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Abstract— In this paper we present a solution to spacecraft
attitude tracking control utilizing a passivity-based PD+ control
solution with magnetometer rate feedback. This solution aims
toward small spacecraft with size and weight constraints, which
typically carries e.g. solar sensors and magnetometers for
attitude determination, but no sensors for angular velocity feed-
back. The result is a control solution which uses magnetometer
rate feedback to provide angular velocity information, while
at the same time exploits the natural passivity in the system.
The equilibrium points in the resulting closed-loop system
are proved to be uniformly asymptotically stable under some
mild gain conditions, and controller performance is visualized
through simulations.

I. INTRODUCTION

Electromagnetic actuation has proven to be a valid ap-

proach for spacecraft attitude control in Earth orbits, and

in particular for small spacecraft with hard requirements on

available mass and weight. The concept is based on the fact

that the Earth is surrounded by a time-varying magnetic

field, and by inducing local magnetic field vectors around

spacecraft axes the natural push-pull motion resulting from

interfering magnetic field may be used to create torques

for spacecraft attitude maneuvers [1]. The dawn of attitude

stabilization using electromagnetic actuation may, according

to the thorough review in [2] be traced back to the early

sixties; however, the first attempted approximate solution

to the problem was presented in [3]. Then, after some

dormant years, the problem spawned significant interest from

late eighties with the combined electromagnetic and gravity

gradient stabilization solutions given in [4]–[8], as well

as control solutions by means of electromagnetic actuation

only –cf. [9]. Most of these results incorporate assumptions

of periodicity in the magnetic field and state feedback

of spacecraft attitude to achieve local asymptotic stability

properties. Other solutions have also been proposed based on

measurements of magnetic field vectors, such as [10]–[13],

which utilize a combination of the field vectors and their rate.

These solutions are attractive in their own respect, and enable

a spacecraft to achieve stabilization with magnetometers and

magnetic actuators as onboard determination and control

hardware; however, they are bound to the properties of

the magnetic field, and represent therefore control solutions

which do not adhere to the natural motion of the spacecraft.

Solutions which incorporate the natural motion of spacecraft

are typically those which aim to preserve passivity proper-

ties, such as [14]–[17]. In addition, several solutions have
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been proposed to the problem of spacecraft attitude control

without angular velocity measurements; one approach is to

use model-based nonlinear observers to estimate the angular

velocity, as suggested in e.g. [18], [19]. Other solutions, such

as in [20]–[25] employ variations of first-order filters that, if

not supplying the controller with the correct angular velocity,

at least provides enough information to solve the control

problem. For small spacecraft with limited computational

resources, this approach may be favorable.

However, a better solution would be to design an output

feedback controller using the vectorial measurements from

the sensors directly without the need for state estimation,

while at the same time preserving the natural passivity in the

system. In this paper, we introduce a passivity-based control

solution for spacecraft attitude tracking using attitude quater-

nion and magnetometer rate feedback. This solution aims to

combine the natural passivity with the use of lightweight

magnetometer sensors to achieve damping, and is suitable

for small spacecraft equipped with magnetometers and solar

sensors for attitude determination. Roughly speaking, the

main idea is to combine the well known passivity-based

PD+ controller from [26] which has proven successful in

the control of Euler-Lagrange systems (cf. [27]), with the

classical b-dot control law in [3] typically used for spacecraft

detumbling operations. This solution may be considered as a

first step towards passivity-based output feedback magnetic

control; however, to maintain focus on the main contribution

of introducing magnetometer rate feedback in the loop,

we have chosen to present the main result with general

3DOF actuation, which may be provided by means of e.g.

reaction wheels or thruster systems. As a starting point for

incorporating actuators, the reader is referred to [28], where

results on actuator combinations are presented and analyzed

using passivity.

II. PRELIMINARIES

We denote by ‖·‖ the Euclidean norm of a vector and the

induced L2 norm of a matrix. Reference coordinate frames

are denoted by F (·), and in particular we use the standard

definition of the Earth-Centred Inertial (ECI) frame F i, with

z axis towards celestial north, normal to the equatorial plane.

Moreover, we define a body frame Fb, with origin in the

spacecraft center of mass and axes fixed to the spacecraft

body. We denote by ω
c
b,a the angular velocity of Fa relative

to Fb, referenced in Fc. Matrices representing coordinate

transformation from Fa to Fb are denoted Rb
a. We denote

by S (·) ∈
{

S (·) ∈ R
3×3 : S (·) + S⊤(·) = 0

}

the cross

product operator, such that for arbitrary vectors v1 ∈ R
3 and
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v2 ∈ R
3 we have S(v1)v2 = v1 × v2. Hence, we also have

that S(v1)v2 = −S(v2)v1. When the context is sufficiently

explicit, we may omit to write arguments of functions.

III. SYSTEM MODEL

A. Body frame rotation

Rotations are typically represented by rotation matrices be-

longing to SO (3) =
{

R ∈ R
3×3 : R⊤R = I, detR = 1

}

.

In particular, the rotation matrix describing rotations from

the body frame Fb to the inertial frame F i can be described

by

Ri
b = I+2ηS (ǫ) + 2S2 (ǫ) (1)

where q =
[

η, ǫ
⊤
]⊤

is a unit quaternion, which satisfy the

constraint

η2 + ǫ
⊤
ǫ = 1 . (2)

The set of unit quaternions is a non-commutative multiplica-

tive group denoted S3 =
{

q ∈ R
4 : ‖q‖ = 1

}

. The group

is a covering manifold of SO (3), and provides a globally

nonsingular parametrization of the latter. The inverse rotation

is given by the inverse unit quaternion q−1 =
[

η, − ǫ
⊤
]⊤

,

and the quaternion product is defined as (cf. [29])

q1 ⊗ q2 :=

[

η1η2 − ǫ
⊤
1 ǫ2

η1ǫ2 + η2ǫ1 + S (ǫ1) ǫ2

]

. (3)

Finally, we note that a unit quaternion with the scalar

parameter η > 0 satisfies the property

0 ≤ (1− η)
2
≤ (1− η) (1 + η) = 1− η2 = ǫ

⊤
ǫ . (4)

B. Rotational Motion

The attitude kinematics can be expressed as

q̇ = T (q)ω, T (q) =
1

2

[

−ǫ
⊤

ηI+ S (ǫ)

]

(5)

where we denote for simplicity ω = ω
b
i,b. Moreover, the

attitude dynamics can be expressed as

Jω̇ = τ − S (ω)Jω (6)

where J = J⊤ > 0 is the spacecraft inertia matrix which

satisfies jm ≤ ‖J‖ ≤ jM with jM ≥ jm > 0, and τ denotes

external and internal torques working on the spacecraft body.

In general, the torque may be expressed as τ = τ a + τ d,

where τ a and τ d denotes actuator torques and disturbance

torques respectively, but for simplicity we assume here that

τ d = 0. Hence, the total system given by (5)-(6) evolves on

the manifold M = S3 × R
3.

C. Magnetic Determination and Control

Magnetic determination and control involves the use of

magnetometers for sensing of the surrounding geomagnetic

field of the Earth, as well as magnetic torquers for producing

a magnetic moment which provides torque when interacting

with the geomagnetic field. To determine the spacecraft atti-

tude, a minimum of two vector measurements are necessary,

and a combination of solar sensors and magnetometers is a

popular choice. By working these sensors in combination,

one may employ e.g. a TRIAD algorithm to estimate the

attitude during operational phases –cf. [30].

1) Geomagnetic Field: Under the assumptions that only

negligible electric field changes occur and that the amount of

current flowing across the boundary between the Earth and

the atmosphere is relatively significant, a solution for the

main geomagnetic field of the earth can according to [31] be

obtained from the negative gradient of a scalar potential as

b = −

[

i
∂U

∂x
+ j

∂U

∂y
+ k

∂U

∂z

]

= −∇U (7)

where i, j and k represents three orthogonal directions. When

the assumption is made that essentially all contributions to

the field comes from the internal Earth sources, the scalar

potential can be expressed in spherical coordinates as

U (r, θ, φ) = Re

∞
∑

n=1

[

(

Re

r

)n+1

F i
n (φ, θ)

]

(8)

where θ and φ are the geographic, Earth-centered coordinates

of the radial distance, co-latitude and longitude, respectively,

Re = 6371.2 km is the Earth radius, r is the orbit radius

and F i
n (φ, θ) is the Legendre polynomial of the independent

variable θ that is multiplied by sine and cosine of the

independent variable φ. The labeling superscript i indicates

internal source terms of the potential functions. The Legendre

polynomial F i
n (φ, θ) can be expressed as

F i
n (φ, θ) =

n
∑

m=0

[gmn cos (mφ) + hm
n sin (mφ)]Pm

n (θ)

where gmn and hm
n are Gaussian coefficients, and Pm

n (θ) is

the Gauss function of co-latitude only. Note that n ≥ 1 and

n ≥ m ≥ 0. With a degree n = 1 and order m = 0, 1,

the magnetic field model is a conventional dipole model.

When using magnetometers for attitude determination an

onboard model of the field is required, and the choice of

degree and order of the magnetic field depends on the desired

accuracy needed; it is desirable to have a relatively good

approximation of the field without requiring large calculating

capabilities.

2) Magnetic control principles: Spacecraft with pure

magnetic determination and control systems are typically

equipped with orthogonally mounted magnetometers and

magnetic torquers. The former are used for measurement

of the magnetic field vectors, which forms the basis (often

together with other types of measurements) for attitude

determination. The latter are used for attitude control; being

typically constructed as copper windings, they are able to

generate a magnetic moment when a current is sent through

the coil, and this magnetic moment subsequently reacts with

the Earth magnetic field to provide a rotational torque. With

this approach, the total torque generated on the spacecraft

may be expressed in Fb as [32]

τ = S
(

mb
)

bb , (9)

where mb is the magnetic dipole moment and bb is the

local geomagnetic field vector. As is obvious from (9), the
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available control torque approaches zero when the dipole

moment vector and the local field vector align, and is

lost completely when they are parallel. Such properties of

controllability in magnetically actuated spacecraft is a very

important topic, and has been thoroughly presented in [13].

Without going into detail of the latter reference, we suffice to

say that definitions of strong accessibility and controllability

of general time-varying systems are extended to the case

of systems evolving on the rotational sphere in a time-

varying magnetic field. However, for substantiation of our

main result, we introduce to this end the following definition.

Definition 1 (Sufficiently accessible): The system in (5)-

(6) is said to be sufficiently accessible on M = S3 × R
3 if

there exists a constant δ > 0 such that

‖S⊤
(

bb (t)
)

S
(

bb (t)
)

‖ ≥ δ ∀ t ≥ t0 . (10)

We also note that bb = Rb
ib

i and hence obtain

ḃb = −S (ω)bb +Rb
i ḃ

i . (11)

IV. MAIN RESULT

A. Problem Definition

The problem is to design a control solution using magne-

tometer rate feedback such that the system is able to track

a desired attitude trajectory qd, where q̇d = T (qd)ωd with

ωd as the desired angular velocity. Using the quaternion

product (3), we obtain the attitude error quaternion as q̃ =
q−1
d ⊗ q, and in accordance with (5) we also have ˙̃q =

T (q̃) ω̃ with ω̃ = ω − ωd.

To uniquely define the attitude error, we now note that

due to a redundancy in the quaternion representation, q̃ and

−q̃ represent the same physical orientation, however one is

rotated 2π relative to the other about an arbitrary axis. This

phenomenon is physically explainable by the fact that when

using quaternions, each orientation may be reached in two

ways; i.e. we may rotate either clockwise or anti-clockwise

about the rotation axis to reach the desired orientation.

Accordingly, there exist two equilibrium points in the closed-

loop system, namely q̃+ =
[

1,0⊤
]⊤

and q̃− =
[

−1,0⊤
]⊤

.

For optimality in terms of rotation length, one should choose

the equilibrium point offering the shortest rotation – cf. [33].

For the sake of simplicity in our presentation, we choose

the positive equilibrium point as our desired one 1. Based on

this choice, we define the attitude error

eq := [1− η̃, ǫ̃] (12)

together with the angular velocity error

eω := ω̃ = ω − ωd (13)

and the problem is thus to achieve limt→∞ [eq, eω] → 0.

In accordance with general kinematic relations we have

ėq = Te (eq) eω (14)

1Note however that the negative equilibrium point still persists in our
closed loop, and we are therefore not able to claim any global stability
properties. In addition, the term global in general refers to the whole state
space R

n (cf. [34]), while our system evolves on M = S3 × R
3.

with

Te (eq) =
1

2

[

ǫ̃
⊤

η̃I+ S (ǫ̃)

]

. (15)

Moreover, the error dynamics are obtained from (13) and (6)

as

Jėω = τ − S (ω)Jω − Jω̇d . (16)

Further, we note that 4T⊤
e Te = I, which can be shown by

direct calculation and using S⊤(ǫ̃) = −S (ǫ̃), S⊤(ǫ̃)S (ǫ̃) =
ǫ̃
⊤
ǫ̃I− ǫ̃ǫ̃

⊤ and (2). We also note that 2T⊤
e (eq) eq = ǫ̃, and

from differentiation of this result we obtain

Ṫ⊤

e (eq) eq =
1

2
˙̃ǫ−T⊤

e (eq) ėq (17)

=
1

4
[η̃I+ S (ǫ̃)] eω −

1

4
eω (18)

=Geω (19)

with

G =
1

4
[η̃I+ S (ǫ̃)− I] . (20)

To fit with the choice of equilibrium point, it is also assumed

that the scalar parameter of the quaternion is always positive,

such that

η̃ (t) > 0 , ∀ t ≥ t0 . (21)

B. Control solution

Having appropriately defined our control problem, we are

now ready to state our main results, and the idea is the

following. For small spacecraft, light and small is better in

terms of instrumentation. However, sensors are necessary to

provide continuous attitude determination, and combinations

of solar sensors and magnetometers are common choices.

Magnetometers are also commonly used in the initial detum-

bling phase when the angular velocity is too high to achieve

attitude determination; by using a detumbling controller

based on magnetometer rate feedback the spacecraft angular

velocity may be reduced sufficiently to enter the operational

phase. One of the classical approaches to magnetic control,

and detumbling in particular, is the b-dot controller in [3],

which has later been reproduced in various ways (cf. [8]).

The idea for our control solution is to combine a b-dot

algorithm with a passivity-based control law, thus construct-

ing a control law without angular velocity measurements

in the common sense (i.e. by using gyroscopes, observers

and/or lead filters). The solution is based on the standard PD+

controller from [26], but where the derivative term is replaced

by magnetometer rate feedback. Moreover, some additional

terms have been included to compensate for magnetometer

coupling terms. This rationale may thus be summarized as

the following proposition:

Proposition 2: Assume that (2) and (21) hold, and that the

desired attitude qd (t), desired angular velocity ωd (t) and

desired angular acceleration ω̇d (t) are all bounded functions.
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Moreover, assume that the system dynamics (14)-(16), in

closed loop with the control law

τ =− kpT
⊤

e eq − kbS
(

ḃb
)

bb + Jω̇d + S (ωd)Jωd

+ kbS
⊤
(

bb
)

[

S
(

bb
)

ωd +Rb
i ḃ

i
]

(22)

with kp and kb as positive tuning parameters, is sufficiently

accessible according to Definition 1. Then the equilibrium

point [eq, eω] = 0 of the closed-loop system is uniformly

asymptotically stable (UAS).

Remark 3: Note that in Proposition 2 it is assumed that

the closed-loop system is sufficiently accessible according to

Definition 1, which puts a restriction on the available orien-

tations of the spacecraft relative to the surrounding magnetic

field. In particular, we assume that ‖S⊤
(

bb
)

S
(

bb
)

‖ ≥ δ >

0; however, since S
(

bb
)

is a skew-symmetric matrix, the

smallest eigenvalues of S⊤
(

bb
)

S
(

bb
)

is λ1 = 0, while the

other two eigenvalues are given as λ2 = λ3 =
(

bb
)⊤

bb.

Hence, the assumption of sufficient accessibility will not hold

for all orientations as a result of the nature of the magnetic

field. However, if such a situation occurs, the system will

lose its damping, and it is reasonable to assume that it will

thereby drift into an orientation where the closed-loop system

will regain sufficient accessibility.

Remark 4: The control law (22) assumes the knowledge

of magnetometer rates ḃb and ḃi. The magnetic field vector

is measured in Fb, and although the body frame magnetome-

ter rate ḃb may be extracted through a differentiation filter,

the inertial magnetometer rate ḃi is not as easily calculated.

One approach is to use (11), such that

ḃi = Ri
b

(

ḃb + S (ω)bb
)

(23)

however this requires knowledge of the actual angular rate

ω. Similarly, the control law (22) assumes the knowledge

of desired angular rate ωd and its derivative ω̇d, both

represented in Fb. The desired angular velocity is typically

given in F i, and hence the rate is easily extracted through

the coordinate transformation ωd = Rb
iω

i
d. However, the

derivative must be extracted from the relation

ω̇d = −S (ω)ωd +Rb
i ω̇

i
d (24)

and also this requiring knowledge of actual angular velocity.

Both of the above cases can be approximated using modified

relations (cf. [21]) where ω is replaced with ωd, such that

˙̂
bi = Ri

b

(

ḃb + S (ωd)b
b
)

(25)

and

˙̂ωd = −S (ωd)ωd +Rb
i ω̇

i
d = Rb

i ω̇
i
d . (26)

This will probably give some uncertainty in the initial

transient, but will provide a good approximation close to

the reference trajectory.

Remark 5: Also note that Proposition 2 is stated for the

case when (21) holds, and with the positive equilibrium

point as the chosen one; however, a similar argument may

be stated for the negative equilibrium point, in the case

when η̃ (t) < 0, ∀ t ≥ t0 (cf. [33]).

Proof: Inserting the control law (22) in (16) results in

Jėω =−kpT
⊤

e eq −kbS
(

ḃb
)

bb −S (ω)Jω (27)

+ S (ωd)Jωd + kbS
⊤
(

bb
)

[

S
(

bb
)

ωd +Rb
i ḃ

i
]

and using (11), together with the facts that for arbitrary

vectors u and v we have u⊤S (u) = −S(u)u = 0,

S⊤(u) = −S (u) and S (u)v = −S (v)u, we find that

Jėω =− kpT
⊤

e eq − kbS
⊤
(

bb
)

S
(

bb
)

eω

− S (ω)Jω + S (ωd)Jωd (28)

and the total closed-loop system is thus given by

ėq =Teeω (29)

Jėω =− kpT
⊤

e eq − kbS
⊤
(

bb
)

S
(

bb
)

eω

− S (ω)Jω + S (ωd)Jωd . (30)

To prove Proposition 2, we define the state vector χ =
[χ1,χ2] =

[

e⊤q Te, eω
]

, together with the Lyapunov function

candidate

V (χ) =
1

2
e⊤q kpeq +

1

2
e⊤ωJeω + λe⊤q TeJeω (31)

with λ > 0 as a design variable. By using the property in

(4) we obtain for the first term in (31) that

1

2
e⊤q kpeq =

1

2
kp

(

(1− η̃)
2
+ ǫ̃

⊤
ǫ̃

)

≤ kpǫ̃
⊤
ǫ̃ = e⊤q TekpT

⊤

e eq . (32)

At the other end, we have that

1

2
e⊤q kpeq ≥

1

2
e⊤q TekpT

⊤

e eq . (33)

Accordingly, we may write

V (χ) ≤
1

2
χ

⊤Pχ, P =

[

kpI λJ

λJ J

]

(34)

and it follows that V (χ) satisfies

1

4
pm‖χ‖2 ≤ V (χ) ≤

1

2
pM‖χ‖2 (35)

with pm and pM as the smallest and largest eigenvalue of

P, respectively. Employing the Schur complement (cf. [35]),

we find that the matrix P is positive for kp > 0 and

λ2 ≤
2kpjm
j2M

. (36)

By taking the derivative of (31) along the system trajectories

(29)-(30), and employing (13) and (17)-(19), we obtain

V̇ =− e⊤ω kbS
⊤
(

bb
)

S
(

bb
)

eω − e⊤ωS (ωd)Jeω (37)

− λe⊤q TekpT
⊤

e eq − λe⊤q TekbS
⊤
(

bb
)

S
(

bb
)

eω

− λe⊤q TeS (eω)Jeω − λe⊤q TeS (eω)Jωd

− λe⊤q TeS (ωd)Jeω + λe⊤ω JT
⊤

e Teeω + λe⊤ωJGeω .
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Rearranging terms and using (20) together with the facts that

4T⊤
e Te = I and 2T⊤

e eq = ǫ̃, we find that

V̇ =−λe⊤q TekpT
⊤

e eq −e⊤ω
[

kbS
⊤
(

bb
)

S
(

bb
)

+ S (ωd)J

−λ
1

4
J [η̃I− S (ǫ̃)]

]

eω − e⊤q Te

[

λkbS
⊤
(

bb
)

S
(

bb
)

−λS (Jωd) + λS (ωd)J
]

eω . (38)

Accordingly, we obtain the Lyapunov function derivative

V̇ (χ) = −χ
⊤Q (χ)χ , Q (χ) = [qij ] , i, j = 1, 2 (39)

with

q11 =λkpI

q12 = q⊤12 =
λ

2

(

kbS
⊤
(

bb
)

S
(

bb
)

− S (Jωd) + S (ωd)J
)

q22 = kbS
⊤
(

bb
)

S
(

bb
)

+ S (ωd)J− λ
1

4
J [η̃I− S (ǫ̃)] .

To verify negative definiteness of the Lyapunov function

derivative, we again employ Schur’s complement to obtain

that the matrix Q is positive definite if and only if both q11
and q22 − q21q

−1
11 q12 are positive definite. We first impose

an upper bound on the desired angular velocity, such that

‖ωd‖ ≤ βd, and also an upper bound on the magnetic field

vector bb, such that ‖S⊤
(

bb
)

S
(

bb
)

‖ ≤ βb. The latter is a

reasonable assumption, based on the physical nature of the

magnetic field. We also recollect the assumption of sufficient

accessibility, such that ‖S⊤
(

bb
)

S
(

bb
)

‖ ≥ δ. Hence, since

kp > 0 by definition, we find by taking the norm of the

submatrices in Q that the latter is positive definite if

λ ≤
2kp (kbδ − jMβd)

(kbβb + 2jMβd)
2 + jM

(40)

and to ensure λ > 0 we impose the restriction

kb >
jMβd

δ
. (41)

Hence, if the controller gain kb is chosen according to

(41), and the design constant λ is chosen according to (36)

and (40), we find that for all admissible χ, V (χ) is positive

definite and V̇ (χ) is negative definite, and in light of the

bound (35) it follows from standard Lyapunov arguments

that the equilibrium point [eq, eω] = 0 of the closed-loop

system is UAS.

Remark 6: Note that for both the special cases of setpoint

regulation such that ωd = 0, and cubic spacecraft such that

the matrix of inertial moments is given by J = jI, the gain

conditions are relaxed to the trivial kp > 0 and kb > 0. The

latter case follows from the loss of the term S (ωd)J in q22,

since this term becomes skew-symmetric when J = jI.

V. SIMULATIONS

To visualize the performance of the control solution, we

include simulations results of the system (14)-(16) in closed

loop with the control law (22). The spacecraft has moments

of inertia given by J = diag {0.017, 0.012, 0.015} kgm2,

and is set to orbit the Earth in a slightly elliptic orbit with

apogee altitude of 700 km and perigee altitude of 600 km,

with inclination of 75 degrees. This represents an almost

polar orbit with starting position for the spacecraft over the

equator. For simplicity, the magnetic field of the Earth is

simulated with a simple dipole model.

The initial conditions of the spacecraft are standstill with

an attitude of Θ (t0) = [−45 50 30]⊤ degrees, corresponding

approximately to q (t0) = [0.77 −0.44 0.29 0.37]⊤, and the

spacecraft is further commanded to track a nadir-pointing

trajectory. With this simulation setup, we find upper bounds

for the desired angular velocity and magnetic field vector as

βd = 1.1 · 10−3 and βb = 4.5 · 10−5, respectively, and the

bound for sufficient accessibility is set to δ = 2 ·10−5. Based

on these bounds, we satisfy the gain constraint in (41) with

kp = 5·10−7 and kb = 5·104. With these gains, the resulting

bound given by (36) and (40) is λ ≤ 7 · 10−11.

A simulation over 12000 seconds (approximately 2 orbits)

was performed, and the resulting attitude and angular veloc-

ity errors are shown in the two topmost plots in Fig. 1. The
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Fig. 1. Result of simulation over approximately two orbits. The plot shows
attitude error, angular velocity error and magnitude of damping term.

figure shows that the control law successfully stabilizes the

attitude and angular velocity, and enables the spacecraft to

track the desired trajectory. The bottommost plot in Fig. 1

shows the magnitude of the damping term, and it is seen that

this corresponds with the location of the spacecraft such that

its magnitude is smaller at the poles than at the equator. It

is also seen that the asymptotic convergence is faster at the

location where the damping term is larger. This effect is also

visible in Fig. 2, which shows that the Lyapunov function is
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constantly decaying, however that the convergence rate is

reduced when the spacecraft is close to the poles.
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Fig. 2. Evolution of the chosen Lyapunov function during the simulation.

VI. CONCLUSIONS

We have presented a solution to spacecraft attitude track-

ing control utilizing a passivity-based PD+ control solution

incorporating magnetometer rate feedback to obtain damping

effect instead of classical sensors for angular velocity. The

chosen equilibrium point of the closed-loop system has been

proved to be uniformly asymptotically stable (UAS) under

some mild gain conditions, and the performance of the

tracking controller has been visualized through simulations.
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