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Abstract— This paper presents LMI conditions for local
and global asymptotic stability of rational uncertain nonlinear
systems where some or all the state variables are constrained by
the model to have definite signal. The uncertainties are modeled
as real time varying parameters with magnitude and rate of
variation bounded by given polytopes. The stability conditions
are based on a rational Lyapunov function with respect to the
states and uncertain parameters. A numerical example is used
to illustrate the potential of the proposed results.

I. INTRODUCTION

The use of the LMI framework to express stability con-
ditions for nonlinear systems as a convex problem is recent.
For instance, using quadratic Lyapunov functions and Linear
Fractional Transformations ideas to represent a rational non-
linear system, convex conditions for stability analysis and
state feedback design can be found in [1]. LMI methods
to determine and maximize an estimate of the region of
attraction may be found in [2], [3]. The stability conditions in
both references are based on polynomial Lyapunov functions.
The stability conditions are transformed into LMIs by using
sum of squares relaxations based on the S−Procedure in
[2]. In [3] a particular system decomposition is adopted and
the LMIs are obtained with the Finsler’s Lemma. Analysis
and design methods based on sum of squares polynomials
has received a lot of attention this last decade [4]. A given
polynomial is SOS if it can be represented as θ(x)′Qθ(x)
where Q is a constant positive definite matrix and θ(x) a
vector of monomials. When the Lyapunov conditions for
stability can be expressed as SOS polynomials, the stability
problem can be solved with powerful LMI tools [5], [2]. It is
shown in [6] that any locally exponentially stable system with
a thrice differentiable vector field will have a polynomial
Lyapunov function which decreases exponentially on that
region. If in one hand, this shows that polynomial Lyapunov
functions, not necessarily of SOS type, seems to be reach
enough to tackle a wide class of stability problems, on
the other hand it should be mentioned that the polynomial
degree, although finite, has no a priori upper bound available
to date. Thus stability conditions based on polynomial Lya-
punov functions may lead to poor estimates of the region of
attraction if the degree of the polynomial is not high enough.
In view of this fact, it could be interesting to investigate the
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potential of rational Lyapunov functions in stability problems
of nonlinear systems. This problem is studied in this paper
and we present LMI conditions for the asymptotic stability
of uncertain rational systems. The conservativeness of state
dependent LMIs is reduced with the use of certain scaling
matrices. The Lyapunov function used in this paper is more
general than the polynomial based Lyapunov functions used
in all previous mentioned references. Here the Lyapunov
function is a general rational matrix function of the state
and parameter vectors.

The paper is organized as follows. The next section is
devoted to some preliminaries and definitions. Conditions
for local stability problems are presented in the Section III.
It is shown that if a certain LMI is satisfied at the vertices
of a given bounded polytope then the origin is exponentially
stable and the Lyapunov function is directly obtained from
the LMI. Based on this Lyapunov function, the Section IV
proposes additional LMI conditions to extend the results for
global stability problems where some or all the state variables
are constrained by the model to have definite signal. The
results are illustrated through a numerical example and some
concluding remarks end the paper.

Notation

Rn denotes the n-dimensional Euclidian space. Rp×q is the
set of p× q real matrices. Iq denotes the set of integers
{1, . . . ,q}. M′ denotes the transpose of M. ‖.‖ represents the
2-norm of vectors and its induced spectral norm of matrices.
Ir denotes the r× r identity matrix. A p×q matrix of zeros
is denoted by 0p×q. The i− th row and columns of a matrix
M is represented by rowi(M) and coli(M). The notation
[.]col , [.]row, [.]diag denote matrices whose elements, indicated
inside the brackets, are arranged as a column, row and
diagonal arrays. [M]ncol , [M]nrow, [M]ndiag are matrices where
the element M is repeated n times as a column, row and
diagonal arrays. Similarly, [Mi]

n
col , [Mi]

n
row, [Mi]

n
diag indicate

the matrices are constructed accordingly from the set of
elements {Mi, i ∈ In}. M > 0 (≥ 0) means that M is a
symmetric positive definite (semi-definite) matrix. For two
polytopes Π1 ⊂ Rn1 and Π2 ⊂ Rn2 the notation Π1 ×Π2
represents a meta-polytope of dimension n1+n2 obtained by
the cartesian product of Π1,Π2. ϑ(Π) represents the set of all
vertices of the polytope Π. λ (.),λ (.) denotes the maximum
and minimum eigenvalues of (.).

II. PRELIMINARIES

Let us start with some definitions. Consider the system

ẋ = f (x,δ ) , x0 ∈X , δ ∈D , δ̇ ∈ Ď (1)
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where x ∈ Rn is the state with initial condition x0, δ ∈ Rd

a vector of uncertain parameters, f (x,δ ) is a continuous
vector function with f (0,δ ) = 0. X is a given polytope, not
necessarily symmetric, that contains the origin and represents
a desired set of initial states to be considered in the stability
analysis. D ,Ď ⊂ Rd are given polytopes representing the
bounds on the magnitude of the parameter δ and its rate of
variation (δ̇ ). The notation (x,δ , δ̇ ) ∈ X ×D × Ď means
that x ∈X δ ∈D and δ̇ ∈ Ď .

In this paper we are concerned with the Lyapunov stability
of the system (1). More precisely, we are interested in de-
termining a suitable Lyapunov function v(x,δ ) that satisfies
the following conditions ∀(x,δ , δ̇ ) ∈X ×D× Ď .

φ3(‖x‖)≤ v(x,δ ) := x′P(x,δ )x≤ φ1(‖x‖)
v̇(x,δ ) = x′Ṗ(x,δ )x+2x′P(x,δ ) f (x,δ )≤−φ2(‖x‖)

(2)

where φ1(.),φ2(.),φ3(.) are class K functions and P(.)
is symmetric. The above conditions imply local uniform
asymptotic stability of the origin [7].

The complexity of the matrix function P(x,δ ) is an
important aspect of the Lyapunov function. If in one hand
the computational burden to numerically solve the stability
problem grows with the complexity of the Lyapunov func-
tion, on the other hand less conservative results should be
expected. In this paper we consider a Lyapunov function
that is allowed to be a general rational function of the
states and uncertain parameters. Several important class of
functions, such as polynomials of any type and the well
known quadratic function, are recovered as particular cases.

We end this preliminary section with a version of the
Finsler’s lemma and the definition of a Linear Annihilator.

Lemma 2.1 (Finsler’s Lemma): Let W ⊆ Rs be a poly-
topic set, S(.) : W 7→Rq×q, K(.) : W 7→Rr×q be given matrix
functions, with S(.) symmetric. Let Q(w) be a basis for the
null space of K(w). Then the following are equivalent:

(i) ∀w ∈W the condition z′S(w)z > 0 is satisfied ∀z ∈
Rq : K(w)z = 0.

(ii) ∀w∈W there exists a matrix function L(w) : W 7→
Rq×r such that S(w)+L(w)K(w)+K(w)′L(w)′> 0.

(iii) ∀w ∈ W the condition Q(w)′S(w)Q(w) > 0 is
satisfied. �

Two cases are of particular interest to this paper. The
first is when S(.),K(.) are affine functions and L(.) is
constrained to be constant. In this situation (i),(ii) are no
longer equivalent, but (ii) is clearly a sufficient polytopic
LMI condition for (i). The second case is when S(.) is affine
function and K(.) is constrained to be constant, leading Q(.)
to be constant as well. In this case (i),(iii) are yet equivalent
and (iii) is a polytopic LMI with a smaller number of
decision variable when compared to (ii). The interest of these
two polytopic LMI problems is that they are numerically
efficient alternatives to the condition (i), which is an infinite
dimensional problem. See for instance [8] and Lemma 7.3
of [9] for more details on the Finsler’s Lemma.

Another definition of interest is as follows.
Definition 2.1 (Linear Annihilator): Given a vector func-

tion f (.) : Rq 7→ Rs, a matrix function ℵ f (.) : Rq 7→ Rr×s

will be called a Linear Annihilator of f (.) if it satisfies
the following two requirements (i) ℵ f (.) is linear and (ii)
ℵ f (z) f (z) = 0 , ∀z ∈ Rq of interest. �

Observe that the matrix representation of a Linear An-
nihilator is not unique in general. Suppose that f (z) = z =[

z1 . . . zq
]′ ∈Rq. Taking into account all possible pairs

zi,z j for i 6= j without repetition, i.e. for ∀i, j ∈ Iq with
j > i, we get an annihilator where the number of rows are
r = ∑

q−1
j=1 j and it is given by the formula

ℵz(z) =

 ψ1(z) Y1(z)
...

...
ψ(q−1)(z) Y(q−1)(z)

 (3)

Yi(z) =−zi I(q−i) , i ∈ Iq−1 , ψ1(z) =
[

z2 . . . zq
]′

ψi(z) =

 0(q−i)×(i−1)

z(i+1)
...

zq

 , i ∈ {2, . . . ,q−1}

If f (z) =
[
z2

1 z1z2
]′ a linear annihilator is ℵ f (z) =[

z2 −z1
]
. Observe that linear annihilators express a linear

interdependence among the entries of f (z). The conservative-
ness of state dependent LMIs can be reduced by combining
the Linear Annihilator with the Finsler’s Lemma.

III. LOCAL STABILITY RESULTS

Let us suppose that the system (1) can be represented as

ẋ = f (x,δ ) = A0 x+A1 π x0 ∈X
0 = G(x,δ )x+F(x,δ )π δ ∈D , δ̇ ∈ Ď .
x ∈ Rn , π ∈ Rp , δ ∈ Rd

(4)

Assumption (4a): f (x,δ ) is a continuous function of
(x,δ ), ∀(x,δ )∈X ×D with f (0,δ ) = 0 for all δ of interest.
This assumption regards the existence and uniqueness of the
solutions of the differential equation in a neighborhood X
of the equilibrium point x = 0.

Assumption (4b): The matrices F(x,δ ),G(x,δ ) are affine
functions of (x,δ ) and F(x,δ ) is invertible for all values of
(x,δ ) ∈ X ×D . Under this regularity assumption the de-
composition (4) of f (x,δ ) in terms of the nonlinear function
π is well posed as f (x,δ ) = (A0−A1F(x,δ )−1G(x,δ ))x.

It is important to emphasize that the matrices of the system
representation (4) can be easily obtained and there exist
systematic ways for doing this. Due to space limitation these
results are omitted here.

In the sequel we present LMI conditions for local stability
of the origin of the system (4). We suppose that the polytopes
X ,D and Ď are given. They represent, respectively, the
desired set of initial conditions to be considered in the
stability analysis and the bounds on the magnitude and
rate of variation of the uncertain parameters. The problem
to be solved is to find, if possible, a Lyapunov function
v(x,δ ) = x′P(x,δ )x that satisfies the conditions (2) point-
wise ∀(x,δ , δ̇ ) ∈X ×D× Ď .

Consider the system (4) under Assumptions (4a,b) and the
Lyapunov function candidate

v(x,δ ) := π
′
bPπb = x′P(x,δ )x , πb := [x,π]col (5)
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where G(x,δ )x+F(x,δ )π = 0 as in (4), P∈R(n+p)×(n+p) is
a symmetric matrix to be determined and

P(x,δ ) =
[

In
−F(x,δ )−1G(x,δ )

]′
P
[

In
−F(x,δ )−1G(x,δ )

]
(6)

Without loss of generality, we consider both the system and
the Lyapunov function are represented from the same π

vector of nonlinear functions. It is important to emphasize
that, with a proper choice of π we can consider any type
of rational systems and Lyapunov functions. For instance,
the Krasovskii stability method [7] for the system ẋ = f (x),
which is based on a Lyapunov function of the type v(x) =
f (x)′Pk f (x) may be obtained as particular case from (5) by
choosing P =

[
A0 A1

]′Pk
[

A0 A1
]
. The well known

quadratic Lyapunov function v(x) = x′P0x, with P0 > 0,
corresponds to the choice

P =
[

In 0n×p
]′P0

[
In 0n×p

]
(7)

Rational Lyapunov functions of the type SOS are obtained
with the constraint P > 0.

Let us define the matrix Cb as

Cb(x,δ ) =
[

G(x,δ ) F(x,δ )
]

(8)

and observe from (4) that Cb(x,δ ) is affine with respect to
(x,δ ) and satisfies Cb(x,δ )πb = 0 with πb given in (5).

Observe from Assumption (4b), the vector π is
uniquely determined from (x,δ ) through the relation π =
−F(x,δ )−1G(x,δ )x. However, as previously mentioned there
are, in general, several pair of matrices F(x,δ ),G(x,δ )
that could be used to characterize the same π function.
In this context, the use of linear annihilators jointly with
the Finsler’s Lemma is an important feature of the method.
In order to exploit the degrees of freedom associated with
ℵπb(x,δ ), let us define

Γb(x,δ ) := Mbℵπb(x,δ )+ℵπb(x,δ )
′M′b

ℵπb(x,δ ) := [ℵx(x),ℵπ(x,δ )]diag ∈ R(sb)×(n+p) (9)

where ℵπb(x,δ ) ∈ R(sb)×(n+p) is a linear annihilator of
πb, Mb ∈ R(n+p)×(sb) is a free scaling matrix to be deter-
mined and note that π ′bΓb(x,δ )πb = 0. Observe that both
Cb(x,δ ),ℵπb(x,δ ) can be viewed as linear annihilators of
πb as Cb(x,δ )πb = 0 and ℵπb(x,δ )πb = 0. However, these
matrices have different roles. While the first is associated
with the particular pair of matrices F(x,δ ),G(x,δ ) used
to characterize the π function, the second introduces ad-
ditional degrees of freedom, represented by the scaling
matrix Mb, to alleviate the impact of the non-uniqueness of
F(x,δ ),G(x,δ ).

From standard convexity properties of LMIs, it is not diffi-
cult to check that the existence of P=P′ ∈R(n+p)×(n+p),Lb ∈
R(n+p)×(p), Mb ∈ R(n+p)×(sb) satisfying

P+LbCb(x,δ )+Cb(x,δ )′L′b +Γb(x,δ )> 0
∀(x,δ ) ∈ ϑ(X ×D)

(10)

is a sufficient LMI condition for the positiveness of v(x,δ )
from (5) ∀(x,δ ) ∈X ×D .

Next, the time derivative of v(x,δ ) leads to

v̇(x,δ ) = 2
[

x
π

]′
P
[

A0x+A1π

π̇

]
(11)

As G(x,δ )x+F(x,δ )π = 0, the vector π̇ satisfies the relation

Ḟ(x,δ )π +F(x,δ )π̇ + Ġ(x,δ )x+G(x,δ )(A0x+A1π) = 0
(12)

Keeping in mind the matrices F(x,δ ),G(x,δ ) are affine
functions of (x,δ ), consider the notation

G(x,δ ) := G0 + Ḡ(x)+ G̃(δ ) , Ḡ(x) = ∑
n
i=1 Ḡixi

F(x,δ ) := F0 + F̄(x)+ F̃(δ ) , F̄(x) = ∑
n
i=1 F̄ixi

G̃(δ ) = ∑
d
i=1 G̃iδi , F̃(δ ) = ∑

d
i=1 F̃iδi

(13)

where xi,δi are the entries of x,δ and F̄i, F̃i, Ḡi, G̃i,G0,F0 are
constant matrices of structure that can be easily obtained
from G(x,δ ),F(x,δ ). Then it follows that Ḟ(x,δ ), Ġ(x,δ )
are linear functions of (ẋ, δ̇ ) given respectively by F̄(ẋ)+
F̃(δ̇ ) and Ḡ(ẋ)+ G̃(δ̇ ). Now observe the term F̄(ẋ)π that
appears in (12), may be rewritten as

F̄(ẋ)π =
n

∑
j=1

F̄j ẋ jπ =−
n

∑
j=1

F̄j ẋ jF(x,δ )−1G(x,δ )x

=
n

∑
j=1

F̄jF(x,δ )−1G(x,δ )µ j (14)

µ j =−xẋ j =−xE j ẋ =−xE j(A0x+A1π) (15)

where E j := row j(In). Introducing another change of variable

η j := F(x,δ )−1G(x,δ )µ j (16)

we get F̄(ẋ)π = ∑
n
j=1 F̄jη j = F̄aη , η = [ηi]

n
col , F̄a = [F̄i]

n
row.

The term Ḡ(ẋ)x that appears in (12), may be rewritten as
Ḡ(ẋ)x = ∑

n
j=1 Ḡ j ẋ j x = ∑

n
j=1 Ḡ jxE j ẋ = Ḡa(x)ẋ

= Ḡa(x)(A0x+A1π) , Ḡa(x) := ∑
n
j=1 Ḡ jxE j

(17)

With the above expressions we can rewrite (12) as

F̄aη + F̃(δ̇ )π +F(x,δ )π̇

+(Ḡa(x)+G(x,δ ))(A0x+A1π)+ G̃(δ̇ )x = 0 (18)

where F(x,δ ),G(x,δ ) have the structure (13) and

µ = [µi]
n
col =−Eb(x)(A0x+A1π)

Eb(x) := [xEi]
n
col , Ei := rowi(In) , Fb(x,δ )η = Gb(x,δ )µ

Fb(x,δ ) := [F(x,δ )]ndiag , Gb(x,δ ) := [G(x,δ )]ndiag
Ḡa(x) := ∑

n
i=1 ḠixEi , F̄a := [F̄i]

n
row

(19)
The time derivative of v(x,δ ) indicated in (11) can be
rewritten as

v̇(x,δ ) = π
′
a(Pa +P′a)πa , πa = [x,π, π̇,µ,η ]col (20)

Pa :=
[

PAa
0(p+n2+np)×(n+2p+n2+np)

]
Aa :=

[
A0 A1 0n×p 0n×(n2+np)

0p×n 0p×p Ip 0p×(n2+np)

] (21)

Observe that n, p are the dimensions of x,π respectively. To
represent the system and Lyapunov function we have used
the vectors x,π . However, the time derivative of v(x,δ ) has
increased complexity and we need extra change of variables,
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namely π̇,µ,η , with dimensions p,n2,np respectively, to
render the expressions affine in x,δ , δ̇ .

By arranging in a single expression all the relations among
the vectors x,π, π̇,µ,η we get Ca(x,δ , δ̇ )πa = 0 where

Ca(x,δ , δ̇ ) := (22)
G(x,δ ) F(x,δ ) 0p×p 0p×n2 0p×np

W1(x,δ , δ̇ ) W2(x,δ , δ̇ ) F(x,δ ) 0p×n2 F̄a

Eb(x)A0 Eb(x)A1 0n2×p In2 0n2×np
0np×n 0np×p 0np×p −Gb(x,δ ) Fb(x,δ )


W1(x,δ , δ̇ ) = Ḡa(x)A0 + G̃(δ̇ )+G(x,δ )A0

W2(x,δ , δ̇ ) = Ḡa(x)A1 + F̃(δ̇ )+G(x,δ )A1

Similarly to (9), we define Γa(x,δ , δ̇ ) as

Γa(x,δ , δ̇ ) := Maℵπa(x,δ , δ̇ )+ℵπa(x,δ , δ̇ )
′M′a (23)

where ℵπa(x,δ , δ̇ )∈Rsa×(n+2p+n2+np) is a linear annihilator
of πa, Ma ∈ R(n+2p+n2+np)×sa is a free scaling matrix to be
determined and note that π ′aΓa(x,δ , δ̇ )πa = 0.

In order to find an expression for ℵπa(x,δ , δ̇ ) observe that
ℵπb(x,δ )πb = 0. Then we get ℵ̇πb(x,δ )πb+ℵπb(x,δ )π̇b = 0.
As ℵπb(x,δ ) is affine with respect to x,δ it follows that
ℵ̇πb(x,δ ) is linear with respect to ẋ, δ̇ and we consider the
notation

ℵπb(x,δ ) = H0 + H̄(x)+ H̃(δ ), ℵ̇πb(x,δ ) = H̄(ẋ)+ H̃(δ̇ )
H̄(x) = ∑

n
i=1 H̄ixi, H̄(ẋ) = ∑

n
i=1 H̄iẋi

H̃(δ ) = ∑
d
i=1 H̃iδi, H̃(δ̇ ) = ∑

d
i=1 H̃iδ̇i

(24)
where H0, H̄i, H̃i ∈ Rsb×(n+p) are fixed matrices of structure
that can be easily obtained from ℵπb(x,δ ).

Considering the additional notation

πb = J0x+ J1π , J0 =

[
In

0p×n

]
, J1 =

[
0n×p

Ip

]
(25)

and proceeding as in (14),(17) we get

H̄(ẋ)πb = ∑
n
i=1 H̄iJ1ηi−∑

n
i=1 H̄iJ0µi = H̄aη + H̄bµ

H̄a := [H̄iJ1]
n
row , H̄b :=−[H̄iJ0]

n
row

(26)

Finally, the expression ℵ̇πb(x,δ )πb +ℵπb(x,δ )π̇b = 0 can
be rewritten as H̄aη + H̄bµ + H̃(δ̇ )πb + ℵπb(x,δ )π̇b = 0
and with (25) we get H̄aη + H̄bµ + H̃(δ̇ )(J0x + J1π) +
ℵπb(x,δ )(J0A0x+ J0A1π + J1π̇) = 0, that in turn yields

ℵπa(x,δ , δ̇ ) =


ℵπb(x,δ ) 0sb×p 0sb×n2 0sb×np

0sb×(n+p) 0sb×p ℵµ(x) 0sb×np
0sb×(n+p) 0sb×p 0sb×n2 ℵη(x,δ )

Wa Wb ℵπb(x,δ )J1 H̄b H̄a


Wa = H̃(δ̇ )J0 +ℵπb(x,δ )J0A0 (27)

Wb = H̃(δ̇ )J1 +ℵπb(x,δ )J0A1

where ℵπb is a linear annihilator of πb, H̃(δ̇ ), H̄a, H̄b are
defined from (24),(26) and the annihilators ℵµ(x) and ℵη(x)
are obtained as follows. Observe from (15) that µi = −xẋi
and as ẋi is a scalar we conclude µi and x have the same
linear annihilators, i.e. ℵµi(x) = ℵx(x). As µ(x) = [µi]

n
col we

get ℵµ(x) := [ℵx(x)]ndiag.

Moreover, from (16) it follows that ηi =
F(x,δ )−1G(x,δ )µi = π ẋi and thus ηi and π have the
same linear annihilator, i.e. ℵηi(x,δ ) = ℵπ(x,δ ). As
η(x) = [ηi]

n
col we get ℵη(x,δ ) := [ℵπ(x,δ )]ndiag.

The matrices Ca(x,δ , δ̇ ),ℵπa(x,δ , δ̇ ) may be viewed as
annihilators of πa but, similarly to (9), they have different
roles in the problem.

As Ca(x,δ , δ̇ )πa = 0 and π ′aΓa(x,δ , δ̇ )πa = 0, from (20)
and the Finsler’s Lemma we get the following sufficient LMI
condition for the negativeness of v̇(x,δ ).

Pa +P′a +Ca(x,δ , δ̇ )′L′a +LaCa(x,δ , δ̇ )+Γa(x,δ , δ̇ )< 0

∀(x,δ , δ̇ ) ∈ ϑ(X ×D× Ď) (28)

where La,Ma are free scaling matrices having the same
dimensions of C′a,ℵ

′
πa and must be determined jointly with P

that characterizes Pa from (21). If the LMI (28) is satisfied for
some La,Ma,P, then the function v̇(x,δ ) is negative definite.

With these results we can prove the following theorem.
Theorem 3.1: Consider the uncertain nonlinear system (4)

with Assumptions (4a,b) and suppose the polytopes X ,D ,Ď
are given.
Suppose there exist matrices P,La,Ma,Lb,Mb satisfying the
LMIs (10),(28) for (x,δ , δ̇ ) at the vertices of the polytope
X ×D × Ď . Then the origin of the system (4) is locally
asymptotically stable and v(x,δ ) = x′P(x,δ )x with the struc-
ture (6) is a Lyapunov function that satisfies (2).
Proof: Suppose now the conditions of the Theorem 3.1
are satisfied. Then by convexity they are also satisfied
∀(x,δ , δ̇ ) ∈X ×D× Ď . Define the positive constants

ε1 = max
x∈X ,δ∈D

λ (P+LbCb(x,δ )+Cb(x,δ )′L′b +Γb(x,δ ))

ε3 = min
x∈X ,δ∈D

λ (P+LbCb(x,δ )+Cb(x,δ )′L′b +Γb(x,δ ))

ε2 = max
x∈X ,δ∈D

λ (M′M), M := F(x,δ )−1G(x,δ ) (29)

As P+LbCb+C′bL′b+Γb > 0, let us multiply this inequality
by πb := [x,π]col to the right and by its transpose to the left.
Keeping in mind that Cbπb = 0, π ′bΓbπb = 0 and π ′bPπb =
x′P(x,δ )x as π =−F(x,δ )−1G(x,δ )x, we get

ε3‖πb‖2 ≤ v(x,δ ) = x′P(x,δ )x≤ ε1‖πb‖2 , ∀(x,δ )∈X ×D

On the other hand ‖x‖2 ≤ ‖πb‖2 ≤ (ε2 + 1)‖x‖2, ∀(x,δ ) ∈
X ×D . Thus v(x,δ ) = x′P(x,δ )x satisfies the bounds in (2)
∀(x,δ ) ∈X ×D with

φ3 = ε3 ‖x‖2 , φ1 = ε1 (ε2 +1)‖x‖2 (30)

Similar arguments are used to show the bounds on v̇(x,δ ).
Define the positive constant ε4 as

ε4 = min
x∈X ,δ∈D ,δ̇∈Ď

λ (−N) (31)

N := Pa +P′a +Ca(x,δ , δ̇ )′L′a +LaCa(x,δ , δ̇ )+Γa(x,δ , δ̇ )

Recall from (20),(22),(23) that Caπa = 0, π ′aΓaπa = 0. Thus
from (20),(28),(31) we get

v̇(x,δ ) = π
′
aNπa ≤−ε4‖πa‖2 (32)
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As ‖πa‖2 = ‖x‖2 + ‖π‖2 + ‖π̇‖2 + ‖µ‖2 + ‖η‖2 we con-
clude ‖πa‖2 > ‖x‖2 whenever ‖x‖ 6= 0 which in turn implies
v̇(x,δ ) < −ε4‖x‖2 and we conclude v̇(x,δ ) satisfies the
bounds in (2) ∀(x,δ , δ̇ ) ∈ X ×D × Ď with φ2 = ε4 ‖x‖2,
which completes the proof. �

Observe the uncertain nonlinear system (4) is locally
exponentially stable whenever the LMI conditions of the
Theorem 3.1 are strictly satisfied and the sets X of initial
conditions and D of uncertain parameters are bounded. This
follows direct from (30),(29) and the boundedness of X ,D .

IV. GLOBAL STABILITY

This section is devoted to the study of global stability
problems and the idea is to find additional conditions under
which the results for local stability of the previous section
can be extended for global stability.

It turns out from the Theorem 3.1 that the global stability
of the system (4) is guaranteed if the LMIs (10),(28) are
satisfied with X = Rn. The problem of concern is then to
find under what additional conditions these state-dependent
LMIs may be satisfied ∀x ∈ Rn.

Let us start with the following result.
Lemma 4.1: Consider the LMI problem Ψ(W,z) > 0

where z ∈ Rnz is a vector of parameters and W the decision
variable to be tuned. Suppose that Ψ(.) can be decomposed
as

Ψ(W,z) = Ψ0(W )+
nz

∑
i=1

Ψi(W )zi (33)

where zi are the entries of z and Ψi(W ) are affine functions
of W .

Then Ψ(W,z)> 0 is satisfied for some W and ∀z ∈Rnz if
and only if Ψ0(W )> 0 and Ψi(W ) = 0 , ∀i ∈ Inz . �
Proof: The sufficiency is trivial and the necessity follows by
contradiction. Suppose Ψ(W,z)> 0 is satisfied ∀z ∈Rnz and
Ψi(W ) 6= 0 for some i ∈ Inz . As zi, i ∈ Inz are independent
parameters consider the situation where z j = 0, ∀ j 6= i and
zi ∈ {−∞,∞}. Then if Ψ(W,z) = Ψ0(W )+ ziΨi(W ) > 0 is
satisfied for zi → ∞ we conclude this condition cannot be
satisfied for zi → −∞. This shows Ψi(W ) = 0 ∀i ∈ Inz are
necessary conditions. Moreover Ψ0(W ) > 0 is necessary to
satisfy Ψ(W,z)> 0 when z = 0, completing the proof. �

In order to generalize the local stability conditions of the
Theorem 3.1 to global stability let us represent the decision
variables of the LMIs (10),(28) through the notation W :=
[P,Ma,La,Mb,Lb]diag and consider the affine decomposition
of the LMIs (10),(28) in terms of the state x as follows.

Ψ(W,x,δ ) = P+LbCb(x,δ )+Cb(x,δ )′L′b +Γb(x,δ )

= Ψ0(W,δ )+
n

∑
i=1

Ψi(W )xi (34)

Φ(W,x,δ , δ̇ ) = P′a +Pa +LaCa(x,δ , δ̇ )+Ca(x,δ , δ̇ )′L′a

+Γa(x,δ , δ̇ ) = Φ0(W,δ , δ̇ )+
n

∑
i=1

Φi(W )xi (35)

Corollary 4.1: Consider the system (4) with Assumptions
(4a,b), let D ,Ď be given and X = Rn. Consider the affine

decomposition (35),(34) . Suppose there exists W solving the
following convex LMI problem

Ψ0(W,δ )> 0, Φ0(W,δ , δ̇ )< 0, ∀(δ , δ̇ ) ∈ ϑ(D× Ď)
Ψi(W ) = 0 , Φi(W ) = 0 , ∀i ∈ In

(36)
Then the origin of the system (4) is globally asymptotically
stable ∀(δ , δ̇ ) ∈ D × Ď and v(x,δ ) = x′P(x,δ )x with the
structure (6) is a Lyapunov function for the system. �
Proof. Observe (36) implies Ψ(W,x,δ ) > 0 from (34) and
Φ(W,x,δ , δ̇ ) < 0 from (35) are satisfied ∀(δ , δ̇ ) ∈ D × Ď
and ∀x ∈ Rn. Moreover, both Ψ(W,x,δ ) and Φ(W,x,δ , δ̇ )
are independent of x, i.e. Ψ(W,x,δ ) = Ψ0(W,δ ) and
Φ(W,x,δ , δ̇ ) = Φ0(W,δ , δ̇ ). This implies the positive con-
stants ε4,ε3,ε1 from (31),(29) are bounded and given by

ε4 = min
X ×D×Ď

λ (−Φ(W,x,δ , δ̇ )) = min
D×Ď

λ (−Φ0(W,δ , δ̇ ))

ε1 = max
X ×D

λ (Ψ(W,x,δ )) = max
D

λ (Ψ0(W,δ ))

ε3 = min
X ×D

λ (Ψ(W,x,δ )) = min
D

λ (Ψ0(W,δ ))

However it is not possible to show, in general, the bound-
edness of ε2 from (29) when X = Rn. In this case the
conditions (2) are satisfied with

φ3 = ε3 ‖x‖2 , φ1 = ε1 (ε2(x)+1)‖x‖2 , φ2 = ε4 ‖x‖2

ε2(x) = max
δ∈D

λ (M′M), M := F(x,δ )−1G(x,δ )

Observe φ1 is positive definite and bounded for bounded ‖x‖.
The proof is completed from Theorem 3.1 and [7]. �

Remark 4.1: The Lemma 4.1 can also be used to solve
stability problems where the uncertain parameters have arbi-
trary rates of variation, i.e. Ď =Rd . In this case it suffices to
consider the affine decomposition of Φ(W,x,δ , δ̇ ) in terms
of δ̇i and apply the Lemma 4.1. This situation will lead to a
Lyapunov function that is not parameter dependent. �
Following the same lines of the above corollary it is possible
to derive stability conditions for systems where some or all
the state variables are constrained by the model to have
definite signal.

Corollary 4.2: Consider the system (4) under Assump-
tions (4a,b), with

X :=


x =

[
x1 . . . xn

]′ such that
xi unconstrained for i ∈ Iunc
xi ≥ 0 for i ∈ Ipos
xi ≤ 0 for i ∈ Ineg
Iunc +Ipos +Ineg = In

 (37)

and let D ,Ď be given polytopes. Suppose X is positively
invariant for the system trajectories, i.e. the state variables
xi(t) for i ∈ Ipos + Ineg do not change of signal for t ≥ t0
if x(t0) ∈ X . Consider the matrices Ψi(.),Φi(.) given by
the affine decomposition in (35),(34). Suppose the following
LMI problem is feasible for some W := [P,Ma,La,Mb,Lb]diag.

Ψ0(W,δ )> 0, Φ0(W,δ , δ̇ )< 0, ∀(δ , δ̇ ) ∈ ϑ(D× Ď)

Ψi(W ) = 0 , Φi(W ) = 0 , ∀i ∈ Iunc

Ψi(W )≥ 0 , Φi(W )≤ 0 , ∀i ∈ Ipos (38)
Ψi(W )≤ 0 , Φi(W )≥ 0 , ∀i ∈ Ineg
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Then the trajectories of the system (4) converge asymptot-
ically to the origin ∀(δ , δ̇ ) ∈ D × Ď and ∀x(t0) ∈ X in
(37). Moreover v(x,δ ) = x′P(x,δ )x with the structure (6) is
a Lyapunov function for the system. �

Remark 4.2: The proof follows the same lines of that of
the Corollary 4.1. However, as the conditions (38) guarantee
v(x,δ ) > 0 and v̇(x,δ ) < 0 pointwise in X the assumption
that X in (37) is positively invariant is essential for the
stability condition. Observe that any trajectory in the interior
of X does not cross the surface Hi = {x : xi = 0}, for some
i ∈ Ineg, if ẋi ≤ 0 ∀x ∈X

⋂
Hi and ∀δ ∈D . Similarly, for a

surface Fi = {x : xi = 0}, for some i ∈ Ipos, we must have
ẋi ≥ 0 ∀x ∈X

⋂
Fi and ∀δ ∈ D . See [10] for references

on this point. If these conditions are not guaranteed to be
satisfied the Corollary 4.2 cannot be used and the region
of attraction must be estimated with the methods for local
stability developed in the previous section. �

V. NUMERICAL EXAMPLE

Consider the problem of estimating the region of attraction
of the origin of the following system, borrowed from [11]:[

ẋ1
ẋ2

]
=

[
−x1 +2x2

1x2
−x2

]
(39)

This system has nonlinearities of degree 3, and for this reason
we adopt π =

[
x2

1 x1x2 x2
2 x3

1 x2
1x2 x1x2

2 x3
2
]′ and

in this case the system representation is

A0 =

[
−1 0
0 −1

]
, A1 =

[
0 0 0 0 2 0 0
0 0 0 0 0 0 0

]

G(x) =

 −x1I2
−x2row2(I2)

04×2

 ,F(x) =

 I3 03×4
−x1I3

−x2row3(I3)
I4


The linear annihilators of x,π are ℵx(x) =

[
x2 −x1

]
and

ℵπ(x) =


x2 −x1 0 0 0 0 0
0 x2 −x1 0 0 0 0
0 0 0 x2 −x1 0 0
0 0 0 0 x2 −x1 0
0 0 0 0 0 x2 −x1


Observe ℵπb = [ℵx,ℵπ ]diag and ℵπa is given from (27).

Now define the regions X1 = {x : x1 ≤ 0, x2 ≥ 0} and
X2 = {x : x1 ≥ 0, x2 ≤ 0} and observe they correspond to
the second and fourth quadrants of the state space. Observe
in addition that both sets X1,X2 satisfy the conditions
for positive invariance according to Remark 4.2. Then we
may use the Corollary 4.2 to verify the stability of system
trajectories in these sets. It turns out that the conditions of
the Corollary 4.2 are satisfied for these two sets individually
and therefore any trajectory in these sets are asymptotically
stable. The LMIs were solved with SeDuMi and Yalmip
[5] interface to Matlab. Even a quadratic Lyapunov function
satisfies the conditions of the Corollary 4.2 for both X1,X2
individually. As X1,X2 are positively invariant sets the
region X1

⋃
X2 is a region of attraction of the system and

it is very close to the true region of attraction obtained from
[11] and represented by the dashed (red) curves.

Four state trajectories (blue) for some x0 ∈X1
⋃

X2 are
also shown in the figure.

x1

x2

X1

X2

Fig. 1. Estimated regions of attraction for system (39).

VI. CONCLUDING REMARKS

The main contribution of this paper is to present an LMI
technique for global asymptotic stability of rational systems
where some or all the state variables are constrained by the
model to have definite signal. The stability conditions are
based on a rational Lyapunov function and the effectiveness
of the approach is illustrated through a numerical example.
Important results, comments and references were omitted
here due to space limitation but they can be found in the full
version of this paper (submitted for publication). The full
version also treats the problems of regional stability, robust
regions of attraction, presents LMI conditions to check the
positive invariance of X in (37) , establishes connections
with some results in the literature and presents a comparative
study through several numerical examples.
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