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Abstract— This paper considers tracking control of multiple
nonlinear systems with a desired trajectory which is not avail-
able to each system. With the aid of information interchange
between systems, distributed robust/adaptive control laws are
proposed such that the state of each system asymptotically
converges to the desired trajectory. Simulation results show
the effectiveness of the proposed control laws.

I. INTRODUCTION

Seeking consensus has been an extensive research area in

recent years due to its wide applications in computer science,

management science, social science, controls, robotics, etc.

For multiple systems, the consensus problem is generally

defined as designing distributed control laws such that all

systems converge to one common state vector that could be

either stationary or time-varying.

In literature, there are many research papers on designing

consensus algorithms such that the states of multiple systems

converge to a constant vector. In [1], alignment of multiple

discrete-time agents was investigated by Vicsek et al.. A

distributed control law was proposed for each agent based

on the average of its own heading and the headings of

its neighbors. The simulation results in [1] demonstrated

that the proposed control law can make all agents move

in the same direction even if the nearest neighbors change

with time. In [2], the authors provided a convergence proof

for Vicsek’s decentralized control model with the aid of

graph theory and matrix theory. In [3], consensus problems

for networks consisting of multiple continuous-time systems

were considered. Consensus algorithms were proposed for

fixed and switching communication cases. In [4], the results

obtained in [2, 3] were extended and improved conditions

were presented for time varying communication graph. In

[5], the stability of multiple agents with nonlinear models

in discrete time and time-dependent communication links

was considered. Necessary and/or sufficient conditions for

the convergence of the state of each individual agent to a

consensus vector were proposed with the aid of graph theory

and convexity techniques. In [6], the results for discrete-time

systems reported in [5] were extended to continuous time

systems.

In addition to the consensus problem where the states

of multiple systems converge to a static state, there are

also many papers that proposed consensus algorithms where

multiple systems reach agreement on a common time-varying

state. In [7, 8], tracking control of multiple first-order linear

systems with an active leader was discussed. Distributed

dynamic controllers were proposed with the aid of distributed

estimators. The proposed control laws can make the tracking

error between the state of a system and the state of an active

leader as small as possible by choosing a large control param-

eter. In [9, 10], distributed tracking via a variable structure

approach was considered for multiple first-order and second-

order systems. Distributed discontinuous controllers were

proposed such that the state of each system converges to a

desired trajectory within finite time under the condition that

the desired trajectory is available to a portion of the group

of systems. In [11], adaptive distributed control laws were

proposed for multiagent nonlinear systems with uncertainty.

However, the derivatives of the neighbors’ states are required.

In [12], a passivity framework was proposed to steer the

differences between output variables of a group of members

to a prescribed compact set. The proposed framework can

be applied to solve consensus problems of multiple systems.

In [13], adaptive motion coordination of multiple systems

was studied. Distributed adaptive control laws were proposed

such that a reference velocity is tracked by each system

with the aid of communications between systems. Flocking

of multiple systems may be considered as a consensus

problem. In [14], flocking of multiple second-order agents

was solved with the aid of potential functions under the

assumption that the desired trajectory is available to each

agent. In [15], flocking of multiple systems was discussed

for fixed and switching communication cases such that the

velocity of each agent reaches an agreement. In [16, 17],

flocking algorithms of multiple second-order linear systems

were proposed under the assumptions that the information

of a virtual leader is available to a portion of systems with

appropriate assumptions on the virtual leader. For surveys on

consensus problems, readers may refer to [18, 19].

In this paper, we consider the consensus problem of mul-

tiple high-order nonlinear systems with a reference system

whose state is available to a portion of the systems. With the

aid of information interchange between neighbors, several

types of distributed control laws are proposed. The contribu-

tions of this paper are are two fold: 1) the tracking control

problem of multiple systems with limited information of a

desired trajectory is solved with the aid of neighbors’ state

information; and 2) systematic controller design methods are

proposed with the aid of Lyapunov techniques. The proposed

approach can be extended to deal with the consensus problem

of multiple nonlinear systems with uncertainty.

The remaining sections are organized as follows. In Sec-

tion II, the control problem discussed in this paper is defined.

In Section III, distributed control laws are proposed. In
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Section IV, simulation results are presented. The last section

concludes this paper.

II. PROBLEM STATEMENT

Consider a group of m identical nonlinear systems. The

j-th system has the following form

ẋij = fi(x̄ij) + xi+1,j , for i = 1, . . . , n− 1 (1)

ẋnj = fn(x̄nj) + uj (2)

where x̄ij = [x1j , . . . , xij ]
⊤. The function fi is smooth and

is assumed to be known. uj ∈ ℜ is the control input of

system j.

The communications between the m systems are assumed

to be bi-directional and are described by a graph G = {V , E}
where V is a set of the indices of the systems and E is a

set of edges that describe the communications between the

systems. If the state of system i is available to system j,

system i is said to be a neighbor of system j. The index

numbers of all neighbors of system j form a neighbor set

and is denoted by Nj . However, it does not see itself in the

list of its neighbors, i.e., i 6∈ Ni. A graph is called connected

if for any two nodes there is a set of edges that connect the

two nodes.

Given a reference system x∗0 = [x10, . . . , xn0]
⊤ that

satisfies

ẋi0 = fi(x̄i0) + xi+1,0, for i = 1, . . . , n− 1 (3)

ẋn0 = fn(x̄n0) + u0 (4)

where x̄i0 = [x10, . . . , xi0]
⊤ and u0 are known time-varying

functions. We assume that the state x∗0 is only available to

a portion of the m systems. The control problem considered

in this paper is defined as follows.

Control Problem: For system j, design a control law based

on its own state information, its neighbor’s state information

(i.e., x∗i for i ∈ Nj), and x∗0 if it is available such that

lim
t→∞

(x∗j − x∗0) = 0, 1 ≤ j ≤ m. (5)

Remark 1: In the control problem, the desired trajectory

is available to only a subset of systems. Tracking controller

design for a single nonlinear system cannot solve our control

problem.

In order to solve the control problem, the following

assumption is made on the reference system (3)-(4).

Assumption 1: The variable x∗0 and its derivative ẋ∗0 are

bounded.

III. CONTROL LAW DESIGN

The m systems in (1)-(2) and the desired system in (3)-

(4) are in strict-feedback forms [20]. With the aid of the

backstepping techniques in [20], we define a new variable

z∗j = [z1j , . . . , znj]
⊤ with

zij = xij − αij (6)

for i = 1, . . . , n and j = 0, 1, 2, . . . ,m, where

α1j = 0 (7)

α2j(x̄1j) = −k1z1j − f1(x̄1j) (8)

αi+1,j(x̄ij) = −kizij − fi(x̄ij)− zi−1,j

+α̇ij(x̄i−1,j), 3 ≤ i ≤ n− 1 (9)

and ki > 0. Then, we have

ż1j = −k1z1j + z2j (10)

żij = −kizij − zi−1,j + zi+1,j , 2 ≤ i ≤ n− 1(11)

żnj = fn(x̄nj) + uj − α̇nj(x̄n−1,j) (12)

for j = 0, 1, . . . ,m.

For the (m+1) systems in (10)-(12), we have the following

result.

Lemma 1: For the (m+ 1) systems in (10)-(12), if

lim
t→∞

(znj − zn0) = 0, ∀1 ≤ j ≤ m (13)

then (5) holds.

Proof: Let z̄ij = zij − zi0 for 1 ≤ i ≤ n and 1 ≤ j ≤
m, we have

˙̄z1j = −k1z̄1j + z̄2j (14)

˙̄zij = −kiz̄ij − z̄i−1,j + z̄i+1,j , 2 ≤ i ≤ n− 1.(15)

Let a Lyapunov function

V =
1

2

n−1
∑

i=1

z̄2ij

and differentiate V along the solution of (14)-(15), we have

V̇ = −
n−1
∑

i=1

kiz̄
2
ij + z̄n−1,j z̄nj ≤ −k̄V +

√
2|z̄nj |

√
V

where k̄ = 2min{ki, 1 ≤ i ≤ n− 2}. Let V1 =
√
V , then

D+V1 ≤ − k̄

2
V1 +

√
2

2
|z̄nj |

where D+V1 is the upper Dini derivative of V1 [21]. Noting

that z̄nj converges to zero, it can be shown that V1 converges

to zero by the comparison lemma in [21]. So, V converges to

zero, which means that zij converge to zi0 for 1 ≤ i ≤ n−1
and 1 ≤ j ≤ m. Therefore, (5) holds.

The next lemma presents some results related to a Lapla-

cian matrix of a graph with a weight matrix. These results

are useful in proving the proposed results later. The proof of

this lemma can be found in [7].

Lemma 2: If a graph G with weight matrix A = [aji]
(aji = aij ≥ δ > 0) is connected, then the matrix

(L + diag(ξ)) has m positive real eigenvalues, where ξ is

a nonzero nonnegative vector with nonzero element larger

than δ.
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A. Distributed Control Laws

The next lemma gives distributed control laws for the m

systems such that eqn. (13) holds.

Lemma 3: For the m systems in (1)-(2), under Assump-

tion 1, if the communication graph G is strongly connected

and the state of the reference system (3)-(4) is at least

available to one of the m systems, then the distributed control

laws

uj = −
∑

i∈Nj

aji(znj − zni)− µjbj(znj − zn0)

−ρjsign(sj)− fn(x̄nj) + α̇nj(x̄n−1,j) (16)

for 1 ≤ j ≤ m make eqn. (13) satisfied, where constants

aji = aij ≥ δ > 0, bj ≥ δ > 0, ρj is a sufficient large

number, and

sj =
∑

i∈Nj

aji(znj − zni) + µjbj(znj − zn0) (17)

µj =

{

1, if x∗0 is available to system j

0, if x∗0 is not available to system j.
(18)

Proof: With the control law (16), we have

żn∗ = −Lzn∗−B(zn∗−1zn0)−Λ = −(L+B)zn∗+B1zn0−Λ
(19)

where zn∗ = [zn1, zn2 . . . , znm]⊤, B =
diag[µ1b1, . . . , µmbm], 1 = [1, 1, . . . , 1]⊤, Λ =
[ρ1sign(s1), . . . , ρmsign(sm)]⊤.

Let z̄n∗ = zn∗ − 1zn0, we have

˙̄zn∗ = −(L+B)z̄n∗ − Λ− 1żn0. (20)

Since the communication graph is connected, (L+ B) is

a symmetric positive definite matrix by Lemma 2. Let

V =
1

2
z̄⊤n∗(L+B)z̄n∗

and differentiate V along (20), we have

V̇ = −z̄⊤n∗(L+B)2z̄n∗ − z̄⊤n∗(L+B)(Λ + 1żn0)

≤ −z̄⊤n∗(L+B)2z̄n∗ − z̄⊤n∗(L+B)Λ + |żn0|
m
∑

i=1

|si|

= −z̄⊤n∗(L+B)2z̄n∗ −
m
∑

i=1

|si|(ρi − |żn0|)

≤ −z̄⊤n∗(L+B)2z̄n∗

≤ −σV (21)

where we apply the fact that ρi is sufficient large and ρi >

|żn0(t)| for any time due to Assumption 1, and σ is a positive

constant that depends on (L+B). Therefore, V exponentially

converges to zero. Furthermore, z̄n∗ exponentially converges

to zero and zn∗ exponentially converges to zn0.

With the aid of Lemmas 1-3, we have the following results.

Theorem 1: For the m systems in (1)-(2), under Assump-

tion 1, if the communication graph G is connected and the

state of the reference system (3)-(4) is at least available to

one of the m systems, then the distributed control laws (16)

make (5) hold.

Proof: With the control laws (16), by Lemma 3

the equations in (13) hold. By Lemma 1, eqn. (5) holds.

Therefore, Problem 2 is solved by the distributed control

laws (16).

In Theorem 1, ρi is sufficient large. By the proof, ρj
should be chosen such that

ρj ≥ M := max
t∈[0,∞)

|żn0(t)|. (22)

Since the state of the reference system is not available to each

system, the upper bound M is not known to each system.

In order to make (22) satisfied, ρj must be chosen as large

as possible, which means that the magnitude of the control

inputs will be large. To reduce the magnitude of the control

inputs, ρj can be estimated on-line.

Theorem 2: For the m systems in (1)-(2), under Assump-

tion 1, if the communication graph G is connected and the

state of the reference system (3)-(4) is at least available to

one of the m systems, the distributed control laws

uj = −
∑

i∈Nj

aji(znj − zni)− µjbj(znj − zn0)

−ρ̂jsign(sj)− fn(x̄nj) + α̇nj(x̄n−1,j) (23)

˙̂ρj = γj |sj | (24)

for 1 ≤ j ≤ m make (5) satisfied and ρ̂j bounded, where

constants aji = aij ≥ δ > 0, bj ≥ δ > 0, γj > 0, sj and µj

are defined in (17) and (18), respectively.

Proof: Let z̄n∗ = zn∗ − 1zn0, we have

˙̄zn∗ = −(L+B)z̄n∗ − Λ̂− 1żn0. (25)

where B is defined in Lemma 3, and

Λ̂ = [ρ̂1sign(s1), . . . , ρ̂msign(sm)]⊤. (26)

Since the communication graph is connected, (L+ B) is

a symmetric positive definite matrix by Lemma 2. Let

V =
1

2
z̄⊤n∗(L+B)z̄n∗ +

1

2

m
∑

i=1

γ−1
i (ρ̂i − ρ)2

where ρ is a positive constant and ρ ≥ |żn0(t)| for t ∈
[0,∞). Differentiate V along (25), we have

V̇ = −z̄⊤n∗(L+B)2z̄n∗ − z̄⊤n∗(L+B)(Λ̂ + 1żn0)

+

m
∑

i=1

γ−1
i (ρ̂i − ρ) ˙̂ρi

≤ −z̄⊤n∗(L+B)2z̄n∗ − z̄⊤n∗(L+B)Λ̂ + |żn0|
m
∑

i=1

|si|

+
m
∑

i=1

γ−1
i (ρ̂i − ρ) ˙̂ρi

= −z̄⊤n∗(L+B)2z̄n∗ −
m
∑

i=1

|si|(ρ̂i − |żn0|)

+

m
∑

i=1

γ−1
i (ρ̂i − ρ) ˙̂ρi
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= −z̄⊤n∗(L+B)2z̄n∗ −
m
∑

i=1

|si|(ρi − |żn0|)

+
m
∑

i=1

|si|(ρi − ρ̂i) +
m
∑

i=1

γ−1
i (ρ̂i − ρ) ˙̂ρi

≤ −z̄⊤n∗(L+B)2z̄n∗ ≤ −βz̄⊤n∗z̄n∗ ≤ 0 (27)

where β (> 0) is the smallest eigenvalue of the matrix (L+
B)2. Therefore, V is bounded. So, z̄n∗ and ρ̂j are bounded.

By integrating both sides of (27), we can show that z̄⊤n∗z̄n∗ is

integrable, i.e., z̄n∗ is square-integrable. By Barbalat’s lemma

(Lemma 3.2.5 in [22]), z̄n∗ converges to zero. Therefore, zn∗
converges to zn0. By Lemma 1, (5) holds.

B. Distributed Approximation Based Control Laws

In this subsection, we propose distributed approximation

based adaptive control laws. The control laws can learn the

variable żn0 on-line.

For system j, we choose a vector function Φj(t) =
[φ1j(t), φ2j(t), . . . , φpj ,j(t)]

⊤ where pj is an integer. Given

a function żn0(t), its best approximation based on the basis

vector Φj is Φ⊤
j θj , where θj is a constant vector. The largest

approximation error is ǫj , i.e.,

żn0(t) = Φj(t)
⊤θj + ej(t) (28)

and |ej(t)| ≤ ǫj . It should be noted that ǫj is unknown and

may be made small by suitably choosing Φj(t). With the aid

of the approximation of żn0, we have the following results.

Theorem 3: For the m systems in (1)-(2), under Assump-

tion 1, if the communication graph G is connected and the

state of the reference system (3)-(4) is at least available to

one of the m systems, the distributed adaptive control laws

uj = −
∑

i∈Nj

aji(znj − zni)− µjbj(znj − zn0)− fn(x̄nj)

+Φj(t)
⊤θ̂j − ρjsign(sj) + α̇nj(x̄n−1,j) (29)

˙̂
θj = −ΓjΦj(t)sj (30)

for 1 ≤ j ≤ m make (5) satisfied and θ̂j bounded, where

constants aji = aij ≥ δ > 0, bj ≥ δ > 0, Γj is a positive

definite matrix, ρj is a sufficient large number, sj and µj are

defined in Lemma 3.

Proof: Let z̄n∗ = zn∗ − 1zn0, then

˙̄zn∗ = −(L+B)z̄n∗ +Π− Λ− e. (31)

where B and Λ are defined in the proof of Lemma 3, e =
[e1, e2, . . . , en]

⊤, and

Π = [Φ⊤
1 (θ̂1 − θ1),Φ

⊤
2 (θ̂2 − θ2), . . . ,Φ

⊤
m(θ̂m − θm)]⊤.

Let the Lyapunov function

V =
1

2
z̄⊤n∗(L+B)z̄n∗ +

1

2

m
∑

i=1

(θ̂i − θi)
⊤Γ−1

i (θ̂i − θi).

Differentiating V along the solution of the systems in (31)

and (30), we have

V̇ = −z̄⊤n∗(L+B)2z̄n∗ + z̄⊤n∗(L+B)(Π− Λ− e)

+
m
∑

i=1

(θ̂i − θi)
⊤Γ−1

i

˙̂
θi

≤ −z̄⊤n∗(L+B)2z̄n∗ − z̄⊤n∗(L+B)Λ +

m
∑

i=1

ǫi|si|

+

m
∑

i=1

(θ̂i − θi)
⊤Γ−1

i (
˙̂
θi + ΓiΦisi)

= −z̄⊤n∗(L+B)2z̄n∗ −
m
∑

i=1

|si|(ρi − ǫi)

≤ −z̄⊤n∗(L+B)2z̄n∗

≤ −σz̄⊤n∗z̄n∗ (32)

where σ (> 0) is the smallest eigenvalue of (L + B)2.

Therefore, V is bounded. So, z̄n∗ and θ̂j are bounded.

Integrating both sides of (32), we can show that z̄n∗ is

square-integrable. By Barbalat’s lemma (Lemma 3.2.5 in

[22]), z̄n∗ converges to zero. Furthermore, zn∗ converges to

zn0. By Lemma 1, (5) holds.

With the control laws in theorem 3, ρj can be small

because ǫj can be made small by choosing appropriate Φj .

However, in many cases it is hard to know how large ρj
should be. In the next theorem, we estimate ρj on-line.

Theorem 4: For the m systems in (1)-(2), under Assump-

tion 1, if the communication graph G is connected and the

state of the reference system (3)-(4) is at least available to

one of the m systems, the distributed adaptive control laws

uj = −
∑

i∈Nj

aji(znj − zni)− µjbj(znj − zn0)

−fn(x̄nj) + Φj(t)
⊤θ̂j − ρ̂jsign(sj) + α̇nj(x̄n−1,j) (33)

˙̂
θj = −ΓjΦj(t)sj (34)

˙̂ρj = γj |sj | (35)

for 1 ≤ j ≤ m make (5) satisfied and make θ̂j and ρ̂j
bounded, where constants aji = aij ≥ δ > 0, bj ≥ δ > 0,

γj > 0, Γj is a positive definite matrix, and sj and µj are

defined in Lemma 3.

Theorem 4 can be proven by combining the proofs of

Theorem 3 and Theorem 2. We omit it here.

If Φj is chosen such that żn0 is in the span space of Φj

for 1 ≤ j ≤ m, i.e., there exists a constant vector θj such

that

żn0(t) = Φj(t)
⊤θj . (36)

Theorem 3 can be written as the following theorem.

Theorem 5: For the m systems in (1)-(2), under Assump-

tion 1, if the communication graph G is connected and the

state of the reference system (3)-(4) is at least available to

one of the m systems, the distributed adaptive control laws

uj = −
∑

i∈Nj

aji(znj − zni)− µjbj(znj − zn0)

+Φj(t)
⊤θ̂j − fn(x̄nj) + α̇nj(x̄n−1,j) (37)
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Fig. 1. Communication graph G.

for 1 ≤ j ≤ m make (5) hold and θ̂j bounded, where θ̂j is

updated in (30), constants aji = aij ≥ δ > 0, bj ≥ δ > 0,

Γj is a positive definite matrix, sj and µj are defined in

Lemma 3.

In Theorems 3-4, instead of choosing a set of basis

functions Φj we can use neural networks to estimate żn0.

The update laws for the weights of neural networks can be

derived similarly.

In Theorems 1-5, distributed control laws were proposed

for the defined control problem. The proposed control laws

extended the results in [7, 11, 13, 14, 16, 23, 24] in two as-

pects: 1). each system is a high-order nonlinear system; and

2). the state of a reference system is available to a portion

of the m systems.

In the proposed control laws, sign(·) function is applied,

which may lead to chattering. To avoid chattering, the

function sign(ω) can be replaced with ω√
ω2+e−t

or sat(ω).

We will not discuss it due to space limitation.

IV. SIMULATION

To show the effectiveness of the proposed control laws,

we consider the consensus problems of five identical systems

defined by

ẋ1j = x2
1j + x2j , ẋ2j = x3j , ẋ3j = uj. (38)

By the transformation (6), we have (10)-(12) with n = 3.

Given a reference system x∗0 = [x10, x20, x30]
⊤ generated

by

ẋ10 = x20 + x2
10, ẋ20 = x30, ẋ30 = u0

where u0 = − cos t − 2 cos 2t and the initial condition

x∗0(0) = [0, 1, 0]⊤. The communication graph between the

five systems is shown in Fig. 1, where the reference system

0 is assumed to be available to system 3. The control laws

in Theorem 1 solve the control problem. In the control

laws, we choose k1 = k2 = 1, bj = 2, and ρj = 10 for

1 ≤ j ≤ 5. Figs. 2-4 show the response of x1j , x2j , x3j ,

and the reference system, respectively. It can be seen that

the control problem is solved even if the reference system is

only available to one system.

The distributed adaptive control laws in Theorem 2 also

solve the control problem. Figs. 5-7 show the response of

x1j , x2j , x3j , and the reference system, respectively. It can

be seen that x∗j converge to x∗0.

If we choose the basis function vector Φj(t) =
[1, sin t, cos t, sin 2t, cos 2t]⊤, ż30 is in the span space of Φj .

The distributed adaptive control laws in Theorem 5 solve

Problem 2. Figs. 8-10 show the response of x1j , x2j , x3j ,

and the reference system, respectively. It can be seen that

x∗j converge to x∗0.

V. CONCLUSION

This paper considered the tracking control problem of

multiple nonlinear systems. Distributed robust/adaptive con-

trol laws were proposed such that the state of each system

converges to the state of a reference system with the aid of

local information. Simulation results show the effectiveness

of the proposed control laws. In this paper, the commu-

nication between systems is assumed to be bidirectional.

The future work is to propose distributed control laws for

the cases where the communication between systems is

unidirectional. Also, in this paper it is assumed that there

is no communication delay between systems. This work will

be extended to account for communication delays.
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