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Abstract— An approximation to the SDRE control law for
the non-linear benchmark problem is developed, which is a
solution of an optimal control problem. Although the SDRE
solution of the non-linear benchmark problem was derived
using the tools of optimal control, the SDRE control law is
not the solution of any optimal control problem. The new
control law is obtained by approximating the existing SDRE
control law in the least square sense from the class of control
laws that are of the form required for them to be solutions of
optimal control problems. Using the sum of squares tools the
optimality criterion is calculated. As a byproduct, the stability
of the approximating control law is established over a subset
of the non-linear benchmark problem’s state space.

I. INTRODUCTION

The benchmark problem for nonlinear control design was

introduced in [1]. A solution for the problem, using the state

dependent Riccati equation (SDRE) method was presented in

[2]. The paper showed by means of numerical simulations

that the SDRE based control law stabilized the system,

essentially over the entire state space of interest. The paper

further showed by comparing the state space trajectories

of the closed loop system with the numerically obtained

open loop optimal trajectories that the use of the state

dependent Riccati equation method results in a reasonable

approximation to the optimal control law. The question may

be asked: Is there an approximation to the SDRE control

law which is the solution of an optimal control problem?

The present paper derives such an approximation. If it can

be shown that the criterion function, associated with the

approximation of the SDRE controller is positive, then this

implies the stability of closed loop system [3].

Nearly all known approximate methods for the control

of nonlinear systems have been applied to the benchmark

problem. A selection of the methods is: LPV based method,

[4]; backstepping method [5], and [6]; LMI based [7]; a

controller based on a series expansion of the HJBI equation,

[8]; fuzzy control based approach [9]; and an experimental

implementation of some control laws [10].

The paper relies on the well developed theory of the

inverse optimal control problem, and the theory of posi-

tive polynomials. The inverse optimal control problem is

concerned with the following: given a control law, find, if

possible, a criterion function such that the given control

law is a solution of the optimal control problem with the

calculated criterion function. For the linear case, conditions

for the existence of a quadratic criterion function may be

found in [11], and [12] while a linear matrix inequality
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based calculation was presented in [13]. The inverse optimal

control problem was extended to the nonlinear case in [14].

The use of positive polynomials in control was presented

in [15], [16], and [17]. Many problems, including the con-

struction of Lyupanov functions, in nonlinear control can

be formulated as search problems for polynomials that are

globally positive. Proving the global positivity of a polyno-

mial is a difficult problem, but proving that a polynomial

can be expressed as a sum of squares expression (SOS) is

tractable. The Matlab add on software SOSTOOLS [18] (sum

of squares optimization toolbox for Matlab) provides an easy

to use interface. The program reformulates sum of squares

programs as semidefinite programs, which can be solved very

efficiently by several readily available programs, for example

by SeDuMi [19].

The paper is organized as follows: In section II the

benchmark problem for nonlinear control design is presented.

In the following section III, the problem of finding an

approximation for the SDRE based control of [2], which is

also the solution of an optimal control problem is introduced.

In the subsequent section IV the sum of squares formulation

of the approximation problem is presented. The results of

the approximation are compared to the SDRE solutions, by

means of numerical simulations in section VI. The paper

closes with summary and conclusion section.

II. THE NONLINEAR BENCHMARK PROBLEM

AND ITS SDRE SOLUTION

Here the benchmark problem [1] is briefly reviewed. The

system as shown in figure 1, consists of a cart of mass M
constrained to move horizontally, and connected to a fixed

wall by a spring of stiffness k. A proof mass, with mass m,

and moment of inertia I about its center of mass is free to

rotate about a point fixed to the cart. The distance from the

proof mass pivot point to its center of mass is e. The control

signal is the torque, N applied about the proof mass pivot

point. There is in addition a horizontal disturbance force F
acting on the cart. The purpose of the controller is to stabilize

the system, so that it exhibits good settling behavior and to

counteract the external disturbance. Let q and q̇ represent the

translational position and velocity of the cart, and let θ and

θ̇ denote the angular position and velocity of the proof mass.

When θ = 0 the proof mass is perpendicular to the motion

of the cart. The equations of motion of the system are

(M + m)q̈ + kq = −me(θ̈ cos θ − θ̇2 sin θ) + F (1)

(I + me2)θ̈ = −meq̈ cos θ + N (2)
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Fig. 1. The nonlinear benchmark problem

With the normalizations,

ξ =

√

M + m

I + me2
q (3)

τ =

√

k

M + m
t (4)

uN =
M + m

k(I + me2)
N (5)

w =
1

k

√

M + m

I + me2
F (6)

the equations of motion become,

ξ̈ + ξ = ǫ
(

θ̇2 sin θ − θ̈ cos θ
)

+ w (7)

θ̈ = −ǫξ̈ cos θ + uN (8)

where all the differentiations are with respect to the normal-

ized time, τ . The parameter ǫ,

ǫ =
me

√

(I + me2)(M + m)
(9)

represents the coupling between the rotational and transla-

tional degrees of freedom.

The first step in the SDRE solution of the benchmark

problem [2] is to define new variables, [x1, x2, x3, x4]
′ =

[ξ, ξ̇, sin θ, θ̇ cos θ]. Once this is accomplished the non-

dimensional equations written in first order form are,

ẋ = f(x) + g(x)u + d(x)w (10)

where

u = uN cos θ (11)

f(x) =











x2
−x1(1−x2

3
)+ǫx3x2

4

(1−x2

3
)∆

x4
ǫ(1−x2

3
)2x1−x3x2

4

(1−x2

3
)∆











(12)

g(x) =









0
− ǫ

∆
0
1
∆









(13)

TABLE I

BENCHMARK PROBLEM PARAMETER VALUES

Description Parameter Value Units

Cart mass M 1.3608 Kg
Arm mass m 0.096 Kg
Arm eccentricity e 0.0592 m

Arm inertia I 0.0002175 Kg-m2

Spring stiffness k 186.3 N/m
Coupling parameter ǫ 0.200 —-

d(x) =









0
1
∆
0

−ǫ(1−x2

3
)

∆









(14)

∆ = 1 − ǫ2 + ǫ2x2
3 (15)

The values of the parameters of the problem are shown in

table I.

A. The SDRE Solution

Next, the SDRE solution from [2] is reviewed. The solu-

tion of a nonlinear control problem using the SDRE method

consists of the following steps:

1) Define a suitable criterion function

2) Express the dynamics in state dependent coefficient

form.

3) Solve the resulting LQ type control problem point wise

for each value of x.

4) The controller is obtained by the usual LQ type

formula for the optimal controller, but now all the

coefficients depend on the state x.

The criterion function used in the solution of the benchmark

problem was

J =
1

2

∫

∞

0

[x′Q(x)x + u′R(x)u] dt (16)

where

Q(x) =









10 0 0 0
0 0.1 0 0
0 0 0.1 0
0 0 0 0.1/(1 − x2

3)









(17)

and

R(x) =
1

1 − x2
3

(18)

To express the dynamics in state dependent form, (10) is

written as

ẋ = A(x)x + B(x)u (19)

with

A(x) =











0 1 0 0

− 1
∆ 0

ǫx2

4

(1−x2

3
)∆

0

0 0 0 1
ǫ−ǫx2

3

∆ 0 0 − x3x4

(1−x2

3
)∆











(20)

and

B(x) = g(x) (21)

7136



For the purpose of obtaining the SDRE solution the x

dependencies in the matrices A(x), B(x), Q(x), and R(x)
are ignored, and the resulting optimal control problem is

solved for each value of the state variable x. The solution is

obtained by solving the Riccati equation for each value of x

A′(x)P + PA(x) − PB(x)R−1(x)B′(x)P

+Q(x) = 0
(22)

The resulting Riccati equation solution is a function of the

state x. The feedback controller is

u = −R−1(x)B′(x)P (x)x (23)

The resulting controller has the same structure as the LQ

controller, except that all the coefficients are state dependent.

The SDRE controller, by its construction, ensures that there

is a neighborhood near the equilibrium value of x = 0 such

that the closed loop system is asymptotically stable, provided

certain conditions are met, but there is no a priory theory

promising global stability. In practice, in many cases the

resulting controller is stable for large deviations from the

equilibrium value.

III. THE APPROXIMATION

An approximation ũ(x) to the SDRE controller (23) is

sought such that ũ(x) is a solution of a HJBI. For this pur-

pose a positive definite cost-to-go function V (x) is required

such that it satisfies the equation

min
u

{

u′
R

2
(x)u + ∇V ′(x) [f(x) + g(x)u]

}

+Q̃(x) = 0

(24)

for some positive Q̃(x), which may be differ from

x′Q(x)x/2 in (16). The indicated minimization can be

readily performed to obtain

ũ = −R−1(x)g′(x)∇V (x) (25)

which when substituted into the HJBI (24) yields

Q̃(x) −∇V ′(x)g
R−1

2
g′∇V + ∇V ′(x)f = 0 (26)

The function Q̃(x) is considered an unknown, but is required

to be positive for the problem to make sense. The function

R(x) is taken as known from (18).

In general there does not exist a function V (x) such that

the SDRE controller (23) is expressible as

u(x) = −R−1(x)g′(x)∇V (x) (27)

as this would require that

∂ (P (x)x)i

∂xj

=
∂ (P (x)x)j

∂xi

(28)

which is a generalization to n dimensions of the well known

condition that a vector function is expressible as a gradient

of a scalar function if and only if its curl is equal to zero.

(If P (x) is symmetric and has no x dependence, then the

conditions are satisfied.)

Ideally the approximation problem should be combined

with the calculation of V (x) and Q̃(x) in a single step. This

however leads to a difficult problem. A necessary condition

that ũ(x) should satisfy is that it should be expressible in the

form (25). In this paper the approach taken is first to find a

polynomial function V0(x), which when substituted for V (x)
in (25) results in a controller ũ(x) which approximates the

SDRE controller u(x) in the least squares sense. The approx-

imation in the least squares sense was chosen in the interest

of simplicity and tractability. The approximation requirement

defines the cost to go function V (x) only partially so that

some freedom remains to satisfy the positivity constraints. In

the second step the cost to go function V (x) is calculated,

such that ũ(x) is unchanged, but the positivity requirements

are satisfied. Although there is no a priory reason to assume

that a suitable cost to go function which satisfies the HJBI

equation exists, the calculations show that specifically for the

nonlinear benchmark problem a suitable cost to go function

V (x) can be found.

There is a certain similarity here to the well known inverse

optimal control problem. The solution used here may be

viewed as an extension of the LMI based conditions in [13],

p 147 to polynomial systems.

Here V0(x) is restricted to be a polynomial, and in fact

because f is an odd function, and g is an even function of x,

V0(x) may be restricted to contain only terms whose sum of

exponents are even. The constraints V (x) > 0 and Q̃(x) >
0 in this paper are replaced by an easily tested sufficient

condition for the positivity of a polynomial is used, namely

that the polynomial is expressible as a sum of squares (SOS).

This sufficient condition is presented in the next section.

IV. THE SOS FORMULATION OF THE

APPROXIMATION

At this point the approximating ũ(x) controller has been

obtained. The next problem addressed here is:

• Find polynomial functions, V (x) > 0 and Q̃(x) > 0
such that the functions satisfy (26), and

• constrain V (x) so that the controller ũ(x) in (25)

remains unchanged by requiring

R−1(x)g′(x)∇V (x) = R−1(x)g′(x)∇V0(x) (29)

A. SOS Methods

The purpose of this section is to provide a very brief

introduction to the main ideas of SOS methods. This is done

via an example from [15].

Suppose that it is required to establish that the polynomial

P (x) is positive semidefinite

P (x) = 4x2
1 + 4x3

1x2 − 7x2
1x

2
2 − 2x1x

3
2 + 10x4

2 (30)

If there exists a matrix S > 0 such that

P (x) = z′Sz (31)

where

z′ =
[

x2
1 x2

2 x1x2

]

(32)
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TABLE II

ELLIPSOID AXES LENGTHS

Axis length

l1 1.5
l2 1.4
l3 1
l4 1.5

then obviously P (x) ≥ 0. A necessary condition for the

equality of (30) and (31) may be derived by equating

coefficients. The derived condition for the equality results

in a matrix

S =





4 −λ 2
−λ 10 −1
2 −1 −7 + λ



 (33)

for all values of λ. Finding a λ such that S ≥ 0 is a

semidefinite program, which is solvable using one of the

very efficient codes available. In this case λ = 6 results in

S ≥ 0, proving that (30) is positive semidefinite.

B. The Details of the Approximation

On examining the SDRE solution in [2], the region of

interest for the problem may be confined to the ellipsoid

R(x, s) =
x2

1

l21
+

x2
2

l22
+

x2
3

l23
+

x2
4

l24
− s2 ≤ 0 (34)

The lengths of the ellipsoid axes are shown in table II. When

s = 1 the entire region of interest is covered; smaller values

of s represent subsets of the region of interest. In this paper

s < 1 for all cases studied.

In general, the least squares approximation only partially

defines V (x). If V (x) is a second order polynomial, there

are 10 coefficients to determine, whereas there are only

4 coefficients in ũ(x); if a fourth order approximation is

employed, 45 coefficients are needed to determine in V (x),
but there are only 24 coefficients in a third order polynomial

ũ(x).
Since R−1(x) 6= 0, (29) may be simplified to

g′(x)∇V (x) = g′(x)∇V0(x) (35)

Substituting (35) in (26),

Q̃(x) −∇V ′

0(x)g
R−1

2
g′∇V0 + ∇V ′(x)f = 0 (36)

which is now linear in ∇V (x). At this point, the problem is

to find positive V (x) and Q̃(x) in accordance with (36) and

(35). The equality (36) contains quotients of polynomials.

To make use of SOS methods, it needs to be reformulated

as a polynomial. To accomplish this, the denominator of

each term in the dynamics of the benchmark problem (10)

is expressed explicitly,

ẋ =
1

(1 − x2
3)∆

F (x) +
1

∆
G(x)u +

1

∆
D(x)w (37)

where

f(x) =
F (x)

(1 − x2
3)∆

(38)

g(x) =
G(x)

∆
(39)

d(x) =
D(x)

∆
(40)

Substituting (38), and (39) into (36) yields,

Q̃(x)−∇V ′

0(x)
G

∆

R−1

2

G′

∆
∇V0(x)+

∇V ′(x)F

(1 − x2
3)∆

= 0 (41)

Since in the largest region of interest, in this paper, 0 < s <
1, the inequality (1 − x2

3)∆
2 > 0 holds, multiply by this

factor to obtain

Q(x) =
1

2
∇V ′

0(x)GG′∇V0(x)(1 − x2
3)

2

−
∆

2
[∇V ′(x)F + F ′∇V (x)]

(42)

where

Q(x) = Q̃(x)(1 − x2
3)∆

2 (43)

and the explicit form of R(x) from (18) was used.

The positivity requirement Q̃(x) is now replaced by one

for Q(x). This positivity needs to be enforced only over the

region R(x, st) ≤ 0 (34). A sufficient condition for this is

the existence of a positive polynomial λ(x), such that

Q(x) + λ(x)R(x, st) ≥ 0 (44)

The SOS problem consists of

1) The polynomials

a) V (x) − ǫV ||x||2,

b) λ(x),
c) Q(x) − ǫQ||x||

2 + λ(x)R(x, st)

are SOS polynomials,

2) the equality constraint (35),

which is now replaced by

G′(x)∇V (x) = G′(x)∇V0(x) (45)

and ǫV = 0.05 and ǫQ = 0.01 are small positive numbers

to ensure the positive definiteness of V (x) and Q(x). These

requirements translate directly to an SOS program.

V. RESULTS

Three cases were studied. In the first case the SDRE

solution (23) was used but with x = 0 in all the coefficient

matrices,

u = −R−1(0)B′(0)P (0)x (46)

This is equivalent to linearizing the benchmark problem

about x = 0 and using the LQ solution of the linearized

problem. The second case a quadratic approximation is used

for V (x) in generating ũ(x); while in the third case a quartic

approximation was used. The results are summarized in table

III. The least squares approximation relied on the use of

random values for x uniformly distributed in the ellipsoid

R(x, sa) for the second and third cases. The sa values used

for the second and third cases are shown in column 3 in table

III. The last column of table III shows st, which defines the

size of the region where there was a feasible solution for

the SOS program. This parameter also defines the size of
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TABLE III

RESULTS

Case Approximation order sa st

1 1 —- 0.3
2 1 0.5 0.5
3 3 0.75 0.625

the invariant region for the control ũ(x). For cases 1 and 2

λ(x) was a 6th order polynomial, and for the third case it

was an 8th order polynomial.

The control laws actually used in the three cases were

• case 1

ũ(x) = 2.549x1 + 1.3535x2 − 0.30358x3 − 0.99225x4

(47)

• case 2

ũ(x) = 2.6478x1 + 1.2388x2 − 0.25616x3 − 1.2605x4

(48)

• case 3

ũ(x) = −0.0066459x3
1 − 0.0028213x2

1x2

+0.013489x2
1x3 − 0.00058937x2

1x4 − 0.020082x1x
2
2

−0.0043404x1x2x3 − 0.0066176x1x2x4 + 1.4x1x
2
3

−0.68271x1x3x4 + 0.48273x1x
2
4 + 2.5847x1

−0.0013398x3
2 − 0.0053901x2

2x3

+0.0074509x2
2x4 + 1.1873x2x

2
3

+2.7761x2x3x4 − 2.3855x2x
2
4 + 1.3747x2

+0.078168x3
3 − 2.0677x2

3x4 + 0.49352x3x
2
4

−0.28955x3 − 1.1507x3
4 − 0.95685x4

(49)

Although the control laws for cases one and two do not

differ markedly, the use of the least squares approximation

to calculate the controller based on the SDRE solution results

in a substantially bigger invariant set for case two. On the

other hand the use of a third order approximation in case

three results in only a small increase in the invariant set.

The resulting functions V (x) and Q(x) are fourth order and

tenth order polynomials in four variables and are not included

in the paper.

The question may be asked: How tight are the bounds

calculated for the invariant sets? This is answered in the

next section, where the state trajectories of the system

using the approximated control laws are compared with the

state trajectories corresponding to the use of the full SDRE

controller.

VI. SIMULATION RESULTS

The third order approximation to the SDRE derived con-

trol law was used to simulate the closed loop performance

in the benchmark problem. The simulation results, together

with the corresponding results from the SDRE based control

law are shown in the figures 2–5 Figures 2 and 3 show

the responses of the approximate and the SDRE controller

when the initial state is [1, 0.5, 0, 0], which corresponds to
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Fig. 2. Pendulum bob phase plane response, initial condition 1
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Fig. 3. Cart position and velocity, initial condition 1
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Fig. 4. Pendulum bob phase plane response, initial condition 2
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Fig. 5. Cart position and velocity, initial condition 2

s = 0.75. In this case the cart position and velocity follow

closely the corresponding SDRE position and velocity, while

the bob position and velocity approximate the corresponding

SDRE trajectory a bit less well. According to the SOS

based stability calculation this initial point is outside the

invariant set so that the SOS based stability calculation is

conservative. For the second set of simulations, the initial

state was [1.2, 0.6, 0, 0], for an s = 0.9. In this case there is

still reasonable agreement in the cart position and velocity

plot in figure 5, but the bob position and velocity phase plot

does show some deviation from the corresponding paths in

the SDRE case. In assessing the tightness of the stability

bound it should be noted that the paper set out to calculate

an approximation to the SDRE controller, which is a solution

to a HJBI equation. The calculated running cost penalty

function Q̃(x) was evaluated outside the region indicated

by the parameter st in table III, and it was found that Q̃(x)
takes on negative values for some values of x corresponding

to st = 0.7, so as far as the problem that was set out in this

paper there is only a small amount of conservatism.

VII. CONCLUSION AND SUMMARY

An approximation has been derived for the SDRE control

law for the non-linear benchmark problem, that is also the

solution of an optimal control problem. The approximated

control law is obtained by approximating the SDRE control

law in the least squares sense from among the class of control

laws that are solutions of optimal control problems. For the

optimal control problem to make sense the criterion function

was required to be positive. The positivity was established

using the sum of squares relaxation of the positivity of

a polynomial. This then implies the asymptotic stability

of the controlled system. The approximated controller was

compared to the SDRE controller by means of a closed

loop simulation, and it was shown that it is a reasonable

approximation to the SDRE based controller. This then

shows that at least inside a subset of the original benchmark

problem an approximation of the SDRE controller can be

found such that it is a solution of an optimal control problem,

and it is possible to calculate a positive criterion function for

this optimal control problem. The simulation results show

that the calculated invariant set under approximates the actual

invariant set.
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