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Abstract— The Local Polynomial Method (LPM) is a re-
cently developed procedure for nonparametric estimation of
the Frequency Response Function (FRF) of a linear system.
Compared with other nonparametric FRF estimates based on
windowing techniques, it has proved to be remarkably efficient
in reducing the leakage errors caused by the application of
Fourier transform techniques to non periodic data. In this
paper we propose a modification of the LPM that takes
account explicitly of constraints between the coefficients of
the polynomials at neighbouring frequencies. This new variant
contributes a new and significant reduction in the Mean Square
Error of the FRF estimates. We also discuss the effects of the
various design parameters on the accuracy of the estimates.

I. INTRODUCTION

This paper addresses the nonparametric estimation of the
Frequency Response Function (FRF) of a linear dynamic
system from input-output measurements and it proposes a
new method for the reduction of leakage errors that are inher-
ent in the computation of frequency response estimates. The
inputs are assumed known but not necessarily periodic, while
the outputs are perturbed by additive quasistationary noise.
There are many good reasons for the estimation of these
nonparametric quantities. The obtention of a high quality
estimate of the FRF can be of independent interest, yielding
a completely nonparametric approach to the identification
problem. The availability of this FRF estimate can give a
preliminary idea of the complexity of the system, and can be
used as a benchmark to test and validate parametric model
estimates. The advantage of such nonparametric approach
is that it avoids the difficult problem of structure selection,
which is really the hardest part of the identification problem.
The disadvantage is that for many applications (e.g. control
design, prediction, etc) a finite dimensional parametric model
is much more practical, if not essential.

Even if the identification of a parametric model is the final
goal, it has been shown that the estimation of a nonparamet-
ric model can be a very useful first step in a parametric es-
timation procedure because it allows one to compute a prior
nonparametric estimate of the noise spectrum, which can
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significantly improve the quality of the ensuing parametric
input-output model estimate, as well as avoid the possibility
of getting trapped in local minima during the minimization
procedure of the parametric identification criterion [1].

The estimation of the FRF of the input-output transfer
function is obtained from Fourier transforms of finite sets
of input and output data, and this introduces leakage errors
which are the frequency domain equivalent of transient errors
in time domain identification. These leakage errors can be
significantly reduced by the application of periodic input
signals; however, this is not always practically possible. As
a result, leakage errors have for a long time been a major
deterrent against the use of nonparametric estimates of the
FRF in the presence of random input signals. The main
contribution of this paper is a novel technique that leads
to a signficant reduction of these leakage errors.

Until the 80’s, leakage errors on FRF-measurements were
studied at the input and output signal level, without consider-
ing the linear system relation between the input and output
[2], [4]. In FRF-measurements, the leakage errors are due
to unknown past inputs and missing future outputs. Both
effects are highly structured, and as a result the leakage
errors can be represented in the frequency domain as rational
functions added to the output [5], [6], [7], [8], [9], [10].
This key observation that led to the adoption of windowing
techniques that are based on a differentiation of the input and
output signals around a central frequency, thereby reducing
the effect of the smooth leakage term [11]. One of the
drawbacks of these windowing techniques is that by reducing
the leakage errors the window introduces an interpolation
error.

Recently a new method, called the Local Polynomial
Method (LPM), has been introduced to estimate the FRF
and the power spectrum of the disturbing noise. Using a
Taylor series expansion, the transfer function and the leakage
term are expressed in a narrow window around some central
frequency as two local polynomial models. The coefficients
of this local polynomial are estimated by Least Squares using
the input and output data over the narrow window around
the frequency of interest [12], [13], [14]. The least squares
estimate of the local polynomial coefficients delivers an
estimate of the FRF at the central frequency from which the
leakage errors and the transient errors have been substantially
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ficients is applied locally at every frequency using data in
narrow windows around each frequency. Since neighbouring
intervals overlap, some of the estimated polynomial coef-
ficients appear in common in the LS problems formulated
over neighbouring intervals. This is not taken into account
in the solution of the standard Local Polynomial Method,
since the LS estimation problem solved over one window of
input-output data is solved independently of the LS problem
solved over neighbouring windows.

The contribution of this paper is to propose a modifica-
tion of the LPM that takes account of the appearance of
identical polynomial coefficients in neighbouring windows.
We call this new method the Local Polynomial Method with
Constraints (LPMC). Introducing these constraints reduces
the variance error of the estimated coefficients since more
information is used for the estimation of each coefficient.
Howeyver, the bias error is increased since the coefficients
estimated over one frequency interval influence those esti-
mated on neighbouring intervals. Thus, a proper trade-off is
required, which can be achieved by adding the error on the
constraints to the LS criterion of LPM, with a proper scaling
between the two terms of the modified LS criterion. We shall
present the new LPMC, illustrate the benefits in terms of
accuracy of the estimated FRF, and discuss the influence of
its design parameters through some simulated examples.

In Section II we present the ‘“classical LPM”. In Sec-
tion III we show how the constraints between neighbouring
parameter vectors can be introduced, while in Section IV we
compare the classical LPM with the new constrained version
on some simulated examples, which will illustrate the trade-
offs mentioned above. In Section V we explain how these
first results on the LPMC pave the way for further possible
improvements of the Local Polynomial Method.

II. THE LOCAL POLYNOMIAL METHOD

We start by presenting the ‘classical’ Local Polynomial
Method, first published in [14]. A complete analysis of the
LPM for the multiple-input multiple-output (MIMO) case
can be found in [12], [13]. Here we focus on the SISO case
for pedagogical reasons; the extension to MIMO systems is
straightforward but tedious.

Thus, consider a linear discrete time single-input single-
output (SISO) system Gp(g) that is excited with a known
random input signal u(t), and whose output is the sum of
the input contribution and of a disturbance term v(¢). It is
assumed that u(t) and v(t) are quasistationary [3] so that
asymptotic analysis can be used for the computation of the
Mean Square Error. In particular, v(¢) can be modeled as the
output of a white-noise driven filter. Thus the input-output
system can be represented as

y(t) = Go(q)u(t) + v(t) = Gol(q)u(t) + Ho(q)e(t) (1)

where ¢! is the backward shift operator, G(q) and Ho(q)
are causal rational functions of ¢, and e(t) is zero mean white
noise with variance o2. This input-output representation
assumes an infinite data record of input and output signals,
fort = —o0,..., N —1. For a finite record t = 0,..., N — 1

- as it is in practical applications - this equation has to be
modified to take account of the initial condition (or transient)
terms t¢ and ¢y due to the action of the transfer function
Gy and the noise model H, leading to:

y(t) = Go(q)u(t) +ta(t) + Holg)e(t) + tu(t).  (2)

Using the discrete Fourier transform (DFT)

N-1
1 .
X (k) = — z(t e—gQﬁkt/N7
)= 75 2 o)
an exact frequency domain formulation of (2) is obtained:

Y (k) = Go(Q)U (k) + T () + Ho(Q) E(K) + T ()

3)
where the index k points to the frequency k& fs/N with f, the
sampling frequency, and €, = e/27%/N_ The contributions
U,E,Y in (3) are an O(N?), while the transient terms T
and Ty are an O(N~1/?), where X = O(NP) means that
limpy» o |%| < Q.

It is important to understand that (3) is an exact relation
[8], [9], [15], [16]. The transient terms t(¢) and tg(t) are
rational forms in ¢~! applied to a delta-input, while the
leakage terms T and Ty are rational forms in z~!, and
hence smooth functions of the frequency. For simplicity of
notation we shall from now on rewrite (3) as

Y = GrU, + Ty + Vi, 4)

where T}, denotes the sum of the plant and noise leakage
errors and Vi, = Ho(q)E%. The basic idea of the LPM,
based on the smoothness of the transfer function Gy and
of the transient term 7' as functions of frequency, is to
approximate these functions in a narrow frequency band
around a central frequency (2; by a complex polynomial.
The complex polynomial parameters are estimated from the
experimental data collected in this frequency band. Next
Gy, at the central frequency ), is retrieved from this
local polynomial model as the estimate of the FRF at that
frequency 2.

By the smoothness of G and 7', the following polynomial
representation holds for the frequency lines k + r, with r =
0,£1,...,+n:

R
s 7\ (BR+1)
Gk+r = Gk‘i‘;gs(k/')’r +O(<N) )
R . . 7\ (R+1)
T = Tt Yt +N20((5) ) ©
s=1

We can now collect G, T} and all polynomial coefficients
into a 2(R + 1)-vector of unknown complex coefficients
defined as

O £ (Gr 1K) ... gr(k); T ti(k)... tr(k)]", (D

where A7 denotes the transpose of A. Rewriting (4) at
frequency 4, and substituting Gy, and Ty, by their
expressions (5)-(6) while neglecting the remainder terms
allows one to re-express Y, as follows

Yitr = K(R, k+7)0p+Viyr, for r=0,£1,...,£n (8)
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where K(R,k + r) is a 2(R + 1) row-vector that con-
tains both structural information (the powers of r in the
polynomial expansions (5)-(6)) and input signal information.
We now collect the 2n + 1 equations (8) obtained for
r=0,%1,...,£n into one matrix equation by defining the
(2n + 1)-vectors Ykm and Vkm as follows:

Ykﬂ’L
Vk,n

Vi oo Yigno1 Yiern]”
Vi o Vien1 Vignl"

Yin Yens1 -
[Vk—n Vk—n+1 o

e 1

This then leads to the following matrix version of (8):
Yin = Kin (R, Upn) 0k + Vien )

where the 2(n + 1)-vector Uy, is defined in the same way
as Yy ,, and V.. The matrix Ky ,,(R, Uk.) is a 2(n+1) x
2(R + 1) matrix whose structure is entirely determined by
the indices m and R and which contains the input signals
Uk, that appear in the input vector ﬁkm. In the standard
LPM, the parameter estimate 0), is obtained by solving the
following LS problem:

min [V — Kin(R.On)08]" (Vi = Kin (R, Ui )0s]

(10)
where for any complex vector or matrix A, A” denotes its
Hermitian conjugate transpose. It follows from (7) that an
estimate of the FRF at the frequency €4 is then obtained
as the first component of the estimate 0;: G(Qx) = Ox(1).
In order to get a full column rank matrix Kj (R, U ,)
the following condition is required between the number of
spectral lines in the frequency window around €2 and the
order of the polynomial approximation: n > R + 1. Taking
a larger number of frequencies in the frequency window
reduces the variance of the parameter estimate because the
noise is averaged over a larger number of data, and the
leakage error decreases with increasing R. On the other
hand, the larger the window, the larger the bias error (or
interpolation error) caused by the fact that the transfer
function varies over the interval. The smallest interpolation
error is obtained for n = R+ 1. A detailed error analysis of
the LPM is presented in [12] where this bias-variance trade-
off is discussed. In practice, the LPM is mostly used with
polynomials of degree two only, i.e. R = 1 or 2, which offers
a good compromise between leakage error and interpolation
error.

ITIT. LPM WITH CONSTRAINTS

In the LPM described above each parameter vector 6y
is estimated using local data Ugy,, Y4, in a frequency
window defined by » = 0,£1,...,£n. As a result, for
r < n, the estimates, 05 and 0., are computed by solving
two separate Least Squares problems that use data which
partly overlap. This means that these estimates are correlated
because the data that are used in the two LS problems are
correlated. But in addition, for |r| < n, the parameters in 6,
and 6, are not independent, since they are related by the

polynomial constraints (5)-(6). Indeed, it follows from (5)-
(6) that up to the remainder terms appearing in these expres-
sions, the following relationships exist between 60y, and 0y,
for r =0,%£1,...,4£n:

R
Grrr = Opr(1) = 0k(1) + > Ok(s + 1)r* (1)
s=1
R
Thrr = Opir(R+2)=0p(R+2)+ Y Ok(s+ R+2)r°
s=1

In the standard LPM these relationships have not been
exploited. The contribution of this paper is to explore ways
in which these constraints can be exploited to decrease the
Mean Square Error (MSE) in the estimates of the parameters
Or, k = 17A. .., N, and in particular the MSE of the FRF
estimates G(), which are the first component of these
vectors ;. Observe that (11) represents 4n constraints on
the 2(R + 1)-parameter vector 6, with n > R + 1. If the
Ok+r, 7 = £1,...,£n, were considered as known data in
the estimation problem of 0y, then 8 would be entirely de-
termined by this set of equations. Thus adding the constraints
(11) to the LS problem (10) would lead to an overdetermined
set of constraints on the solution ;. However, the 0y, are
themselves the solution of a LS problem (10) that depends on
the data U;H_r, Yk+r. Thus, in the formulation of a modified
LPM that takes these constraints into account one needs to
find a compromise between “letting the data speak”, and
“letting the constraints speak”.

A first idea would be to formulate one global optimization
problem for {fg,...,0n_1} using all data {Uy, Yy, k =
0,...,N — 1} and taking the constraints into account. This
would significantly increase the computational load and the
attractivity of the local polynomial approach would be lost.

The alternative proposed in this paper is to keep the
advantage of the local computation of 6 based on data
U %,n and Yk,n in a narrow frequency band around 2, but
to turn the local LS criterion (10) into a multiobjective LS
criterion by adding a penalty on the mismatch between left
and right hand side of the constraints (11). In order to arrive
at a feasible implementation of this idea, we first analyze
the constraints.

A. Analysis of the constraints

We first rewrite the constraints (11) in matrix form. In order
to do so, we introduce the following matrices, for positive
integers R and n.

1 —n (-n)? (—n)f
M(R,-n) & | ¢ : :
1 =2 (=2) (—2)%
-1 (=1 (—DF
1 1 1 1
1 2 22 2R
M(R,n) = : : (12)
1 n n'2 n‘R
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Notice that the matrices M (R, —n) and M (R, n) are Van-
dermonde matrices; therefore, for n > R + 1, these matrices
have rank R+1. The constraints (11) can be written in matrix
form as follows.

M(R,n) 0

R
0 M(R.n) |, _ b 13)
M(R, —n) 0 4§ o |
0 M (R, —n) k
or, equivalently, as
M6, = =, (14)

where

Up 2 [0ps1(1) . Opan (1) 0t (R+2) .. O (R +2)]7,
Dy, £ [Hk_n(l) . Hk_l(l); Hk_n(R + 2) R Hk_l(R + 2)]T,
Zr = [VF ®T]T and M is the block matrix on the left hand
side of (13).

The constraints (13) split up into two subsets of con-
straints. The top half relates the parameter vector 6 to
parameter vectors at higher frequencies in the frequency
window, while the bottom half relates 6 to parameters at
lower frequencies. In addition, for n > R + 1 each of these
two sets of equations is an overdetermined set in that it
contains 2n equations for R + 1 unknowns. M (R, —n) and
M(R,n) have full column rank and hence the top or the
bottom half of (14) is sufficient to fully determine the vector
0. The difficulty is that the parameters on the right hand
side of (13) are unknown. One can think of two ways to
overcome this difficulty.

The first is a recursive (in k) solution to the local LS
problem, starting from £ = 0 and going up in frequencies,
say, and applying one-sided constraints only, i.e. the
solution for 6 is obtained using only the bottom half
of the constraints, namely those containing 6y_,.(1) and
Op—r(R+2) for r = 1,...,n. In order to initialize the
recursions, the first n vectors, 6y, ..., #0,_1, can be set at the
estimates obtained by the standard LPM. We have applied
this recursive procedure to a range of systems and found
that, in each case, it performed worse than the two-step
procedure that we now describe.

B. Two-step implementation of the LPM with constraints
In the first step, 0 is estimated for all K = 0,...,N — 1
using the standard LPM, yielding estimates that we denote
é](CLPM), k=0,...,N —1. These estimates are then used in
the right hand side of the constraints (13), alternatively (14),
yielding the constraints

Moy, = Ej, 15)
which are now entirely feasible. As explained above, solving
the LS problem (10) subject to (15) would yield an estimate
0 that is entirely determined by the constraints, leaving no
degrees of freedom for the minimization of the LS criterion.
Instead, a penalty is added to the LS criterion (10) which
represents the 2-norm of the error on the constraints (15).
The modified LPM is thus obtained by solving, for k£ =

0,...,N —1, the following multiobjective LS problem

min { Ve — Kin(R, Uk,n)ok]H Vi — Kien(R, Uk,n) 0]

Ok

~\H / _ ~

FADL () (Mek _ Ek> (Mek _ Ek)} . (16)
The weighting factor A allows one to tune the relative im-
portance of the constraint mismatch versus the error fit to the
measured data. Increasing A will impose more smoothness
in the estimated FRF, thus decreasing the variance error
at the expense of an increased bias error. The scaling by
the spectrum of the input, ®,(£2), ensures that the relative
importance of the two terms of (16) are independent of the
power of the input signal since the first term is proportional
to @, (). The automatic tuning of A is an important issue
that is out of the scope of this paper.

IV. LPM WITH CONSTRAINTS AT WORK

In this section we illustrate the behaviour of the LPM
with constraints, denoted LPMC, by presenting the results
of Monte-Carlo simulations obtained on two different input-
output systems and noise models. In particular we examine
the role of the three design parameters: the degree R of the
polynomial approximation, the width 2n of the frequency
window over which the local estimates are computed, and
the weighting A that accounts for the tradeoff between data
information and structural information, i.e. the knowledge
that the coefficients of neighbouring parameter vectors are
related by the polynomial constraints.

Example 1
We first consider a system with the following Box-Jenkins
(BJ) structure:

_ (¢ +1)?

y() = 01 ong 07219 YY)
1 2

+ 0.1084 lg+1) (t)

2 — 0.8773¢ + 0.3111°

where e(t) is zero mean white noise with standard deviation
o. and where the input signal u(¢) is a colored noise
generated by

(¢ +1)° w
q® + 1.7600¢% + 1.1829¢ + 0.2781

u(t) = 0.5276 (t)
a7
with w(t) white noise of standard deviation o, = 1.

200 Monte-Carlo runs are used to produce 200 sets of
input-output data, each of length 8192, from which the first
1024 are eliminated in order to remove transient effects
of the simulation; thus, each data set contains 7168 input-
output data. The LPMC is applied on each of these 200
runs to estimate the FRF Go(f2) for k = 0,...,7168,
obtained with the standard LPM, denoted GEPM) (), and
with the constrained estimate, denoted G(“M%) (). The
Mean Square Errors between these two estimates and the
exact Go(€2) are computed and plotted as a function of
frequency, in a log-scale. Finally, the average of these mean
square errors over all frequencies are computed, because
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30
f(Hz)

Fig. 1. I}\J model. Top line (red dotted) = true FRF, migdle line (black) =
MSE on G(EPM)(Q,), bottom line (cyan) = MSE on G(EPME) () as
a function of frequency; all plots in dB. R = 2,2n = 6, A = 0.05,0¢ =
0.05

these numbers give a global indication of the quality of each
of the two estimates.

Figure 1 shows the Mean Square Error obtained using the
LPM and LPMC estimates on the BJ system described above,
with a noise e with standard deviation o, = 0.05, for the
following design choices: polynomial degree R = 2, local
bandwidth 2n = 6 and weighting A = 0.05. The average
MSE, over 311 frequencies, of theA FRF estimates are as
follows: for G(LPM) : 0.00123, for GLPME) + 0.00035. The
signal to noise ratio for this first experiment, expressed as 10
times the logarithm of the input contribution to the output
power spectrum (bg(,u) (Qy) divided by the noise contribution
D, (Qy), is presented as the top line in Figure 2; the other
two lines represent, respectively, <I>7(j")((2k) and ®,(Qy).

Fig. 2. BJ model. Top line (black dotted) = signal to noise ratio, middle
line (red dash-dot) = output power due to input signal, bottom line (cyan
full) = noise power on output as a function of frequency; all plots in dB.
R =2,2n =6, =0.050. = 0.05

Figure 3 provides the same information as Figure 1 for
the same system and with the same design parameters, but
with an increased value of the white noise level e, i.e. 0, =
0.15. The average MSE over all frequencies are, respectively,
0.0111 for GEPM) and 0.0024 for GEPME) We observe
that the superiority of the constrained LPM estimate over the
classical one is even higher when the noise level is higher.
The addition of constraints has a smoothing effect on the
estimate, whose contribution is all the more important when
the data are more noisy.

We now examine the effect of the polynomial degree and
of the bandwidth. The third simulation is performed with the

30
f(Hz)

Fig. 3. BJ model. Top line (red dotted) = true FRF, middle line (black) =
MSE on G(EPM)(Q,), bottom line (cyan) = MSE on G(EPME) () as
a function of frequency; all plots in dB. R = 2,2n = 6, A = 0.05,0¢ =
0.15

same system and design variables as the first, except that R =
1 and 2n = 4. The MSE of the two estimates are presented in
Figure 4. The figure shows that the superiority of the LPMC
estimate over the LPM estimate is significantly reduced. The
reason is that with lower R and n, the number of constraints
and hence their impact is significantly reduced. To confirm
this interpretation, we have multiplied the weighting factor
A by 10, i.e. A = 0.5 in order to give more weight to the
constraints. The results are shown in Figure 5, which shows
that this increased penalty on the constraint mismatch leads
to a much smaller MSE for G(:PME) ().

Fig. 4. BJ model. Top line (red dotted) = true FRF, middle line (black
with crosses) = MSE on G(ZPM)(Q.), bottom line (cyan) = MSE on
@<LPMC)(Q;€) as a function of frequency; all plots in dB. R = 1,2n =
4, = 0.05,0. = 0.05

30
f(Hz)

Fig. 5. BJ model. Top line (red dotted) = true FRF, middle line (black)=
MSE on G(EPM) (Q,), bottom line (cyan) = MSE on G(LPME) () as a
function of frequency; all plots indB. R = 1,2n =4, A = 0.5, 0. = 0.05
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Example 2
We now consider an ARX system with the same input-output
model as in example 1:

(¢+1)?

@ + 0.7125q + 0.7449 "
1 0
£ 1 071259 + 07419
where e(t) is white noise with standard deviation o, and
where the input signal w(t) is now a white noise se-
quence with standard deviation o, = 1. We perform 200
Monte Carlo simulations as before, computing again the
Mean Square Error between the true FRF and the estimates
GEPM) () and GEFPME) (), with the following design
variables: R = 2,n = 3,2 = 1 and o, = 0.05. The
average over all frequencies of the mean square errors
on GEPM)(Q,) and on GEPME)(Q) are, respectively,
0.0111 and 0.0026, a ratio of improvement of more than 4 in
favour of the new constrained LPM. The results are shown
in Figure 6, and the signal to noise ratio is represented in
Figure 7.

0.1943 (t)

y(t) =

Fig. 6. ARX model. Top line (red dotted) = true FRF, middle line (black)=
MSE on G(EPM) (), bottom line (cyan) = MSE on G(LPME) (Q ) as a
function of frequency; all plots in dB. R = 1,2n =4, = 0.5,0¢ = 0.05

Black=

Fig. 7. ARX model. Top line (black dotted) = signal to noise ratio, middle
line (red dash-dot) = output power due to input signal, bottom line (cyan
full) = noise power on output as a function of frequency; all plots in dB.
R =2,2n =6, =0.050c = 0.05

V. CONCLUSIONS AND FUTURE WORK

We have proposed a modification to the Local Polynomial
Method for the computation of a non parametric estimate of
the FRF of a linear time-invariant system. The modification
consists of applying to the estimated parameter vectors

the constraints that exist between estimates at neighbouring
frequencies; the classical LPM was treating these parameter
vectors as independent. The constrained estimates have been
shown to yield estimates with significantly smaller mean
square errors. The gain in accuracy that can be made depends
on the choice of a small number of design parameters, whose
impact we have exhibited. Our next goal is to provide an
almost automatic procedure for the selection of these design
parameters, based on the collected data. In addition, we plan
to compare the performance of this new Constrained LPM
with a one-step procedure, in which the full set of parameters
0y over the whole frequency range would be computed as
the solution of one large LS problem subject to a 2-norm
penalty on the constraint errors.
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