
  

  

Abstract—Computing the shortest paths in graphs is a 
fundamental problem with numerous applications. The rapid 
growth of network in size and complexity has made it necessary 
to decrease the execution time of the shortest path algorithm. 
We develop an effective graph partition method to retrieve 
Balanced Traversing Distance partitions and constitute a 
hierarchical graph model based on the decomposed network for 
accelerating the path queries. We then propose a new heuristic 
hierarchical routing algorithm that can significantly reduce the 
search space by pruning unpromising subgraph branches. We 
evaluate our approach experimentally under different network 
partition schemes to show the gain in performance. 

I. INTRODUCTION 
OMPUTING the shortest path between two points in a 
network is one of the most fundamental and well-studied 

problems in network algorithms. Numerous real-world 
applications can be transformed to this problem, which have 
attracted interests from many fields including geographic 
information systems (GIS), intelligent transportation systems 
(ITS), computer networks, and social networks. In 1959, 
Dijkstra [1] developed an elegant shortest path algorithm with 
a complexity of O(|E|+|V|log|V|), where |V| is the number of 
vertices and |E| is the number of arcs. Though Dijkstra 
algorithm computes the optimal solution in a theoretical sense, 
it is often too slow in practical applications, motivating 
several techniques for improving its response time [2]. 

In a typical application scenario, path queries have to be 
solved quickly and repeatedly for different node pairs on the 
same network, which stimulates the research on utilizing 
preprocessing techniques [3-7]. Naturally, pre-computing the 
shortest paths for all pairs of nodes would achieve extremely 
fast queries but is prohibited by its huge time and storage 
requirement. Thus, a better approach turns to extract and 
process some helpful hints that can effectively accelerate the 
queries. A lot of research has been tried to balance between 
preprocessing and query times, most of which uses graph 
partition techniques [3, 4, 5, 8] for the original problem 
decomposition. Möhring et al. [3] and Maue et al. [4] 
partition the graph into regions and employ goal-directed 
preprocessing techniques to eliminate unnecessary searches. 
Rajagopalan et al. [6] combine goal-directed heuristics with 
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hierarchical and preprocessing techniques, and constitute an 
abstraction graph model for efficient storage and path 
computation on node-weighted graphs. Similarly, Jung et al. 
[7] develop a hierarchical graph model based on the spatial 
partitioning [5] of graphs, and then apply a variation of A* 
algorithm to accelerate the query process.  

Intuitively, the choice of underlying partition methods may 
not affect the accuracy of a query algorithm, but the query 
execution can be effectively accelerated through appropriate 
partition of graphs. In addition, specific graph partition 
objectives should be employed to cater to different types of 
query algorithms. However, recent research related to path 
computations focuses more on the routing algorithm design, 
where the planar graph partition method is generally used just 
as a tool for decomposing the networks, with some simple 
partition objectives such as balance of subnetwork size or 
minimization of boundary nodes [5, 8, 9]. Less has been done 
to analyze the impact of graph partition objectives on the 
speedup of a shortest path algorithm. 

In this work, we consider exact shortest path queries in 
large networks. The main goal is to accelerate the path 
queries based on an effective partition of graphs without a 
layout or an embedding, using fast preprocessing that 
maintains a small amout of auxiliary data. The network is 
abstracted in a hierarchical fashion, and the query algorithm 
is executed by combining hierarchical and goal-directed 
heuristics. The efficiency of the query algorithm towards 
different partitions is analyzed, with comparison experiments 
conducted on a large city road network. 

II. HIERARCHICAL GRAPH MODEL 

Let G=(V, E) be a graph, where each node in V represents 
network objects, i.e., the intersecting points of roads in a road 
network, routers in the Internet, or individuals in a friendship 
network. Edges E={(u, v)|(u, v∈V) ∧ (u ≠ v)} correspond to 
the connections between the preceding objects. Each node is 
assigned a weight by a function vw : 0≥ℜ→V . The length of 
a path P is the sum of the weights of all nodes on the path, 
denoted by )(Pwv , and the distance ),( tsdG  between two 
nodes s and t is defined by the length of the shortest path from 
s to t in G. 

Given a graph G=(V, E), a collection κ ={G1(V1, E1), …, 
Gk(Vk, Ek)} of pairwise disjoint sets Vi ⊆ V, Ei ⊆ E, 1 ≤ i ≤ k, 
such that VVi

k
i ==1U and EEi

k
i ⊂=1U is called a partition of 

G and each set Gi(Vi, Ei), 1 ≤ i ≤ k a subgraph of G. For any 
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node v∈V, let Sub(v) denote the subgraph to which v belongs 
to. A node u∈Vi is called a border node of Gi if there exists an 
edge (u, v)∈E with v∈Vj and i ≠ j, and an inner node of Gi 
otherwise; Gj is then called a neighbor subgraph of u, denoted 
by Ns(u), and the subgraphs Gi and Gj are said to be adjacent. 
The set of all border nodes of Gi is denoted by B(Gi). An edge 
(u, v)∈E is called an intercommunity edge if u, v belong to 
adjacent subgraphs Gi and Gj respectively. The inter- 
community edge set between Gi and Gj is denoted by I(Gi, 
Gj)={(u, v)∈E|(u∈B(Gi)) ∧ (v∈B(Gj)) ∧ (i ≠ j)}. Obviously, 

iijiji EEGGI UU −=),(, , with 1 ≤ i, j ≤ k and i ≠ j. 
Definition 1: Given a partition κ ={G1, G2, …, Gk} of G, 

the community edge set of subgraph Gi (1 ≤ i ≤ k) is defined 
by 

)}.()(

))()((),(|),{()(
),(

vuvu

GBGBvuvuGC
vud

iii

iG

≠∧→∧

×∈=
 

Definition 2: Given a partition κ ={G1, G2, …, Gk} of G, 
the high-level graph of G is defined by GH=(VH, EH, WH). 

1) )(1 i
k
i

H GBV == U . 

2) ))(()),(( , iijiji
H GCGGIE UU ∪= , with 1 ≤ i, j ≤ k and 

i ≠ j. 
3) For any edge (u, v)∈EH, its edge weight ),( vuwH

e := 
),( vud

iG  if u, v belong to the same subgraph, and 0 
otherwise. For all nodes in VH, the weight H

vw := wv. 
Definition 3: Given a partition κ ={G1, G2, …, Gk} of G. 

For any shortest path P=( ttvuss ,,,,,,,, KKK ′′ ) that passes 
a subgraph Gi, 1 ≤ i ≤ k, the traversing distance is defined by 

),(:)( vudGTd Gi = , 

where u is the first node and v is the last node from Gi on P, 
)()( tSubsSub ′≠′ , )(sNsGi ′⊆ , and )(tNsGi ′⊆ . Note that 

u, v may be duplicated when the path passes Gi via just one 

border node. In addition, the traversing distance Td(Gi):=0 if 
Gi has only one neighbor subgraph. 

The definition of traversing distance makes sense when 
each border node of the graph is connected to only one 
intercommunity edge. Then, the minimum traversing distance 
of subgraph Gi implies the minimum length increase that may 
happen when a shortest path passes the subgraph Gi through a 
community edge. For the subgraph Gi which has more than 
one neighbor, the traversing distance set can be calculated by 

)}.())()((
))()((),(|),({)(

vuvNsuNs
GBGBvuvudGTd iiGi

≠∧≠∧
×∈=

 

Definition 4: Given a partition κ ={G1, G2, …, Gk} of G, 
the abstraction graph of G is defined by GA=(VA, EA, WA), 
where 

1) each node u∈VA is called the supernode representing the 
subgraph formed by {v∈V| Sub(v)=u}; 
2) each edge (u, v)∈EA represents the collection of edges 
{ Evu ∈′′ ),( | ))(())(( vvSubuuSub =′∧=′ }; 

3) the weight of any node u ∈ VA is defined by =:A
vw  

)(uTdmin . 
For example, Fig.1(a) shows a graph G and its four 

subgraphs G1, G2, G3, and G4. Fig.1(b) shows the high-level 
graph constructed from G1 to G4, where each subgraph is 
represented as a complete graph composed of its border node 
set and the community edge set. The intercommunity edge 
can be thought of as forming bottlenecks between subgraphs. 
The corresponding abstraction graph is shown in Fig.2, which 
contains far fewer nodes and edges. Thus, it is possible to 
perform a search first on the abstraction graph for an estimate 
of the path length, which is crucial in eliminating unnecessary 
computations. The estimate gets to the real shortest path value 
when the maximum traversing distance equals the minimum 
one for every subgraph, and the query execution is most 
efficient at this ideal case. This observation inspires the 
partition method with the objective of balancing traversing 
distance to be presented in the next section. 

III. GRAPH PARTITIONING 
In this section, we present our graph partition model and 

the associated notations followed by a description of the BTD 
partitioning algorithm for pursuing Balanced Traversing 
Distance partitions. 

 
Fig. 1. Two-level graph hierarchy (G, GH). (a) Original network G
with four subgraphs with boundary node sets {b1, b2, b3}, {b4, b5, b6}, 
{b7, b8, b9, b10}, and {b11, b12}, respectively. (b) High-level graph GH

constructed from subgraphs G1, G2, G3, and G4, where dashed lines 
denote community edges, and solid lines denote intercommunity 
edges. 

 
Fig. 2. Abstraction graph GA for graph in Fig. 1, with supernodes 
denoting the subgraphs and edges representing the connections 
between subgraphs. 
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A. Mathematical Model 
Suppose that the original network is partitioned into k 

subgraphs G1, G2, …, Gk. Let s(Gi) be the size of subgraph Gi, 
and Ri the ratio of the maximum traversing distance to the 
minimum traversing distance for subgraph Gi, 

,))(())((: iii GTdminGTdmaxR =  

with 1 ≤ i ≤ k. The ratio Ri:=1 if Gi has only one neighbor 
subgraph. For any node u ∈ B(Gi), Num(u) represents the 
number of intercommunity edges incident to u. The permitted 
upper and lower bounds for subgraph size are denoted by Uδ  
and Lδ , respectively. 

Inspired by the ideal case of graph partition and path 
queries, we propose a mathematical model as following: 

min { Ri | ∀ 1 ≤ i ≤ k } 
subject to 

Num(u)=1,  u∈B(Gi)        (1) 

Lδ ≤ s(Gi) ≤ Uδ          (2) 

Here, the traversing distance ratio Ri approaches its 
minimum value 1 when the maximum traversing distance gets 
very close to the minimum one for each subgraph. Constraint 
(1) ensures that the shortest path will pass through a subgraph 
via at least one community edge rather than just one border 
node based on Definition 3. Constraint (2) aims to avoid too 
large/small partitions and thereby balances the path searching 
within each subgraph. 

B. BTD Algorithm 
To get the graph decomposition satisfying the objective 

and constraints in (1)-(2), the BTD algorithm comprises two 
phases. 

Phase 1. Subgraph initialization. During this phase, the 
network is divided into a series of small subgraphs. Initially, 
all nodes are unmarked. Then, nodes are considered one by 
one, and for each unmarked node u of degree two or more, we 
proceed as follows. 

Step1: Mark the node u with a new subgraph number “sn”, 
and maintain a set “temp” for the nodes added to this 
subgraph in turn. Set  

temp={unmarked neighbors of u}. 

Generally, we repeat this process of adding unmarked 
neighbors several times to avoid too small subgraphs 
produced during initialization. 

Step2: Remove the first node v from temp, and judge 
whether v has a neighbor node x in a different subgraph. If not, 
go to Step3; Otherwise, add all unmarked neighbors of v and x 
to the end of the set temp, mark them with the subgraph 
number sn, and go to Step4.  

Step3: For any unmarked neighbor node x, judge whether x 
has a neighbor node in a different subgraph, add the neighbor 
x to the end of temp and mark it with the subgraph number sn 
if the condition holds, and then go to Step4. 

Step4: Exit if the set temp becomes null; Otherwise, go to 
Step2 and continue. 

At the end of the sweep, we randomly put the unmarked 
degree one node in its neighbor subgraph and mark it with the 
subgraph number. At that point, all nodes are marked, and 
each node is adjacent to one or two subgraphs (for inner 
nodes and border nodes, respectively). Then, for any border 
node which is adjacent to more than one intercommunity 
edge, we turn to add a zero-weighted node to replace the 
multiple nodes adjacent to it. In Fig.3(a), node b1 is connected 
to three intercommunity edges. By adding a node 1b′  in its 
neighbor subgraph and linking up the endpoints of the 
original intercommunity edge via 1b′ , we get a modified 
graph where each border node is connected to only one 
intercommunity edge, as shown in Fig.3(b). 

Phase 2. Subgraph agglomeration. During this phase, a 
heuristic agglomeration process is performed on the graph 
partition produced in phase 1, with the purpose of reducing 
the ratio Ri and regulating the subgraph size to [δL, δU]. 

First, we need to compute the ratio Ri for each subgraph. 
This can be fulfilled by a local shortest path tree construction 
from each node in the high-level graph (similar strategies can 
be found in [10]). At the end of the loop, we get the traversing 
distance set for each subgraph, and the ratio Ri is computed by 
dividing the maximum traversing distance by the minimum 
one. Then, for each subgraph Gi we evaluate the degradation 
of Ri that would take place by merging a neighboring 
subgraph to Gi. Combine Gi with the neighbor for which this 
degradation is maximal, but only if the combined subgraph 
size is below δU. This process is repeated for all subgraphs 
until no further improvement can be achieved (or as soon as 
the ratio Ri is below an acceptable value) and until the 
subgraph size is within the region of [δL, δU] for all subgraphs. 
This may consume a fair amount of time but is worthy since 
the graph partition usually need not be applied repeatedly. 
The constructed community edges are employed to facilitate 
the computation of the traversing distance ratio Rcom for a 
combined subgraph Gcom. Still, more techniques need to be 
introduced for further acceleration.  

Note that the subgraph combination may simultaneously 
affect the traversing distance ratio Rj of a neighboring 
subgraph Gj, thus we need to update the neighbor information 
and recompute Rj for the affected subgraphs. In addition, the 
subgraph agglomeration process will certainly not affect the 
number of intercommunity edges incident to a border node so 

Fig. 3. Node adding process. (a) Original graph partitions with 
boundary node sets {b1} and {b2, b3, b4}. (b) Modified graph partitions 
with boundary node sets {b1} and { 1b′ }. 
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that Constraint (2) satisfies. 

IV. HIERARCHICAL ROUTING ALGORITHM 
In this section, we introduce an efficient Hierarchical 

Subgraph Pruning (HSP) algorithm which will benefit greatly 
from the BTD method for route computation on large graphs. 
Before formally presenting the algorithm, we introduce the 
precomputation task for the static and dynamic scenarios. 

A. Preprocessing 
Suppose the original network G has been partitioned into k 

subgraphs G1, G2, …, Gk. The high-level graph GH can be 
easily constructed by extracting the border nodes, the inter- 
community edges, and adding the community edges between 
every pair of border nodes of each subgraph. As introduced 
previously in the BTD algorithm (Phase 2), the traversing 
distance set Td(Gi) can be obtained via a local search on GH. 
And the abstraction graph GA is then constructed by mapping 
each subgraph Gi as a node, with min{Td(Gi)} as its weight, 
and adding an edge between any pair of nodes whose 
corresponding subgraphs are adjacent. In fact, most of the 
preprocessing has been finished at the graph partition stage 
when BTD algorithm is employed as the partition tool. 

In dynamic scenarios, the preprocessed data have to be 
updated temporarily before a path query. Naturally, we will 
not re-partition the graphs every time since the weight 
changes may not significantly affect the partition quality of a 
graph, which is measured by the average traversing distance 
ratio R . For the case that the additional computation caused 
by an increasing R  is still lower than that of the graph 
re-partitioning, we turn to use the initial partitions and 
reconstruct the related high-level subgraph and abstraction 
subgraph for the affected areas, which yields a low update 
cost. In case that the weight of a community edge of Gi is 
decreasing, we need to compute the optimal community edge 
length by performing a local search on GH from each border 
node of Gi, and then update the traversing distance set Td(Gi) 
and the corresponding supernode weight on GA 
simultaneously; For other cases, we will neither perform the 
local tree construction nor update the supernode weight. The 
real weight value is definitely no less than the current weight. 
Thus, we will never overestimate the path length by using a 
relatively lower supernode weight, though this may 
somewhat affect the query efficiency. 

B. HSP Algorithm 
The HSP algorithm generally covers two scenarios. Here, 

we mainly discuss the case that the source and destination 
nodes are in two distinct subgraphs. For those node pairs in 
the same subgraph, we can compute the shortest path either 
on the original network G, or on a rebuilding search area 
defined by [10].  

Phase 1: Path length evaluation. During this phase, the 
accumulated minimum traversing distance from t to several 
other subgraphs is computed, and the path length is estimated 

based on a practical route between s and t, which provides an 
initial upper bound on the length of the shortest path. 

The algorithm first grows a shortest path tree over GA, 
starting from the destination supernode Gt (which contains 
the destination node t). At the initialization stage, we assign a 
distance value d(Gi, t) to every supernode Gi. Set it to zero for 
the destination supernode Gt and infinity for all other 
supernodes. Then, we perform an ordinary Dijkstra search 
from Gt, and prune the search temporarily when the source 
supernode Gs is settled. Let SP= (Gt ( 0i

G ) =>
1i

G =>
2i

G ··· 
=>Gs ( ki

G )) represent the optimal path between supernodes 
Gs and Gt on GA. For any settled supernode Gi, d(Gi, t) gives a 
minimum traversing distance from Gi to t. To compute an 
upper bound on the path length between s and t, we set 

∞=:),(ˆ tGd i  for every subgraph Gi, representing the upper 
distance from Gi to t, and update such distance for the 
subgraphs on path SP. For each subgraph pair (

jiG ,
1+jiG ) on 

SP, where 1 ≤ j ≤ k-1, we proceed as follows: 
Find an intercommunity edge (uj, vj) between subgraphs 

jiG  and 
1+jiG  on GH, where uj, vj are border nodes of 

jiG and 

1+jiG , respectively. The upper distance ),(ˆ tGd
ji  is then 

updated sequentially by adding the weight of the community 
edge (vj-1, uj) to ),(ˆ

1
tGd

ji −
, where ),(ˆ

0
tGd i  is assigned with 

the maximum weight of the community edges incident to u0.  
For the source subgraph Gs (which contains the source 

node s), we update its upper distance ),(ˆ tGd s  by adding the 
maximum weight of the community edges incident from vk-1 
to ),(ˆ

1
tGd

ki −
. Naturally, R= (t, u0, v0, …, uk-1, vk-1, s) gives a 

practical route from t to s, as shown in Fig.4. The weight of 
the route R is certainly not more than ),(ˆ tGd s  since we use a 
maximum weight at the source and destination subgraphs 
during the upper distance computation. Thus, the upper 
bound of the shortest path between s and t can be initialized to 

),(ˆ:),(ˆ tGdtsd s= .  

Continue the preceding shortest path search from Gt on GA, 
until the distance of the currently visited supernode d(Gi, t) is 
not less than ),(ˆ tsd , or else terminate the search if all 
supernodes have been marked. The sub areas denoted by the 
unsettled supernode can not appear on the final shortest path 
since any path passing them will yield in a larger path length. 

Phase 2: Hierarchical search with pruning. In the second 
phase we perform a shortest path search starting from the 
source node s. During initialization, we assign a distance 
value d(s, u) to every node u. Set it be the weight of s for node 
s and infinity for all other nodes. Record the previously 

Fig. 4. Path length evaluation for the subgraphs of path SP over the 
high-level graph GH. s is the source node, and t is the destination node. 
(uj, vj) is an intercommunity edge between subgraphs Gij and Gij+1

with 1≤j≤k-1. 
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visited node Pre(u) on the optimal path for every node u and 
set it to null in the beginning. Mark the source node s as 
current and begin the search. 

Step 1: For current node u (u=s in the beginning), judge 
whether u is in the source or destination subgraph. If not, go 
to Step 2; Otherwise, relax the nodes v adjacent to u on the 
original network G, which amounts to replace d(s, v) with a 
new value d(s, u)+wv(v), but only if this value is smaller. Here, 
wv(v) denotes the weight of node v. Overwrite the predecessor 
Pre(v) if the distance to v is updated, and go to Step 4. 

Step 2: Judge whether the current node u and its 
predecessor Pre(u) are located in the same subgraph: If not, 
go to Step 3; Otherwise, compute the lower bound d(s, u, t) on 
the length of the shortest path between s and t by 

d(s, u, t)= d(s, u)+ d(Ns(u), t), 

where Ns(u) represents the neighbor subgraph of u. For Ns(u), 
the subgraph pruning condition satisfies only when this lower 
estimate exceeds the upper bound ),(ˆ tsd . The condition 
holds thereafter because any node marked later will have a 
larger d(s, u) value. Mark the subgraph Ns(u) as pruned, and 
since then all searches grow into that subgraph will be pruned. 
Go to Step 4 without performing any relaxation if subgraph 
Ns(u) has been pruned; Otherwise, relax the endpoint v of the 
intercommunity edge incident to u, and replace the distance to 
v by d(s, u)+wv(v) if this yields a lower d(s, v) value. Update 
the predecessor of v, and then go to Step 4. 

Step 3: Tighten the upper bound ),(ˆ tsd  as follows if u is a 
node of subgraph SPG

ji ∈  (1 ≤ j ≤ k): 

|].),(),(|
)),((ˆ))(,(),,(ˆ[min),(ˆ

1)(1)( jjuSubjuSub uvduvd
tuSubduPresdtsdtsd

−− −
++=

 

Here, Sub(u) denotes the subgraph to which u belongs to, and 
dSub(u)(x, y) gives the weight of the community edge (x, y) of 
subgraph Sub(u).  

Relax the community edges incident to u, and for each 
endpoint v (except u) of the community edge, replace d(s, v) 
with d(s,u)+dSub(u)(u, v)-wv(u) if this achieves an improvement. 
Update the predecessor of v, and go to Step 4. 

Step 4: Choose the node u′  with minimum ),( usd ′  value 
from all the unmarked nodes. Exit if the node tu =′ ; 
Otherwise, mark u′  as current, and go to Step 1 and continue. 

The HSP algorithm can be used effectively to address 
problems in dynamic scenarios. For example, a new event in 
the environment may affect the weights of several nodes on 
the path previously obtained, ever since the path traversal has 
been initiated from a source node s. The dynamic path 
planning problem involves a path recomputation from the 
current node c to the destination node t. In case that the node 
on pathc→t has an increased weight or the node outside the 
path has a decreased weight, we need to update the 
preprocessed data temporarily and then compute a new path 
from c to t, where the preceding algorithm applies with s 
replaced by c. For other cases, we will neither update the 

preprocessed data nor recompute the shortest path, as the path 
retrieved is already the optimal one. 

V. EXPERIMENTAL EVALUATION 
To verify the validity of our hierarchical routing algorithm, 

we consider the New York City road network with 366923 
nodes and 1557956 edges [11], where nodes and edges 
denote the roads and the intersecting points of roads 
respectively. Each node is assigned a weight representing the 
cost of the road, thus the queries compute the minimum cost 
route on such network. We evaluate the performances of HSP 
using different partition schemes, compared with two well- 
known approaches, i.e., HIPLA [6] and hierarchical Dijkstra 
algorithm (Hi-dijkstra), and analyze the impact of the average 
traversing distance ratio and the number of subgraphs on the 
query efficiency. All the algorithms were developed in 
Matlab 7.8.0 (R2009a) and conducted on an Intel Xeon 
X5482 Dual Core processor with 32GB of RAM. The system 
ran Microsoft Windows Vista. 

A. Test Generation and Description 
A total of five network partition schemes are employed in 

our testing, as shown in Table I. Schemes 1 to 4 are produced 
at different stages of a BTD algorithm, accompanied by the 
subgraph agglomeration. Generally, the average traversing 
distance ratio R  follows a downward trend as the subgraph 
agglomerates, though it may fluctuate slightly. Here, we 
select the subgraph partition with a tentative rising R  value 
for analyzing the effect of the number of subgraphs and R  on 
a query algorithm. For completeness, another partition 
scheme (Scheme 5) satisfying the constraints in (1)-(2) is 
generated for comparison, which has the same size as scheme 
3 but with a larger R  value. Each scheme is made to solve a 
set of 1000 problems using the same randomly generated 
source and destination nodes. 

B. Performances of Various Algorithms 
Table II shows the average execution time and accuracy of 

HSP, HIPLA, and Hi-dijkstra on Schemes 1 to 5, where the 
numbers presented are average values over 1000 problems. 
We observe that HSP requires much less computation time 

TABLE I 
NETWORK PARTITION SCHEMES INVOLVED IN PERFORMANCE 

EVALUATION 
Partition
Schemes p R  nH mH 

Scheme 1 2543 8.36 43282 1068699

Scheme 2 1712 9.11 36240 971335

Scheme 3 894 9.31 22960 789790

Scheme 4 510 13.64 19115 761172

Scheme 5 894 16.50 25607 840928

p represents the number of subgraphs; nH and mH represent 
the number of nodes and edges in the corresponding high-level 
graph. 
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compared with Hi-dijkstra and it computes the optimal path 
for all node pairs. Though HIPLA achieves the best 
efficiency in all the partition schemes, the large errors 
produced are inevitable due to its naive heuristics. It is noted 
that the path identified by HIPLA is on average 38% longer 
than the optimal path (much larger than that is reported in [6]), 
with an average maximum error of up to 173%, which makes 
HIPLA unsuitable for high-precision path queries. 

C. Effects of R  vs. p 
We analyze the execution time of HSP on Schemes 1-4 

with different values of R  and p. We find that the efficiency 
of HSP is affected simultaneously by these two factors. 
Naturally, the efficiency of a hierarchical algorithm will be 
enhanced with a decreasing number of subgraphs, as the 
high-level graph contains fewer nodes and edges. Thus, the 
execution time of HSP drops in Schemes 1 to 3 when the 
increase in R  has not become a leading factor. However, 
when R  exceeds a certain value, the efficiency of HSP will 
be greatly weakened since the increase in R  leads to an even 
larger increase in the search space. Hence, the execution time 
of HSP increases in Scheme 4 though its number of 
subgraphs is the smallest. 

To further illustrate the effect of R  on HSP, we compare 
the query execution on Schemes 3 and 5 involving the same 
number of subgraphs. From Table II, we can observe that the 
execution time of HSP is much lower on Scheme 3 than on 
Scheme 5. We also notice that the high-level graphs formed 
by Schemes 3 and 5 are almost the same in size from Table I. 
Thus, the performance degradation on Scheme 5 can only be 
caused by the increasing value of R . Fixing the number of 
subgraphs, the efficiency of HSP will be improved via the 
decrease of R , which coincides with the starting point of the 
BTD partitioning method. 

D. Discussion 
We analyze the best and worst case runtime complexity of 

HSP to show the gain in performance. The best case happens 
when R  approaches the minimum value 1; then, HSP will 
search routes only within the subgraph of path SP. All the 
other subgraphs will be pruned by the subgraph pruning 
condition, which yields a similar search space as HIPLA. 
While on the contrary when R  is quite large, few subgraphs 
will be pruned during the search of HSP and the 
computational complexity gets close to the Hi-dijkstra. Thus, 

the runtime complexity of HSP is between that of Hi-dijkstra 
and HIPLA, which can be viewed as two extremes of HSP. 

VI. CONCLUSION 
In this paper, we develop an effective graph partition 

method for accelerating the path queries on large node- 
weighted networks. We propose a new heuristic hierarchical 
routing algorithm based on our hierarchical graph model, 
which could compute optimal routes in both static and 
dynamic environments. The proposed method can also be 
applied to edge-weighted graphs through several conversions 
and is focused in another piece of our work. As part of future 
research, it would be beneficial to quantify the effect of the 
number of subgraphs and the average traversing distance 
ratio on the performance improvement of a query algorithm 
so as to determine the optimum values. Also, it is worth 
developing more fast and effective partition methods to 
further reducing the traversing distance ratio. 
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TABLE II 
COMPARISON OF AVERAGE EXECUTION TIMES AND ACCURACY FOR SCHEMES 1-5 

Scheme 1 Scheme 2 Scheme 3 Scheme 4 Scheme 5 
Algorithm 

t E % Emax %  t E % Emax % t E % Emax % t E % Emax % t E % Emax %

Hi-dijkstra 3.51 0 0 3.17 0 0 2.60 0 0 2.36 0 0 3.05 0 0 

HSP 0.84 0 0 0.74 0 0 0.54 0 0 0.69 0 0 1.00 0 0 

HIPLA 0.20 38.16 154.57 0.19 40.13 242.50 0.22 36.09 164.36 0.17 36.34 164.48 0.19 39.66 141.47

t represents the average execution time (in seconds); E and Emax represent the average and maximum errors observed in various algorithms. 

5304


