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Abstract— This paper addresses the convergence and stability
analysis for iterative processes such as numerical iterative
algorithms by using a novel trajectory distance based approach.
Iterative dynamics are widespread in distributed algorithms
and numerical analysis. However, efficient analysis of conver-
gence and sensitivity of iterative dynamics is quite challenging
due to the lack of systematic tools. For instance, the trajectories
of iterative dynamics are usually not continuous with respect
to the initial condition. Hence, the classical dynamical systems
theory cannot be applied directly. In this paper, a trajectory
distance based Lyapunov approach is proposed as a means to
tackling convergence and sensitivity to the initial condition of
iterative processes. Technically the problem of convergence and
sensitivity is converted into finiteness of trajectory distance and
semistability analysis of discrete-time systems. A semidefinite
Lyapunov function based trajectory distance approach is pro-
posed to characterize convergence and semistability of iterative
dynamics. Two examples are provided to elucidate the proposed
method. Finally, the proposed framework is used to solve the
convergence and stability of iterative algorithms developed for
balanced resource allocation and damage mitigation problems
under adversarial attacks.

I. INTRODUCTION

Suppose we want mobile sensors to detect the possible

adversarial attacks and allocate the resources among different

locations to counter losses; a primary question is: how

should mobile sensors fulfill these global tasks by moving

them based on merely neighboring information among the

region? In operations research and management sciences, this

problem is always recast as an optimization problem solved

by one or several iterative algorithms. Now there are a lot of

issues arising from performing this iterative process on the

computer. The first question is: can you guarantee that the

iterative process will stop eventually? This is related to the

convergence problem for iterative dynamics. It seems that

the classical dynamical systems theory provides vast tools

on the convergence and stability analysis of discrete-time

dynamical systems. Unfortunately, many iterative dynamics

do not belong to dynamical systems due to the absence of

the continuity property. Hence, it is quite hard to apply the

existing results for dynamical systems to iterative processes.

The second question is: how sensitive the iterative process

will be with respect to the initial input value change or

some parameter perturbation in the iterative process? This
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is related to the sensitivity analysis of iterative processes.

In the dynamical systems theory, the relevant problems are

continuous dependence of the solutions with respect to the

initial condition and stability theory. This resemblance sheds

light on our sensitivity research.

To answer the first question, the first part of this paper

develops a trajectory distance based Lyapunov approach

to address convergence analysis of iterative dynamics. The

trajectory distance method converts the convergence analysis

into a finiteness test of an infinite, contingent trajectory

distance series. The transformation helps us leverage many

existing results and tools from dynamical systems theory to

prove convergence of a non-dynamical system. By incorpo-

rating the Lyapunov-based approach, the proposed method

creates a great flexibility of studying convergence for a quite

broad spectrum of iterative dynamics.

To answer the second question, the second part of this

paper focuses on the sensitivity analysis of iterative dynamics

with respect to the initial condition. The motivation origi-

nates from the dynamical systems theory. Since the stability

theory in dynamical systems deals with the sensitivity of

the solutions with respect to the initial condition, we borrow

this idea to extend it to the iterative dynamics case. More

specifically, we use the recently developed notion of semista-

bility [1]–[5] to address the sensitivity of the iterative process

with respect to the initial condition change. We combine the

trajectory distance method with the Lyapunov approach to

derive a sufficient stability test for iterative dynamics. Finally,

we apply these methods to address the convergence and

stability of iterative algorithms depicting balanced resource

allocation and damage mitigation problems in networks.

II. A TRAJECTORY DISTANCE BASED LYAPUNOV

ANALYSIS

A. Convergence via Trajectory Distance

Consider the iterative dynamics given by

x(t + 1) = F (t, x(t)), x(t0) = x0,

t ∈ Z+, t ≥ t0, (1)

where t0 ∈ Z+, x(t) ∈ R
q , and F : Z+ × R

q →
Rq is a mapping which is not necessarily continuous. A

solution sequence or discrete trajectory to (1) with the initial

condition x(t0) = x0, denoted by s(·, t0, x0), is defined as

the map of the iterative dynamics given by s : Z+×Z+×Rq

which satisfies i) the consistency property s(t0, t0, x0) = x0
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and ii) the semigroup property s(k, t0, s(κ, t0, x0)) = s(k +
κ, t0, x0) for all x0 ∈ Rq, t0 ∈ Z+, and k, κ ∈ Z+. We

assume that a solution s(t, t0, x) to (1) exists for all t ≥ t0,

t ∈ Z+, and x ∈ R
q, that is, we only consider (1) with

complete solutions. But these solutions are not necessarily

unique. A sufficient condition to guarantee the existence

of complete solutions for (1) is to assume that F (·, ·) is

piecewise continuous.

It is important to note that in general (1) is not a

dynamical system due to the lack of continuity of the

solution with respect to the initial condition. The continuous

dependence on the initial condition is crucial in arriving at

many conclusions in dynamical systems theory. Hence, one

has to be very careful about applying the existing results

for dynamical systems described by the similar form to the

iterative dynamics (1).

On the other hand, many notions and results from dy-

namical systems theory can be borrowed to develop relevant

results for iterative dynamics. In this paper, we follow this

idea to develop a series of results on convergence and

sensitivity to the initial condition for (1). Before we proceed,

some notions enlightened by dynamical systems theory are

given as follows. More specifically, we say a set M ⊆
Rq to be strongly positively invariant (respectively, weakly

positively invariant) with respect to (1) if for every solution

(respectively, one solution) s(t, t0, x), s(t, t0, x) ∈ M for all

x ∈ M and t ≥ t0.

Let G ⊆ R
q be strongly positively invariant with respect

to (1). A function V : G → R is said to be proper relative

to G if V −1(K) is a relatively compact subset of G for all

compact subsets K of R. The following result is a criterion

for boundedness of the solutions to (1).

Lemma 2.1: Consider (1). If there exists a continuous

function U : G → R that is proper relative to G and such

that U(x) ≥ 0 and U(F (t, x)) ≤ U(x) for all x ∈ G and

t ≥ t0, then every solution to (1) in G is bounded relative to

G for all t ≥ t0.

Next, we give the definition of convergence of a solution

to (1). We say a solution s(t, t0, x) to (1) is convergent on G
if limt→∞ s(t, t0, x) exists for all x ∈ G and t ≥ t0. A point

p ∈ G is a positive limit point of the trajectory s(t, t0, x) if

there exists a monotonic sequence {kn}∞n=0 of nonnegative

numbers, with limn→∞ kn = ∞, such that limn→∞ x(kn) =
p. The set of all positive limit points of all solutions of the

form s(t, t0, x) is the positive limit set ω(t0, x).
Lemma 2.2: Assume that every solution to (1) in G is

bounded relative to G. Then ω(t0, x) is nonempty and closed.

Furthermore, s(t, t0, x) → ω(t0, x) as t → ∞.

The following result provides a new Lyapunov-type test

for the convergence of (1).

Theorem 2.1: Consider (1). Assume that every solution to

(1) in G is bounded relative to G. Furthermore, assume there

exists a continuous function V : G → R such that V (x) ≥ 0
and V (F (t, x)) ≤ V (x) for all x ∈ G and t ≥ t0. Let

R , {x ∈ G : V (F (t, x)) = V (x), t ≥ t0} and suppose that

there exists a set U containing R that is relatively open in G
and a lower semicontinuous, real-valued function g defined

on a closed interval containing V (U) such that

‖F (t, x) − x‖ ≤ g(V (x)) − g(V (F (t, x))), ∀t ≥ t∗ (2)

on U for some t∗ ≥ t0. Then every solution to (1) is

convergent on G. Furthermore, limt→∞ x(t) ∈ R.

Remark 2.1: The function U in Lemma 2.1 is not neces-

sarily the same as the function V in Theorem 2.1.

Remark 2.2: For the system (1), the infinite series
∑∞

t=0 ‖x(t + 1) − x(t)‖ represents the normed distance of

the solution to (1). Thus, the last part of the proof for

Theorem 2.1 implies that if every solution to (1) has a finite

distance, then this solution is convergent on G. Indeed, the

first part of the proof for Theorem 2.1 essentially shows that

if the inequality (2) is satisfied, then every solution in G has

a finite distance. Hence, we call this analysis a trajectory

distance based approach.

B. Sensitivity via Semistability

The previous subsection uses the trajectory distance ap-

proach to characterize the convergence of iterative dynamics

(1). In this subsection, we further utilize this approach

to exploit the sensitivity issue of (1) with respect to the

initial condition. In dynamical systems theory, this issue

is addressed by the continuous dependence of (1) with

respect to the initial condition and stability theory. Since

in general the solution to (1) loses the continuity property,

it is more reasonable to borrow stability theory to develop

relevant results for (1). More specifically, we use the recently

developed notion of semistability [1]–[5] to characterize the

sensitivity of (1) with respect to the initial condition. This is

due to the reason that the convergence behavior of iterative

dynamics is more aligned with the notion of semistability in

dynamical systems.

To begin our discussion, we first introduce the definition

of semistability for (1). This new concept is motivated from

semistability theory of autonomous/switched systems [2],

[5] and time-varying continuous-time/nonsmooth dynamical

systems [6], [7]. To state this new concept, we define a

equilibrium point of (1) to be a point z ∈ Rq satisfying

F (t, z) = z for all t ≥ t0. The set of all the equilibrium

points of (1) is denoted by E . We assume that E is nonempty.

Definition 2.1: i) An equilibrium point xe ∈ E ∩ G of

(1) is Lyapunov stable relative to G if, for every ε > 0
and t0 ∈ Z+, there exists δ = δ(ε, xe, t0) > 0 such that

x(t0) ∈ Bδ(xe) ∩ G implies that x(t) ∈ Bε(xe) ∩ G for all

t ≥ t0 and all the solutions x(t), where Bε(x) denotes the

open ball centered at x with radius ε. The iterative dynamics

(1) is Lyapunov stable relative to G if every equilibrium point

in E ∩ G is Lyapunov stable relative to G.

ii) An equilibrium point xe ∈ E ∩ G of (1) is semistable

relative to G if it is Lyapunov stable relative to G and, for

every t0 ∈ Z+, there exists δ = δ(xe, t0) > 0 such that

x(t0) ∈ Bδ(xe) ∩ G implies that all the solution sequences

of the form {x(t)}∞t=t0
converge to Lyapunov equilibria in

E ∩ G. The iterative dynamics (1) is semistable relative to G
if every equilibrium point in E ∩ G is semistable relative to

G.
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Lemma 2.3: Let x ∈ G. If a point z ∈ ω(t0, x) ∩ G
is a Lyapunov stable equilibrium point relative to G, then

limt→∞ s(t, t0, x) = z.

Lemma 2.4: Consider (1) and xe ∈ E ∩G. If there exists a

lower semicontinuous function U : G → R such that U(·) is

continuous at xe, U(xe) = 0, U(x) > 0 for all x ∈ G\{xe},

and U(F (t, x)) ≤ U(x) for all x ∈ G and t ≥ t0, then xe is

Lyapunov stable relative to G.

Theorem 2.2: Assume that all the conditions in Theo-

rem 2.1 hold. Furthermore, assume that every point in R
is a Lyapunov stable equilibrium point relative to G. Then

the iterative dynamics (1) is semistable relative to G.

As we conclude this subsection, we present two examples

to illustrate the proposed method. The first example is a

discrete-time switched system.

Example 2.1: Consider the iterative dynamics given by

x(t + 1) = fσ(t)(x(t)), x(0) = x0, t ≥ 0, (3)

where x(t) ∈ R3, σ(t) = 0 if t is even and σ(t) = 1 if t is

odd,

f0(x) =





(1 − µ(t))|x2| + µ(t)|x3|
(1 − µ(t))|x3| + µ(t)|x1|
(1 − µ(t))|x1| + µ(t)|x2|



 , (4)

f1(x) =







(1 − µ(t))|x1| + µ(t)
2 |x2| + µ(t)

2 |x3|
(1 − µ(t))|x2| + µ(t)

2 |x3| + µ(t)
2 |x1|

(1 − µ(t))|x3| + µ(t)
2 |x1| + µ(t)

2 |x2|






, (5)

µ(·) is piecewise continuous, and 0 < inft∈[0,∞) µ(t) ≤
supt∈[0,∞) µ(t) < 1. First, let G = R3 and consider the

function U(x) = ‖x‖1, where ‖ · ‖1 denotes the 1-norm

on R3. Clearly, U(x(t + 1)) − U(x(t)) = 0, t ∈ Z+.

Furthermore, note that U(x) is positive definite, and hence, is

proper with respect to R3. Thus, it follows from Lemma 2.1

that all the solutions to (3) are bounded.

Next, consider the function V (x) =
∑3

i=1

∑3
j=1 ||xi+j |−

xi|, where x4 = x1 and x5 = x2. Note that

|xi+1(t + 1) − xi(t)|
≤ (1 − µ(t))||xi+1(t)| − xi(t)|

+
µ(t)[3 + (−1)t+1]

4
||xi+2(t)| − xi(t)|

+
µ(t)[1 + (−1)t+1]

4
||xi+3(t)| − xi(t)|

≤ ρ

3
∑

j=1

||xi+j(t)| − xi(t)|, (6)

where ρ = supt∈[0,∞){1 − µ(t), 1
4µ(t)[3 +

(−1)t+1], 1
4µ(t)[1 + (−1)t+1]} which is a constant

between 0 and 1, for every i = 1, 2, 3 and every t ≥ 0.

Thus,

‖x(t + 1) − x(t)‖1 ≤ ρ
3

∑

i=1

3
∑

j=1

||xi+j(t)| − xi(t)|

= ρV (x(t)), t ∈ Z+. (7)

On the other hand, since V (x(t + 1)) ≤
ξ
∑3

i=1

∑3
j=1 ||xi+j(t)| − |xi(t)|| ≤ ξV (x(t)), t ∈ Z+,

where ξ = supt∈[0,∞){|1−2µ(t)|, µ(t)} which is a constant

between 0 and 1, it follows that V (x(t + 1)) ≤ V (x(t)) and

V (x(t)) ≤ (1/(1 − ξ))[V (x(t)) − V (x(t + 1))], t ∈ Z+,

and hence, for every t ≥ 0, ‖x(t + 1) − x(t)‖1 ≤
(ρ/(1 − ξ))[V (x(t)) − V (x(t + 1))]. Thus, with

g(x) = (ρ/(1 − ξ))x, it follows from Theorem 2.1

that all the solutions are convergent.

Finally, to show Lyapunov stability of (3) relative to G =
{x ∈ R3 : xi ≥ 0, i = 1, 2, 3}, note that (3) can be rewritten

as x(t + 2) = A2(t + 1)A1(t)x(t) for even t ≥ 2 and x(t +
2) = A1(t + 1)A2(t)x(t) for odd t ≥ 1, where

A1(t) =





0 1 − µ(t) µ(t)
µ(t) 0 1 − µ(t)

1 − µ(t) µ(t) 0



 , (8)

A2(t) =







1 − µ(t) µ(t)
2

µ(t)
2

µ(t)
2 1 − µ(t) µ(t)

2
µ(t)
2

µ(t)
2 1 − µ(t)






. (9)

Note that A1(t) and A2(t) are nonnegative matrices for

all t ≥ 0. Furthermore, the row sums or the column

sums for both A1(t) and A2(t) are 1 for all t ≥ 0.

Then it follows from the Perron-Frobenius theorem [8] that

‖A1(t)‖ ≤ 1 and ‖A2(t)‖ ≤ 1 for all t ≥ 0. Next, note

that R = {x ∈ G : x1 = x2 = x3 = a ≥ 0} and

consider W (x) = ‖x − a[1, 1, 1]T‖1 =
∑3

i=1 |xi − a|. Then

W (x(t + 2)) ≤ ‖A1(t + 1)‖‖A2(t)‖W (x(t)) ≤ W (x(t))
or W (x(t+2)) ≤ ‖A2(t+1)‖‖A1(t)‖W (x(t)) ≤ W (x(t)),
t ≥ 1. Hence, for every ε > 0, one can always find δ = ε > 0
such that

∑3
i=1 ||xi(0)| − a| =

∑3
i=1 |xi(0) − a| < δ

implies that ‖x(t) − a[1, 1, 1]T‖ < ε for all t ≥ 0. Now by

definition, (3) is Lyapunov stable relative to G. Therefore, it

follows from Theorem 2.2 that the iterative dynamics (3) is

semistable relative to G.

The second example is a discrete-time quantized system.

Example 2.2: Consider the iterative dynamics given by

x(t + 1) = f(x(t)), x(0) = x0, t ≥ 0, (10)

where x(t) ∈ R2, f is given by

f(x) =

[

(1 − µ(t))⌊x1⌋ + µ(t)⌊x2⌋
µ(t)⌊x1⌋ + (1 − µ(t))⌊x2⌋

]

, (11)

⌊·⌋ denotes the floor function, µ(·) is piecewise continuous,

and 0 < inft∈[0,∞) µ(t) ≤ supt∈[0,∞) µ(t) < 1. Let G =
{(x1, x2) ∈ R2 : x1 ≥ 0, x2 ≥ 0}, which is a nonnegative

orthant. Clearly G is strongly positively invariant. Next,

consider U(x) = ‖x‖2
2 = x2

1 +x2
2. Then it follows that U(x)

satisfies U(f(x))−U(x) ≤ −̺(⌊x1⌋−⌊x2⌋)2 for all x ∈ G,

where ̺ = supt∈[0,∞) 2µ(t)(1−µ(t)), and hence, it follows

from it follows from Lemma 2.1 that every solution to (10) is

bounded relative to G. Furthermore, note that ⌊x1⌋−⌊x2⌋ is

an integer, which implies that (⌊x1⌋−⌊x2⌋)2 ≥ |⌊x1⌋−⌊x2⌋|
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for every (x1, x2) ∈ G. Thus,

‖f(x) − x‖1 = ǫ|⌊x1⌋ − ⌊x2⌋|
≤ ǫ(⌊x1⌋ − ⌊x2⌋)2

≤ ǫ

̺
[U(x) − U(f(x))], x ∈ G, (12)

where ǫ = supt∈[0,∞){1 − µ(t), µ(t)}. Now it follows from

Theorem 2.1 that every solution to (10) is convergent.

Next, we claim that R = {(x1, x2) ∈ G : x1 = x2 =
k ∈ Z+}. Indeed, this assertion follows from the similar

arguments as in the proof of Lemma 3.5 of [9]. It follows

from (11) that (1−µ(t))x1(t)+µ(t)x2(t)−1 < x1(t+1) ≤
(1−µ(t))x1(t)+µ(t)x2(t) and µ(t)x1(t)+(1−µ(t))x2(t)−
1 < x2(t + 1) ≤ µ(t)x1(t) + (1 − µ(t))x2(t) for all t ≥ 0
and x(0) ∈ G. Hence, (10) can be rewritten as

x1(t + 1) = ⌊(1 − µ(t))x1(t) + µ(t)x2(t)⌋ , (13)

x2(t + 1) = ⌊µ(t)x1(t) + (1 − µ(t))x2(t)⌋ , (14)

for every t ≥ 0 and x(0) ∈ G, which implies that xi(t) ∈ Z+

for all t ≥ 1 and i = 1, 2.

Suppose x1(0) ≥ x2(0). If x1(t) ≥ x2(t) for some

t ≥ 0, then it follows from (11), (13), and (14) that

⌊x2(t)⌋ ≤ x2(t+1) ≤ x1(t+1) ≤ ⌊x1(t)⌋. Similarly, assume

x1(0) ≤ x2(0). If x1(t) ≤ x2(t) for some t ≥ 0, then we

have ⌊x1(t)⌋ ≤ x1(t + 1) ≤ x2(t + 1) ≤ ⌊x2(t)⌋. Hence,

by induction, x1(t) � x2(t) and ⌊x1(t)⌋ � x1(t + 1) �
x2(t + 1) � ⌊x2(t)⌋ for all t ≥ 0, where � means that all

the terms have the same inequality order, that is, either ≤ or

≥ altogether. Since xi(t) ∈ Z+ for all t ≥ 1 and i = 1, 2,

it follows that one of the two sequences {xi(t)}∞t=1, i =
1, 2, is nonincreasing while the other one is nondecreasing.

Moreover, since limt→∞ x1(t) = limt→∞ x2(t) = k∗ ∈ Z+,

it follows that x1(t) � k∗ � x2(t) for all t ≥ 1.

To show that k∗[1, 1]T is Lyapunov stable, we take

V (x) = ‖x − k∗[1, 1]T‖1 = |x1 − k∗| + |x2 − k∗|. Since

x1(t) � k∗ � x2(t) for all t ≥ 1, it follows that

V (x(t)) = |x1(t) − x2(t)| for all t ≥ 1. In this case, note

that xi(t) ∈ Z+ for all t ≥ 1 and i = 1, 2, V (x(t + 1)) =
|x1(t + 1) − x2(t + 1)| = |1 − 2µ(t)||x1(t) − x2(t)| ≤
(supt∈[0,∞) |1 − 2µ(t)|)V (x(t)) for all t ≥ 1. This im-

plies that V (x(t)) ≤ (supt∈[0,∞) |1 − 2µ(t)|)t−1V (x(1)) =
(supt∈[0,∞) |1−2µ(t)|)t−1|x1(1)−x2(1)| ≤ (supt∈[0,∞) |1−
2µ(t)|)t|⌊x1(0)⌋ − ⌊x2(0)⌋| for every t ≥ 1. Hence, the

sequence {V (x(t))}∞t=1 is monotonically decreasing to zero

regardless of the value |⌊x1(0)⌋ − ⌊x2(0)⌋| as long as

(x1(0), x2(0)) ∈ G. Thus, for every ε > 0, one can always

find δ = ε > 0, such that for every |x1(0) − k∗| + |x2(0) −
k∗| < δ, (x1(0), x2(0)) ∈ G, |x1(t)− k∗|+ |x2(t)− k∗| < ε
for all t ≥ 0. By definition of Lyapunov stability, k∗[1, 1]T

is Lyapunov stable relative to G. Finally, note that k∗ is the

limit of both x1(t) and x2(t), by definition of semistability,

(10) is semistable relative to G.

III. BALANCED RESOURCE ALLOCATION AND DAMAGE

MITIGATION ALGORITHMS

The balanced iterative algorithm design for damage miti-

gation and resource allocation in this paper is based on the

iterative dynamics given by the form of (1). To explicitly

state the connection between (1) and our proposed balanced

iterative algorithm, we consider a network characterized by

a strongly connected directed graph G = (V , E) consisting

of the set of nodes V = {1, . . . , q} and the set of edges

E ⊆ V × V , where each edge (i, j) ∈ E is an ordered pair

of distinct nodes. The set of neighbors of node i is denoted

by Ni = {j ∈ V : (i, j) ∈ E}. Finally, we denote the value

of the node i ∈ {1, . . . , q} at time t by xi(t) ∈ R.

Each node i holds an initial value on the network xi(0) ∈
R. The network permits the allowed communication between

two nodes if and only if they are neighbors. We are in-

terested in rearranging the scalar values at the nodes of a

network to some equilibrium distribution, via a distributed

algorithm in which the nodes only communicate with their

neighbors, so that all the scalar values in those nodes are

eventually distributed in some pattern. This final distribution

pattern is not necessarily a fixed equilibrium pattern, but

could be a continuum of a set of patterns. Furthermore,

when we model resource allocation problems realistically,

the limited capacity constraints such as quantization and the

total resource need to be imposed for the balanced iterative

algorithm design.

Surprisingly enough, the distributed algorithm design is of

form (1). To elucidate this, we consider distributed nonlinear

iterations over the network G given by the form

xi(t + 1) = W(i,i)(t, xi(t), xi(t))xi(t)

+
∑

j∈Ni

W(i,j)(t, xi(t), xj(t))xj(t),

i = 1, . . . , q, t = 0, 1, 2, . . . , (15)

where W(i,j) : Z+ × R × R → R denotes the weight on

xj at node i, which in general, is a function of time t and

the states variables xi and xj [10], [11]. Another physical

interpretation of this model is given by the next section and

[10]. Letting W(i,j)(·, ·, ·) = 0 for j 6= Ni, this iteration can

be rewritten as a compact form

x(t + 1) = W (t, x(t))x(t), t = 0, 1, 2, . . . , (16)

where x(t) = [x1(t), . . . , xq(t)]
T ∈ Rq. The constraint on

the matrix function W (·, ·, ·) can be expressed as W (·, ·, ·) ∈
W , where W = {W ∈ Rq×q : W(i,j) = 0 if (i, j) 6∈
E and i 6= j}.

The damage mitigation problem in this paper is de-

fined as the reduction of adversarial attack effectiveness.

To effectively model the damage mitigation problem un-

der adversarial attacks, we use a nonnegative system [10]

technique with network routing in peer-to-peer networks to

build up a non-fixed structure mobile sensor network [12] for

detecting damages caused by adversarial threats. Specifically,

we model a road network in an urban area as a strongly

connected, non-fixed structure directed graph in peer-to-peer

networks. The nodes in the graph represent some critical

sites in the city that may be attacked by adversarial attacks.

By a non-fixed structure graph, we mean that if there is no

real road between two nodes, the mobile sensors in these
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two nodes can set up a wireless communication link between

them so that the graph structure is not necessarily fixed to the

actual road network of a city itself. The dynamics of damage

mitigation evolves as follows: We let xi(t) denote the number

of mobile sensors that node i has at time t. Those mobile

sensors are used to detect possible adversarial attacks at node

i and travel along the graph network to mitigate damages

based on some algorithms. At the initial time, the number of

mobile sensors at node i is given by xi(0). In the tth time

slot, let node i contact some neighboring node j to see how

many mobile sensors both nodes have. Then at this time, to

reduce possible dangers posed by adversarial attacks, both

nodes will relocate their mobile sensors so that eventually

the number of mobile sensors at each node is proportional

to the severity of risks and damages by adversarial attacks.

Of course, the neighboring nodes for node i may not be just

one node for a connected graph.

The mathematical expression of the damage mitigation

model described above can be written as (15) for each node,

or equivalently, (16) for a vector form, where every element

of W represents the weight of the number of mobile sensors

available for every node and used for designing algorithms.

The structure of W is not fixed except for connectivity.

Furthermore, since xi(t) represents the number of mobile

sensors, xi(t) is always a nonnegative integer, that is, xi(t) ∈
Z+ for all i and all t. In this case, (16) should be interpreted

as the following form

xi(t + 1) = W(i,i)(t, xi(t), xi(t))⌊xi(t)⌋
+

∑

j∈Ni

W(i,j)(t, xi(t), xj(t))⌊xj(t)⌋,

i = 1, . . . , q, t = 0, 1, 2, . . . , (17)

and hence, it becomes a nonnegative system [10] over Z
q

+

whose states are always in the nonnegative orthant in the

state space. Now the balanced coordination algorithm design

problem associated with this model becomes the following:

How many mobile sensors should be allocated for each node

at every instant of time by guaranteeing that all the nodes

eventually achieve a steady state? To answer this question, in

the next section we will first use the compartmental model

[10] integrated with quantization effects [9] to design a

particular form for W(i,j) in (17). Then we will analyze

the convergence of (17) by using the trajectory distance

based method developed in Section II. The merit of the

trajectory distance based method is that it works perfectly

for the general nonlinear form of iterations like (17), which

cannot be solved by use of many existing methods in the

literature [11], [13]–[18] due to the requirement of either

possessing the linear form of iterations or satisfying the

continuity property for the vector field. In our setting, neither

of these conditions are needed for (17). Hence, this proposed

method seems to be a very promising one for studying the

convergence of nonlinear iterations of the form (17). Finally,

the limit value of x(t) represents the proportion of mobile

sensors should be distributed among the nodes to counter

adversarial attacks (for high-risk areas, a large proportion

will be given).

IV. COMPARTMENTAL MODEL CHARACTERIZATION AND

ANALYSIS

In this section, we apply our previously developed re-

sults to design balanced coordinated resource allocation and

damage mitigation algorithms by considering a class of

switched/time-varying, networked iterative dynamics with

nonnegativity and quantization constraints. Specifically, con-

sider the networked iteration given by

xi(t + 1)

= ⌊xi(t)⌋ −
n

∑

j=1,j 6=i

C(j,i)aji(t, xj(t), xi(t)) ⌊xi(t)⌋

+
n

∑

j=1,j 6=i

C(i,j)aij(t, xi(t), xj(t)) ⌊xj(t)⌋ ,

i = 1, . . . , n, t ∈ Z+, xi(0) ≥ 0, (18)

or in the vector form, x(t + 1) = A(t, x(t))⌊x(t)⌋,

where ⌊x(t)⌋ should be understood elementwise, for i, j =
1, . . . , n, C(i,j) represents the (i, j)th element of the connec-

tivity matrix C [2] defined by C(i,j) = 1 if j ∈ Ni, C(i,j) = 0
if j 6∈ Ni and i 6= j, and C(i,i) = −∑n

j=1 C(i,j),

A(i,j)(t, x(t)) =
{

1 − ∑n
l=1 C(l,i)ali(t, xl(t), xi(t)), i = j,

C(i,j)aij(t, xi(t), xj(t)), i 6= j,
(19)

aij(·, ·, ·) is such that a complete solution to (18) ex-

ists, aij(t, xi(t), xj(t)) > 0, aii(t, xi(t), xi(t)) ≡ 0, and
∑n

l=1 ali(t, xl(t), xi(t)) ≤ 1, for all x ∈ R
n

+ and t ∈
Z+. This network system is a compartmental model [10]

representing a mass balance equation physically in which xi

denotes the mass (and hence a nonnegative quantity) of the

ith subsystem of the compartmental system. Note that since

at any given instant of time mass can only be transported,

stored, or discharged but not created and the maximum

amount of mass that can be transported and/or discharged

cannot exceed the mass in a compartment, it follows that

1 ≥ ∑n
l=1 ali(t, xl(t), xi(t)), which interprets this constraint

in physics.

Next, we present a step-by-step convergence analysis for

(18). First, it follows from [10] that the nonnegative quadrant

G = {x ∈ Rn : xi ≥ 0, i = 1, . . . , n} is positively invariant

under (18).

Lemma 4.1: Consider (18). Then xi(t+1) ∈ Z+ for every

xi(0) ≥ 0, i = 1, . . . , n, and t ≥ 0. Furthermore, x(t+1) =
A(t, x(t))x(t) for all t ≥ 1.

Lemma 4.2: Every solution in G is bounded relative to G
for all t ≥ 0.

A. Consensus Based Convergence Analysis

The convergence analysis in this subsection is based on

the consensus analysis technique developed in [19] whose

method is originated from [20]. In this subsection, the graph

topology G associated with (18) is focused on a connected

proximity graph which is undirected.
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Assumption 4.1: G is a connected proximity graph.

Note that G is a connected proximity graph if and only if

C = CT and rank C = n − 1.

Theorem 4.1: Assume that Assumption 4.1 holds. Fur-

thermore, assume that there exist pi > 0, i = 1, . . . , n, such

that pi/pj is rational and aji(t, xj , xi)pj = piaij(t, xi, xj)
for all i, j = 1, . . . , n, t ≥ 1, and x ∈ G. Let ni ≥ 1 be

the number of neighbors of the ith agent, that is, |Ni| = ni.

If pi ≥ supt∈[1,∞),xi,xj∈R
{aij(t, xi, xj), aji(t, xj , xi)} and

pi < (1/ni) for all i, j = 1, . . . , n, i 6= j, then every

solution to (18) is convergent relative to G. Furthermore,

limt→∞ x(t) ∈ Ess = {x ∈ G : xi = (a/pi) ∈ Z+, i =
1, . . . , n, a ≥ 0}.

We note that so far no stability information is mentioned

here. As a matter of fact, generally (18) is not Lyapunov

stable relative to G for n ≥ 3, needless to say semistability.

This is due to the property of the floor function which creates

a large jump between x(1) and x(0) (note that x(t + 1) =
A(t, x(t))x(t) for t ≥ 1). On the other hand, if we take G =
Z

n

+, then one can show that every point in Ess is Lyapunov

stable relative to G, and hence, (18) is semistable relative to

G. Thus, the stability of (18) really depends on the choice

of G.

Lemma 4.3: Assume that Assumption 4.1 holds. Further-

more, assume that there exist pi > 0, i = 1, . . . , n, such

that aji(t, xj , xi)pj = piaij(t, xi, xj) for all i, j = 1, . . . , n,

t ≥ 1, x ∈ G, and G = Z
n

+. Then every point in Ess is

Lyapunov stable relative to G for all t ≥ 0.

Theorem 4.2: Assume that all the conditions of Theo-

rem 4.1 are satisfied. Furthermore, assume G = Z
n

+. Then

(18) is semistable relative to G for all t ≥ 0.

B. Quadratic Form Based Convergence Analysis

The previous subsection assumes that G is an undirected

graph. In this subsection, we remove this restriction by

taking G to be directed. The following technical assumption

guarantees the final distribution pattern of (18).

Assumption 4.2: There exist constants ℓij ≥ 0, i, j =
1, . . . , n, i 6= j, such that ℓij/ℓji is rational and

[ C(i,j)a
2
ij −C(i,j)C(j,i)aijaji

−C(j,i)C(i,j)ajiaij C(j,i)a
2
ji

]

≤
[ C(i,j)ℓ

2
ij −C(i,j)C(j,i)ℓijℓji

−C(j,i)C(i,j)ℓjiℓij C(j,i)ℓ
2
ji

]

(20)

for all i, j = 1, . . . , n, i 6= j.

Lemma 4.4: Assume that Assumption 4.2 holds. Then

‖A(t, x)x − x‖2 ≤
√

n − 1
√

xTLx for every t ≥ 1 and

x ∈ G.

Theorem 4.3: Assume that Assumption 4.2 holds. Fur-

thermore, assume that there exists α ∈ [0, 1) such that

AT(t, x)LA(t, x) ≤ αL for all t ≥ 1 and x ∈ G. Then every

solution to (18) is convergent relative to G. Furthermore,

limt→∞ x(t) ∈ {x ∈ G : Lx = 0} ∩ Z
n

+.

Finally, for the stability of (18), we have similar results as

before.

Lemma 4.5: Assume that Assumption 4.2 holds. Further-

more, assume that G = Z
n

+. Then every point in {x ∈ G :
Lx = 0} is Lyapunov stable relative to G for all t ≥ 0.

Theorem 4.4: Assume that all the conditions of Theo-

rem 4.3 are satisfied. Furthermore, assume that G = Z
n

+.

Then (18) is semistable relative to G for all t ≥ 0.
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