ∈R

n, the edge weights

ai j and the uncertainties ∆ai j(t)(i, j ∈ I ) are denoted by
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the corresponding Laplacian matrix L and ∆L, respectively.

Then the uncertainty Laplacian matrix ∆L can be rewritten as

E1Σ(t)E2, where E1 ∈R
n×|ε |, E2 ∈R

|ε |×n are the determined

constant matrices. Σ(t) ∈ R
|ε |×|ε | reflects the uncertainties

of the edges and satisfies ΣT (t)Σ(t) ≤ I, see, [14], and the

references therein.

IV. MAIN RESULTS

In the section, we will present consensus conditions in

directed networks with time-delay on fixed and switching

topologies.

Lemma 3: [16] For any real matrices D∈R
n×m, E ∈R

m×n

with F(t) ∈R
m×m satisfying ‖F(t)‖ ≤ 1, and any scalar ε >

0, we have

DF(t)E +ET F(t)T DT ≤ ε−1DDT + εET E

Lemma 4: [17] (Schur Complement Formula) Given sym-

metric matrix S ∈ R
n×n with the form S = [Si j], i, j ∈ {1,2},

S11 ∈R
r×r, S12 ∈R

r×(n−r), S22 ∈R
(n−r)×(n−r), then S < 0 if

and only if S11 < 0, S22 −ST
12S−1

11 S12 < 0. Or equivalently,

S22 < 0, S11 −S12S−1
22 ST

12 < 0.

A. Network with time-delay on fixed topology

Theorem 1: Consider a directed network with fixed topol-

ogy and time-delay τ . For the multi-agent system(7), con-

sensus can be achieved with ‖Tzω‖L2−L∞ < γ (a given index

γ > 0), if the symmetry matrix P > 0, Q > 0, R > 0 and

P, Q, R ∈ R
2(n−1)×2(n−1) and positive scalars ε1, ε2, ε3, ε4,

ε5, ε6 satisfy

X =

[

X11 X12

∗ X22

]

<0,

[

−P (U1 ⊗ I2)
T

∗ −γI

]

<0,

(8)

where X11, X12, X22 respectively are (see(9))

here L̄ = UT
1 LU1, Ē2 = (UT

1 ET
2 E2U1)⊗ I2, B̄2 = UT

1 ⊗ B2,

P1 = P(In−1 ⊗ A − L̄ ⊗ B1) + (In−1 ⊗ A − L̄ ⊗ B1)
T P + Q +

τ(In−1 ⊗ A)T R(In−1 ⊗ A), and Q1 = −Q + ε1Ē2 + τε2Ē2 +
τε3(L̄⊗B1)

T (L̄⊗B1)+ τε4Ē2 + τε5Ē2 + τε6Ē2.

Proof: Since the Laplacian matrix L has zero eigenvalues,

it can be verified that the system (7) is unstable if A

is an unstable matrix. So we need to conduct a model

transformation.

Let

η̂(t) =η(t)−1n ⊗Ω(t),

Ω(t) =
1

n

n

∑
i=1

∫ t

0
eA(t−s)B2ωi(s)ds,

η̂1(t) =(U1 ⊗ I2)
T η̂(t), η̂1(t − τ) = (U1 ⊗ I2)

T η̂(t − τ),

η̂2(t) =(U2 ⊗ I2)
T η̂(t), η̂2(t − τ) = (U2 ⊗ I2)

T η̂(t − τ),
(10)

where Ω(t) denotes the average of external disturbances;

η̂(t) is the states of all agents, which takes out the average

of external disturbances; η̂1(t) and η̂1(t − τ) describes the

disagreement states of all agents; and η̂2(t) and η̂2(t − τ)
depicts the average states of all agents.

By Lemma 2, U is an orthogonal matrix, we have UT
1 U2 =

0. Since U2 = 1n/
√

n, L1n = 0 and ∆L1n = 0, we have

(U ⊗ I2)
T η̇(t)

=(U ⊗ I2)
T (In ⊗A)(U ⊗ I2)

[

η̂1(t)
η̂2(t)

]

− (U ⊗ I2)
T [(L+∆L)⊗B1](U ⊗ I2)

[

η̂1(t − τ)
η̂2(t − τ)

]

+(U ⊗ I2)
T (In ⊗A)(1n ⊗Ω(t))+(UT ⊗B2)ω(t)

=

[

(In−1 ⊗A) 0

0 A

][

η̂1(t)
η̂2(t)

]

−
[

(UT
1 LU1 +UT

1 ∆LU1)⊗B1 0

(UT
2 LU1 +UT

2 ∆LU1)⊗B1 0

][

η̂1(t − τ)
η̂2(t − τ)

]

+





(UT
1 ⊗B2)ω(t)

√
nAΩ(t)+B2

1√
n

n

∑
i=1

ωi(t)





(11)

Premultiplying the left-hand side of system (7) with the

matrix (U ⊗ I2)
T yields

(U ⊗ I2)
T η̇(t)

=

[

˙̂η1(t)
˙̂η2(t)

]

+(U ⊗ I2)
T (1n ⊗ Ω̇(t))

=

[

˙̂η1(t)
˙̂η2(t)

]

+













0

1√
n

n

∑
i=1

∫ t

0
AeA(t−s)B2ωi(s)ds

+
1√
n

n

∑
i=1

B2ωi(t)













=

[

˙̂η1(t)
˙̂η2(t)

]

+





0

√
nAΩ(t)+

1√
n

n

∑
i=1

B2ωi(t)





(12)

From (11) and (12), we can get η̂1(t) is independent

of η̂2(t), but η̂2(t) is dependent on η̂1(t). Denote ∆L =
UT

1 ∆LU1. Then the original system can be reduced to the

following system

˙̂η1(t) =(In−1 ⊗A)η̂1(t)− [(L̄+∆L)⊗B1]η̂
1(t − τ)

+(UT
1 ⊗B2)ω(t)

z(t) =(Lc ⊗ I2)η(t) = (U1 ⊗ I2)η̂
1(t)

(13)

We can use the reduced-order system (13) instead of

the multi-agent system (7) to investigate the L2 − L∞

performance. It follows that if limt→+∞ η̂1(t) = 0, then

limt→+∞ z(t) = 0. So, whether the multi-agent system (7) can

reach consensus is only related to the component η̂1(t). Then

we analysis the robust L2 − L∞ performance of the multi-

agent system.

Define a Lyapunov-Krasovskii function

V (t) =η̂1T (t)Pη̂1(t)+
∫ t

t−τ
η̂1T (s)Qη̂1(s)ds

+
∫ 0

−τ

∫ t

t+θ

˙̂η1T (s)R ˙̂η1(s)dsdθ

(14)
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X11 =





P(In−1 ⊗A− L̄⊗B1)+(In−1 ⊗A− L̄⊗B1)
T P+Q+ τ(In−1 ⊗A)T R(In−1 ⊗A) 0 PB̄2 + τ(In−1 ⊗A)T RB̄2

∗ Q1 −τ(L̄⊗B1)
T RB̄2

∗ ∗ −γI + τB̄T
2 RB̄2



 ,

X12 =





P(L̄⊗B1) P[(UT
1 E1)⊗B1] τ(In−1 ⊗ Ā)T R τ(In−1 ⊗ Ā)T R[(UT

1 E1)⊗ B̄1] 0 0

0 0 0 0 τ(L̄⊗B1)
T R τ(L̄⊗B1)

T R[(UT
1 E1)⊗B1]

0 0 0 0 0 0

0 0 0
0 0 0

0 0 B̄T
2 R[(UT

1 E1)⊗B1]



 ,

X22 = diag

{

−R

τ
,−ε1I,−τε3R,−τε4I,−τR,−τε2I,

[

−τR τR(UT
1 E1)⊗B1

∗ −τε5I

]

,−τε6I

}

,

(9)

Firstly, we study the system without the external distur-

bance ω(t). The time derivative of V (t) along the solution

of the system (13) is

V̇ (t) =2η̂1T (t)P ˙̂η1(t)+ η̂1T (t)Qη̂1(t)

− η̂1T (t − τ)Qη̂1(t − τ)+ τ ˙̂η1T (t)R ˙̂η1(t)

−
∫ t

t−τ

˙̂η1T (s)R ˙̂η1(s)ds

=2η̂1T (t)P(In−1 ⊗A)η̂1(t)−2η̂1T (t)P(L̄+∆L)⊗B1

η̂1(t − τ)+ η̂1T (t)Qη̂1(t)− η̂1T (t − τ)Qη̂1(t − τ)

+ τ ˙̂η1T (t)R ˙̂η1(t)−
∫ t

t−τ

˙̂η1T (s)R ˙̂η1(s)ds

(15)
From the Newton-Leibniz formula δ1(t − τ) = δ1(t)−

∫ t
t−τ δ̇1(s)ds. By Lemma 3, we have

V̇ (t)≤ η̂1T (t)N̄1η̂1(t)+ η̂1T (t − τ)N̄2η̂1(t − τ), (16)

where

N̄1 =P(In−1 ⊗A− L̄⊗B1)+(In−1 ⊗A− L̄⊗B1)
T P+Q

+ τ(In−1 ⊗A)T R(In−1 ⊗A)+
1

ε1
PĒ1P+ τP(L̄⊗B1)R

−1

(L̄⊗B1)
T P+

τ

ε3
(In−1 ⊗A)T R(In−1 ⊗A)+

τ

ε4
(In−1 ⊗A)T

RĒ1R(In−1 ⊗A),

N̄2 =−Q+ ε1Ē2 + τ(L̄⊗B1)
T R(L̄⊗B1)+ τ(∆L⊗B1)

T R(∆L

⊗B1)+
τ

ε2
(L̄⊗B1)

T RĒ1R(L̄⊗B1)+ τε2Ē2 + τε3(L̄

⊗B1)
T (L̄⊗B1)+ τε4Ē2.

where Ē1 = [(UT
1 E1) ⊗ B1][(U

T
1 E1) ⊗ B1]

T and Ē2 =
(UT

1 ET
2 E2U1)⊗ I2, and ε1, ε2, ε3, ε4 are positive scalars.

A sufficient condition for V̇ (t)< 0 is N̄ =
[

N̄1 0

0 N̄2

]

< 0. The

multi-agent system (13) is asymptotically stable. Therefore,

all the agents can reach consensus.

By Lemma 4, we have (see(17) and (18)), here

θ1 =−Q+ ε1Ē2 + τ(L̄⊗B1)
T R(L̄⊗B1)+ τ/ε2(L̄⊗B1)

T R

Ē1R(L̄⊗B1)+ τε2Ē2 + τε3(L̄⊗B1)
T (L̄⊗B1)+ τε4Ē2.

By Lemma 3,

θ ≤
[

θ1 + τε5Ē2 0

0 −τR+
τ

ε5

RĒ1R

]

< 0,

for any ε5 > 0.

Then by Lemma 4 again, we get the equation (see(19))

We discuss the performance with ω(t) in the following.

Denote B̄2 =UT
1 ⊗B2, we have

V̇ (t)≤η̂1T (t)N̄1η̂1(t)+ η̂1T (t − τ)N̄2η̂1(t − τ)+2η̂1T (t)PB̄2

ω(t)+ τωT (t)B̄T
2 RB̄2ω(t)−2τη̂1T (t)(In−1 ⊗A)T RB̄2

ω(t)−2τη̂1T (t)(L̄+∆L)⊗B1]
T RB̄2ω(t)

≤η̂1T (t)N̄1η̂1(t)+ η̂1T (t − τ)N̄2η̂1(t − τ)+2η̂1T (t)PB̄2

ω(t)+ τωT (t)B̄T
2 RB̄2ω(t)+2τη̂1T (t)(In−1 ⊗A)T RB̄2

ω(t)−2τη̂1T (t)(L̄⊗B1)
T RB̄2ω(t)+ ε6τη̂1T (t − τ)Ē2

η̂1(t − τ)+
τ

ε6

ω(t)T B̄T
2 RĒ1RB̄2ω(t).

here ε6 > 0.

Under the zero-valued initial state condition V (0) = 0, we

define the cost performance for any T > 0,

JT =V (t)− γ

∫ T

0
ω(t)T ω(t)dt =

∫ T

0
[V̇ (t)− γω(t)T ω(t)]dt

≤
∫ T

0
ζ T (t)Y ζ (t)dt,

(20)
where

Y =







N̄1 0 PB̄2 + τ(In−1 ⊗A)T RB2

∗ N̄2 + ε6τĒ2 −τ(L̄⊗B1)
T RB̄2

∗ ∗ −γI +
τ

ε6

B̄T
2 RĒ1RB̄2 + τB̄T

2 RB̄2






,

and ζ T (t) = [η̂1T (t) η̂1T (t − τ) ωT (t)].

By Lemma 4 (Schur Complement Formula), we have

Y < 0 if X < 0. Further, if Y < 0 holds, JT < 0, i.e. V (t) <
γ
∫ T

0 ωT (t)ω(t)dt.

For

[

−P (U1 ⊗ I2)
T

∗ −γI

]

< 0, by Lemma 4 (Schur Com-

plement Formula) we have (U1 ⊗ I2)
T (U1 ⊗ I2)− γP < 0.

It is easy to get ‖z(t)‖2
∞ < γV (t)< γ2‖ω(t)‖2

2.

For any 0 6= ω(t) ∈ L2[0,∞), ‖Tzw‖L2−L∞ = ‖z(t)‖∞

‖ω(t)‖2
< γ .

By Lemma 3 and Lemma 4 , we have Y < 0 if

X < 0. Therefore, all agents can reach consensus with

‖Tzω(s)‖L2−L∞ < γ under the condition (8). �

Note that the Laplacian matrix of switching topology Gσ(t)

is denoted as Lσ(t), where σ(t) is the switching signal at t

moment that determines the topology.
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N̄1 < 0 ⇔ N1 =











P1 P(L̄⊗B1) P[(UT
1 E1)⊗B1] τ(In−1 ⊗A)T R[I +(UT

1 E1)⊗B1]

∗ −R

τ
0 0

∗ ∗ −ε1I 0
∗ ∗ ∗ −τ(ε3R+ ε4I)











< 0, (17)

N̄2 < 0 ⇔

θ =

[

θ1 0
0 −τR

]

+ τ

[

[(E2U1)⊗ I2]
T

0

]

ΣT
[

0 [(UT
1 E1)⊗B1]

T R
]

+ τ

[

0

R[(UT
1 E1)⊗B1]

]

Σ
[

(E2U1)⊗ I2 0
]

< 0,
(18)

N2 =











Q1 + τε4Ē2 + τε5Ē2 τ(L̄⊗B1)
T R τ(L̄⊗B1)

T R[(UT
1 E1)⊗B1] 0 0

∗ −τR 0 0 0
∗ ∗ −τε2I 0 0

∗ ∗ ∗ −τR τR[(UT
1 E1)⊗B1]

∗ ∗ ∗ ∗ −τε5I











< 0. (19)

B. Network with time-delay on switching topology

Theorem 2: Consider a directed network with switching

topologies and time-delay τ . For the multi-agent system(7),

consensus can be achieved with ‖Tzω‖L2−L∞ < γ (a given

index γ > 0), if the symmetry matrix P > 0, Q > 0, R > 0

and P, Q, R ∈ R
2(n−1)×2(n−1) and positive scalars ε1, ε2, ε3,

ε4, ε5, ε6 satisfy

X =

[

X11 X12

∗ X22

]

<0,

[

−P (U1 ⊗ I2)
T

∗ −γI

]

<0,

(21)

where X11, X12, X22 respectively are (see(22))

here L̄σ(t) = UT
1 Lσ(t)U1, Ē2σ(t) = (UT

1 ET
2σ(t)E2σ(t)U1)⊗ I2,

B̄2 = UT
1 ⊗ B2, Q1σ(t) = −Q + ε1Ē2σ(t) + τε2Ē2σ(t) +

τε3(L̄σ(t) ⊗ B1)
T (L̄σ(t) ⊗ B1) + τε4Ē2σ(t) + τε6Ē2σ(t),

R1 = τ(In−1 ⊗ Ā)T R[(UT
1 E1σ(t)) ⊗ B̄1] and R2 =

τ(L̄σ(t)⊗B1)
T R[(UT

1 E1σ(t))⊗B1].
Proof: The proof of Theorem 2 can be straightly derived

from Theorem 1. Meanwhile, it should be emphasized that

all possible In−1 ⊗ A− L̄σ(t) ⊗ B1 should share a common

Lypunov function V (t). �

Remark 1: For constant time-delay τ , the matrix equation

(8) and (21) are both BMIs.

V. SIMULATION RESULTS

In this section, we present some numerical simulations

to illustrate the theoretical results obtained in the previous

sections. These simulations are performed with four agents,

whose initial conditions are all zeros. Fig.1 depicts four

different network {Ga,Gb,Gc,Gd}. The switching mode

starts at Ga and the order is Ga → Gb → Gc → Gd → Ga.

Moreover, the topology of the multi-agent system switches

every 0.01 s to the next states. It is assumed that the weights

ai j are all 1 and the uncertainty of each edge satisfies

|∆ai j| ≤ 0.01. Let the performance index γ = 1. In practical

situation, external disturbances usually are unpredictable.

Especially, let it be white noise w(t). Then the disturbance

ω(t) = [1 −1 2 3]T w(t).
We present the simulation results for the network with

time-delay and fixed topology Fig.1 Ga. Let K1 = 5 and

K2 = 3. Applying Theorem 1, we can obtain time-delay

Ä Å

Ä Å

Ä Å

Ä Å

Fig. 1. Four directed graphs

τ = 0.227 s by solve the BMIs (8). Fig. 2 shows the position

trajectories and velocity trajectories with the disturbance

ω(t) = [1 −1 2 3]T w(t) and Fig. 4 shows the corresponding

peak value trajectory of the controlled output |z(t)| and

energy trajectory disturbance signal ω(t). From these figures,

consensus is asymptotically achieved when satisfying the

performance ‖Tzw‖L2−L∞ < γ .

Then the simulation results are given for the network with

switching topology and time-delay. Applying Theorem 2, we

can get time-delay τ = 0.203 s. Fig. 3 describes the position

trajectories and velocity trajectories. Fig. 5 depicts the corre-

sponding peak value trajectory of the controlled output |z(t)|
and energy trajectory disturbance signal ω(t). Consensus is

asymptotically achieved with performance ‖Tzw‖L2−L∞ < γ ,

too.
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Fig. 2. Position trajectories and velocity trajectories of network with fixed
topology and time-delay

VI. CONCLUSIONS

In this paper, we have employed the L2 − L∞ control

method to solve the consensus problem of multi-agent system

subjected to external disturbances and parameter uncertain-

ties with fixed and switching topologies. Neighbor-based
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X11 =





P(In−1 ⊗A− L̄σ(t)⊗B1)+(In−1 ⊗A− L̄σ(t)⊗B1)
T P+Q+ τ(In−1 ⊗A)T R(In−1 ⊗A) 0 PB̄2 + τ(In−1 ⊗A)T RB̄2

∗ Q1σ(t) −τ(L̄σ(t)⊗B1)
T RB̄2

∗ ∗ −γI + τB̄T
2 RB̄2



 ,

X12 =





P(L̄σ(t)⊗B1) P[(UT
1 E1σ(t))⊗B1] τ(In−1 ⊗ Ā)T R R1 0 0 0 0 0

0 0 0 0 τ(L̄σ(t)⊗B1)
T R R2 0 0 0

0 0 0 0 0 0 0 0 B̄T
2 R[(UT

1 E1σ(t))⊗B1]



 ,

X22 = diag

{

−R

τ
,−ε1I,−τε3R,−τε4I,−τR,−τε2I,

[

−τR τR(UT
1 E1σ(t))⊗B1

∗ −τε5I

]

,−τε6I

}

,

(22)
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Fig. 3. Position trajectories and velocity trajectories of network with
switching topology and time-delay
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Peak value of controlled output |z(t)|

Energy of external disturbances w(t)
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Fig. 4. Peak value trajectory of the controlled output |z(t)| and energy
trajectory disturbance signal ω(t) of network with fixed topology and time-
delay

Fig. 5. Peak value trajectory of the controlled output |z(t)| and energy
trajectory disturbance signal ω(t) of network with switching topology and
time-delay

control protocols with time-delay have been proposed for

each agent. And some conditions are derived to ensure the

consensus of multi-agent system with the desired L2 − L∞

performance. Finally, numerical simulations are provided to

show the effectiveness of our theoretical results. Further, the

time-delay considered in this paper is constant and uniform,

then time-varying delays or asymmetric time-delays can be

also investigated in the future.
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