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PD+ Based Spacecraft Attitude Tracking with Magnetometer Rate
Feedback
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Abstract—In this paper we present a solution to spacecraft
attitude tracking control utilizing a passivity-based PD+ control
solution with magnetometer rate feedback. This solution aims
toward small spacecraft with size and weight constraints, which
typically carries e.g. solar sensors and magnetometers for
attitude determination, but no sensors for angular velocity feed-
back. The result is a control solution which uses magnetometer
rate feedback to provide angular velocity information, while
at the same time exploits the natural passivity in the system.
The equilibrium points in the resulting closed-loop system
are proved to be uniformly asymptotically stable under some
mild gain conditions, and controller performance is visualized
through simulations.

I. INTRODUCTION

Electromagnetic actuation has proven to be a valid ap-
proach for spacecraft attitude control in Earth orbits, and
in particular for small spacecraft with hard requirements on
available mass and weight. The concept is based on the fact
that the Earth is surrounded by a time-varying magnetic
field, and by inducing local magnetic field vectors around
spacecraft axes the natural push-pull motion resulting from
interfering magnetic field may be used to create torques
for spacecraft attitude maneuvers [1]. The dawn of attitude
stabilization using electromagnetic actuation may, according
to the thorough review in [2] be traced back to the early
sixties; however, the first attempted approximate solution
to the problem was presented in [3]. Then, after some
dormant years, the problem spawned significant interest from
late eighties with the combined electromagnetic and gravity
gradient stabilization solutions given in [4]-[8], as well
as control solutions by means of electromagnetic actuation
only —cf. [9]. Most of these results incorporate assumptions
of periodicity in the magnetic field and state feedback
of spacecraft attitude to achieve local asymptotic stability
properties. Other solutions have also been proposed based on
measurements of magnetic field vectors, such as [10]-[13],
which utilize a combination of the field vectors and their rate.
These solutions are attractive in their own respect, and enable
a spacecraft to achieve stabilization with magnetometers and
magnetic actuators as onboard determination and control
hardware; however, they are bound to the properties of
the magnetic field, and represent therefore control solutions
which do not adhere to the natural motion of the spacecraft.
Solutions which incorporate the natural motion of spacecraft
are typically those which aim to preserve passivity proper-
ties, such as [14]—-[17]. In addition, several solutions have
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been proposed to the problem of spacecraft attitude control
without angular velocity measurements; one approach is to
use model-based nonlinear observers to estimate the angular
velocity, as suggested in e.g. [18], [19]. Other solutions, such
as in [20]-[25] employ variations of first-order filters that, if
not supplying the controller with the correct angular velocity,
at least provides enough information to solve the control
problem. For small spacecraft with limited computational
resources, this approach may be favorable.

However, a better solution would be to design an output
feedback controller using the vectorial measurements from
the sensors directly without the need for state estimation,
while at the same time preserving the natural passivity in the
system. In this paper, we introduce a passivity-based control
solution for spacecraft attitude tracking using attitude quater-
nion and magnetometer rate feedback. This solution aims to
combine the natural passivity with the use of lightweight
magnetometer sensors to achieve damping, and is suitable
for small spacecraft equipped with magnetometers and solar
sensors for attitude determination. Roughly speaking, the
main idea is to combine the well known passivity-based
PD+ controller from [26] which has proven successful in
the control of Euler-Lagrange systems (cf. [27]), with the
classical b-dot control law in [3] typically used for spacecraft
detumbling operations. This solution may be considered as a
first step towards passivity-based output feedback magnetic
control; however, to maintain focus on the main contribution
of introducing magnetometer rate feedback in the loop,
we have chosen to present the main result with general
3DOF actuation, which may be provided by means of e.g.
reaction wheels or thruster systems. As a starting point for
incorporating actuators, the reader is referred to [28], where
results on actuator combinations are presented and analyzed
using passivity.

II. PRELIMINARIES

We denote by ||-|| the Euclidean norm of a vector and the
induced L5 norm of a matrix. Reference coordinate frames
are denoted by F ('), and in particular we use the standard
definition of the Earth-Centred Inertial (ECI) frame F*, with
z axis towards celestial north, normal to the equatorial plane.
Moreover, we define a body frame F b with origin in the
spacecraft center of mass and axes fixed to the spacecraft
body. We denote by wy , the angular velocity of /7 relative
to F?, referenced in F°. Matrices representing coordinate
transformation from F° to F° are denoted R2. We denote
by S(-) € {S(-)eR¥>*:8()+ST(-) =0} the cross
product operator, such that for arbitrary vectors v; € R? and
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vy € R3 we have S(v1)ve = vi X va. Hence, we also have
that S(v1)va = —S(v2)vi. When the context is sufficiently
explicit, we may omit to write arguments of functions.

III. SYSTEM MODEL
A. Body frame rotation

Rotations are typically represented by rotation matrices be-
longing to SO (3) = {ReR¥>3¥:RTR=1detR=1}.
In particular, the rotatlon matrix describing rotations from
the body frame JF? to the inertial frame F* can be described
by

R} = I+25S (€) + 282 (¢) 1)

T. . . . .
where q = [, €] is a unit quaternion, which satisfy the

constraint
n”+ee=1. )

The set of unit quaternions is a non-commutative multiplica-
tive group denoted S* = {q € R*: ||q|| = 1}. The group
is a covering manifold of SO (3), and provides a globally
nonsingular parametrization of the latter. The inverse rotation
is given by the inverse unit quaternion q ! = [n, — (-:T} T
and the quaternion product is defined as (cf. [29])

i

M2 — €] €2 3)

®qqe =
@2 mez + 261 + S(e1) €2

Finally, we note that a unit quaternion with the scalar
parameter 1 > 0 satisfies the property

0<(U-n’<A-n+n=1-n*=€e. @
B. Rotational Motion

The attitude kinematics can be expressed as

T@=; { il :LesT(e) } )

w?b. Moreover, the

q=T(q)w

where we denote for simplicity w =
attitude dynamics can be expressed as

Jo=7-S(w)Jw (6)

where J = JT > 0 is the spacecraft inertia matrix which
satisfies j,, < ||J|| < ja with jas > jm > 0, and 7 denotes
external and internal torques working on the spacecraft body.
In general, the torque may be expressed as 7 = 7, + T4,
where T, and T4 denotes actuator torques and disturbance
torques respectively, but for simplicity we assume here that
T4 = 0. Hence, the total system given by (5)-(6) evolves on
the manifold M = 53 x R3.

C. Magnetic Determination and Control

Magnetic determination and control involves the use of
magnetometers for sensing of the surrounding geomagnetic
field of the Earth, as well as magnetic torquers for producing
a magnetic moment which provides torque when interacting
with the geomagnetic field. To determine the spacecraft atti-
tude, a minimum of two vector measurements are necessary,
and a combination of solar sensors and magnetometers is a

popular choice. By working these sensors in combination,
one may employ e.g. a TRIAD algorithm to estimate the
attitude during operational phases —cf. [30].

1) Geomagnetic Field: Under the assumptions that only
negligible electric field changes occur and that the amount of
current flowing across the boundary between the Earth and
the atmosphere is relatively significant, a solution for the
main geomagnetic field of the earth can according to [31] be
obtained from the negative gradient of a scalar potential as

ou ,oU ou
b=-|i— +k—
[ oz Tiay TR
where i, j and k represents three orthogonal directions. When
the assumption is made that essentially all contributions to

the field comes from the internal Earth sources, the scalar
potential can be expressed in spherical coordinates as

U(r,0,¢) = Z( >n+1F£(¢’9)1 ®)

where 6 and ¢ are the geographic, Earth-centered coordinates
of the radial distance, co-latitude and longitude, respectively,
R. = 6371.2 km is the Earth radius, r is the orbit radius
and F (¢, 0) is the Legendre polynomial of the independent
variable 6 that is multiplied by sine and cosine of the
independent variable ¢. The labeling superscript ¢ indicates
internal source terms of the potential functions. The Legendre
polynomial F? (¢,6) can be expressed as

] =-VU )

n

> lg cos (mg) + hy sin (mg)] Py (9)

m=0

F, (¢,0) =

where g/ and h!" are Gaussian coefficients, and P () is
the Gauss function of co-latitude only. Note that n > 1 and
n > m > 0. With a degree n = 1 and order m = 0,1,
the magnetic field model is a conventional dipole model.
When using magnetometers for attitude determination an
onboard model of the field is required, and the choice of
degree and order of the magnetic field depends on the desired
accuracy needed; it is desirable to have a relatively good
approximation of the field without requiring large calculating
capabilities.

2) Magnetic control principles: Spacecraft with pure
magnetic determination and control systems are typically
equipped with orthogonally mounted magnetometers and
magnetic torquers. The former are used for measurement
of the magnetic field vectors, which forms the basis (often
together with other types of measurements) for attitude
determination. The latter are used for attitude control; being
typically constructed as copper windings, they are able to
generate a magnetic moment when a current is sent through
the coil, and this magnetic moment subsequently reacts with
the Earth magnetic field to provide a rotational torque. With
this approach, the total torque generated on the spacecraft
may be expressed in F° as [32]

7=S(m")b’, )

where m? is the magnetic dipole moment and b® is the

local geomagnetic field vector. As is obvious from (9), the
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available control torque approaches zero when the dipole
moment vector and the local field vector align, and is
lost completely when they are parallel. Such properties of
controllability in magnetically actuated spacecraft is a very
important topic, and has been thoroughly presented in [13].
Without going into detail of the latter reference, we suffice to
say that definitions of strong accessibility and controllability
of general time-varying systems are extended to the case
of systems evolving on the rotational sphere in a time-
varying magnetic field. However, for substantiation of our
main result, we introduce to this end the following definition.

Definition 1 (Sufficiently accessible): The system in (5)-
(6) is said to be sufficiently accessible on M = S3 x R3 if
there exists a constant § > 0 such that

[ST(B?(#)S (b° ()| =6 Vit=>to. (10)
We also note that b” = R?b’ and hence obtain
b’ = —S (w) b’ + RD' . an

IV. MAIN RESULT
A. Problem Definition

The problem is to design a control solution using magne-
tometer rate feedback such that the system is able to track
a desired attitude trajectory qq, where g4 = T (qq) wg with
wgq as the desired angular velocity. Using the quaternion
product (3), we obtain the attitude error quaternion as q =
q(;l ® g, and in accordance with (5) we also have 61 =
T (q) @ with @ = w — wy.

To uniquely define the attitude error, we now note that
due to a redundancy in the quaternion representation, q and
—q represent the same physical orientation, however one is
rotated 27 relative to the other about an arbitrary axis. This
phenomenon is physically explainable by the fact that when
using quaternions, each orientation may be reached in two
ways; i.e. we may rotate either clockwise or anti-clockwise
about the rotation axis to reach the desired orientation.
Accordingly, there exist two equilibrium points in the closed-

~ T - T
loop system, namely g4 = [1,0"] and g_ = [-1,07] .
For optimality in terms of rotation length, one should choose
the equilibrium point offering the shortest rotation — cf. [33].

For the sake of simplicity in our presentation, we choose
the positive equilibrium point as our desired one !. Based on
this choice, we define the attitude error

eq =1 —1), € (12)
together with the angular velocity error
e, =W =Ww—wy (13)

and the problem is thus to achieve lim; . [e,, €,] — O.
In accordance with general kinematic relations we have

&, =T, (eg) €w (14)

'Note however that the negative equilibrium point still persists in our
closed loop, and we are therefore not able to claim any global stability
properties. In addition, the term global in general refers to the whole state
space R™ (cf. [34]), while our system evolves on M = S3 x R3.

with

1 el
T =3 s | (4
Moreover, the error dynamics are obtained from (13) and (6)
as

Je, =7 —S(w)Jw —Jwy. (16)
Further, we note that 4T;'—Te = I, which can be shown by
direct calculation and using ST (€) = —S (€), ST(€) S (¢) =
e'eél—ee" and (2). We also note that 2T (e,) e, = &, and
from differentiation of this result we obtain

TZ (eq)eq :%E - TZ (eq) &y a7
1. .. N 1
zz[nl—i—S(e)] e, — Zew (18)
=Ge, (19)
with
G:%[ﬁH—S(E)—I]. 20)

To fit with the choice of equilibrium point, it is also assumed
that the scalar parameter of the quaternion is always positive,
such that

1(t) >0,

Vit>tg. 21

B. Control solution

Having appropriately defined our control problem, we are
now ready to state our main results, and the idea is the
following. For small spacecraft, light and small is better in
terms of instrumentation. However, sensors are necessary to
provide continuous attitude determination, and combinations
of solar sensors and magnetometers are common choices.
Magnetometers are also commonly used in the initial detum-
bling phase when the angular velocity is too high to achieve
attitude determination; by using a detumbling controller
based on magnetometer rate feedback the spacecraft angular
velocity may be reduced sufficiently to enter the operational
phase. One of the classical approaches to magnetic control,
and detumbling in particular, is the b-dot controller in [3],
which has later been reproduced in various ways (cf. [8]).

The idea for our control solution is to combine a b-dot
algorithm with a passivity-based control law, thus construct-
ing a control law without angular velocity measurements
in the common sense (i.e. by using gyroscopes, observers
and/or lead filters). The solution is based on the standard PD+
controller from [26], but where the derivative term is replaced
by magnetometer rate feedback. Moreover, some additional
terms have been included to compensate for magnetometer
coupling terms. This rationale may thus be summarized as
the following proposition:

Proposition 2: Assume that (2) and (21) hold, and that the
desired attitude qq (t), desired angular velocity wg (t) and
desired angular acceleration w (t) are all bounded functions.
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Moreover, assume that the system dynamics (14)-(16), in
closed loop with the control law

= kT e, — kS (bb) b? + Jiog + S (wa) Jwa

+ kST (b) [ (b") wy + RID] (22)

with k, and k; as positive tuning parameters, is sufficiently
accessible according to Definition 1. Then the equilibrium
point [e,,e,] = 0 of the closed-loop system is uniformly
asymptotically stable (UAS).

Remark 3: Note that in Proposition 2 it is assumed that
the closed-loop system is sufficiently accessible according to
Definition 1, which puts a restriction on the available orien-
tations of the spacecraft relative to the surrounding magnetic
field. In particular, we assume that ||ST (b%) S (b?)|| > ¢ >
0; however, since S (b%) is a skew-symmetric matrix, the
smallest eigenvalues of ST (bb) S (bb) is A1 = 0, while the

other two eigenvalues are given as Ao = A3 = (bb)—r b®.
Hence, the assumption of sufficient accessibility will not hold
for all orientations as a result of the nature of the magnetic
field. However, if such a situation occurs, the system will
lose its damping, and it is reasonable to assume that it will
thereby drift into an orientation where the closed-loop system
will regain sufficient accessibility.

Remark 4: The control law (22) assumes the knowledge
of magnetometer rates b’ and b’. The magnetic field vector
is measured in F ®, and although the body frame magnetome-
ter rate b’ may be extracted through a differentiation filter,
the inertial magnetometer rate b’ is not as easily calculated.
One approach is to use (11), such that

bi =R} (bb +S(w) bb) 23)
however this requires knowledge of the actual angular rate
w. Similarly, the control law (22) assumes the knowledge
of desired angular rate wy and its derivative wg, both
represented in F°. The desired angular velocity is typically
given in F*, and hence the rate is easily extracted through
the coordinate transformation w, = wafi. However, the
derivative must be extracted from the relation

we=—S (w)wg + R, (24)

and also this requiring knowledge of actual angular velocity.
Both of the above cases can be approximated using modified
relations (cf. [21]) where w is replaced with wg, such that

bi =R! (bb + S (wa) bb) (25)

and

Wq = —S (wg) wg + R, = RbW (26)

This will probably give some uncertainty in the initial
transient, but will provide a good approximation close to
the reference trajectory.

Remark 5: Also note that Proposition 2 is stated for the
case when (21) holds, and with the positive equilibrium
point as the chosen one; however, a similar argument may
be stated for the negative equilibrium point, in the case

when 7 (t) <0, ¥ t > to (¢f [33]).
Proof: Inserting the control law (22) in (16) results in
Jew = kTl e, —hyS (B')b =8 (w) Juw 27)
+8 (wa) Jwa + kST (bY) [ (b) wa + RID|

and using (11), together with the facts that for arbitrary
vectors u and v we have u'S(u) = —S(u)u = 0,
ST(u) = —S(u) and S (u) v = —S (v) u, we find that

Jé, =—k,T e, — kST (b") S (b’) e,

—S(w)Jw+ 8 (wa) Jwy (28)
and the total closed-loop system is thus given by
e, =Tce, (29)
Jé, =—k,T e, — kST (b") S (b) e,
—S(w)Jw + S (wg) Jwq . (30)

To prove Proposition 2, we define the state vector x =
[X1,X2] = [e] Te, eu], together with the Lyapunov function
candidate
1 1
Vix)= §equ;peq + §eIJew + Xe, TcJe, 3D
with A > 0 as a design variable. By using the property in
(4) we obtain for the first term in (31) that

1 1 _ ST~
§e;rkpeq :Ek‘p ((1 — )+ (—:Te)
<kye'é=e] Tk, T e,. (32)
At the other end, we have that
1 1
5eqT/s,,eq > 5eqTTe/s,,T;req. (33)
Accordingly, we may write
1 kI AJ
Vix)<gx'Px,  P= [ g 3 } (34)
and it follows that V' (:x) satisfies
1 1
12mlIXI* <V 00 < Spullx]? (35)

with p,, and pjs as the smallest and largest eigenvalue of
P, respectively. Employing the Schur complement (cf. [35]),
we find that the matrix P is positive for k, > 0 and
< 2kpim .

)\2

: (36)
J12u
By taking the derivative of (31) along the system trajectories
(29)-(30), and employing (13) and (17)-(19), we obtain
V=—el kS (b")S(b") e, —elS (wy)Je,

— e, Tk, T e, — e, TekyST (b)) S (b') e

T T
— e, T.S (ew)Jey, — Ae, T.S (ew)Jwy
—e) TS (wa) Je, + Ae,IT. Tee, + Ne, JGe,, .

(37)
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Rearranging terms and using (20) together with the facts that
4T]T. =1 and 2T/ e, = €, we find that

V =-Xe, Tk, T e, —e] [kST (b")S (b?) + S (wa)J
—)&J [l — S (é)]} e, —e, Tc [A\k,ST (b") S (b")

S (Jw) + AS (wa) J}ew . (38)

Accordingly, we obtain the Lyapunov function derivative
Vi) =-x"Q)x, Q) =lal.i,j=12 (39
with
q11 = MkpI
Q12 =qy = % (kST (") S (b”) — S (Jwa) + S (wa) T)
g2 =kST (b?) S (b) + S (wa) I — )&J [71— S (€)] .

To verify negative definiteness of the Lyapunov function
derivative, we again employ Schur’s complement to obtain
that the matrix Q is positive definite if and only if both ¢
and g9y — qglqﬁlqlg are positive definite. We first impose
an upper bound on the desired angular velocity, such that
|lwall < Ba, and also an upper bound on the magnetic field
vector b®, such that [|ST (b?) S (b®)|| < By. The latter is a
reasonable assumption, based on the physical nature of the
magnetic field. We also recollect the assumption of sufficient
accessibility, such that |[ST (b®) S (b”)|| > 4. Hence, since
kp > 0 by definition, we find by taking the norm of the
submatrices in Q that the latter is positive definite if

2k, (kud — jarfBa)

< : SR (40)
(koB + 2 Ba)” + jm
and to ensure A > 0 we impose the restriction
ky > ]ngﬁd . @1

Hence, if the controller gain k; is chosen according to
(41), and the design constant X is chosen according to (36)
and (40), we find that for all admissible x, V' (x) is positive
definite and V () is negative definite, and in light of the
bound (35) it follows from standard Lyapunov arguments
that the equilibrium point [e,, e,] = O of the closed-loop
system is UAS. [ ]

Remark 6: Note that for both the special cases of setpoint
regulation such that wy = 0, and cubic spacecraft such that
the matrix of inertial moments is given by J = jI, the gain
conditions are relaxed to the trivial k, > 0 and k; > 0. The
latter case follows from the loss of the term S (wg) J in go2o,
since this term becomes skew-symmetric when J = j1.

V. SIMULATIONS

To visualize the performance of the control solution, we
include simulations results of the system (14)-(16) in closed
loop with the control law (22). The spacecraft has moments
of inertia given by J = diag {0.017, 0.012, 0.015} kgm?,
and is set to orbit the Earth in a slightly elliptic orbit with

apogee altitude of 700 km and perigee altitude of 600 km,
with inclination of 75 degrees. This represents an almost
polar orbit with starting position for the spacecraft over the
equator. For simplicity, the magnetic field of the Earth is
simulated with a simple dipole model.

The initial conditions of the spacecraft are standstill with
an attitude of © (¢9) = [—45 50 30] T degrees, corresponding
approximately to q (to) = [0.77 —0.44 0.29 0.37] T, and the
spacecraft is further commanded to track a nadir-pointing
trajectory. With this simulation setup, we find upper bounds
for the desired angular velocity and magnetic field vector as
Bqa =1.1-1073 and By = 4.5 - 1075, respectively, and the
bound for sufficient accessibility is set to § = 2-10°. Based
on these bounds, we satisfy the gain constraint in (41) with
k, =5-10"7 and k;, = 5-10*. With these gains, the resulting
bound given by (36) and (40) is A < 7- 10711

A simulation over 12000 seconds (approximately 2 orbits)
was performed, and the resulting attitude and angular veloc-
ity errors are shown in the two topmost plots in Fig. 1. The

L L L L L
0 2000 4000 6000 8000 10000 12000

L L L L L
0 2000 4000 6000 8000 10000 12000

_ I I I I I
0 2000 4000 6000 8000 10000 12000
Time [s]

Fig. 1. Result of simulation over approximately two orbits. The plot shows
attitude error, angular velocity error and magnitude of damping term.

figure shows that the control law successfully stabilizes the
attitude and angular velocity, and enables the spacecraft to
track the desired trajectory. The bottommost plot in Fig. 1
shows the magnitude of the damping term, and it is seen that
this corresponds with the location of the spacecraft such that
its magnitude is smaller at the poles than at the equator. It
is also seen that the asymptotic convergence is faster at the
location where the damping term is larger. This effect is also
visible in Fig. 2, which shows that the Lyapunov function is
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constantly decaying, however that the convergence rate is
reduced when the spacecraft is close to the poles.
x10°
0 L | |
0 2000 4000 6000 8000 10000 12000
Time [s]

Fig. 2. Evolution of the chosen Lyapunov function during the simulation.

VI. CONCLUSIONS

We have presented a solution to spacecraft attitude track-
ing control utilizing a passivity-based PD+ control solution
incorporating magnetometer rate feedback to obtain damping
effect instead of classical sensors for angular velocity. The
chosen equilibrium point of the closed-loop system has been
proved to be uniformly asymptotically stable (UAS) under
some mild gain conditions, and the performance of the
tracking controller has been visualized through simulations.
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