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Abstract— This paper presents a sampled-data control ap-
proach based on sliding mode design for the robust control
of a two-level quantum system, where the control law can
be designed offline and then be used online for a quantum
system with bounded uncertainties in the system Hamiltonian.
Such a control law consists of a periodic sampling process
and a Lyapunov control design. A sufficient condition on
the relationships between related parameters in the control
system is established and the Lyapunov control design is
demonstrated by simulation, which can be used to show the
required robustness of the quantum system in the presence of

uncertainties.

I. INTRODUCTION

Controlling quantum phenomena is becoming an impor-

tant task in different research areas [1]-[7]. The development

of quantum control theory can provide systematic methods

and a theoretical framework for analyzing and synthesizing

quantum control problems. Several control methods such as

optimal control [8]-[10], learning control [3] and Lyapunov

design [11]-[14] have been applied to the quantum domain.

Recently, the robust control problem for quantum systems

has been recognized as a key issue in developing practical

quantum technology [15]-[18] since it is unavoidable that

many types of uncertainties (including noise, disturbance,

decoherence, etc.) exist for most practical quantum systems.

Several methods have been proposed for the robust control

of quantum systems. For example, James et al. [19] have

formulated and solved a quantum robust control problem us-

ing the H∞ method for linear quantum stochastic systems. A

risk-sensitive control approach has been applied to quantum

systems [20]. In [21]-[23], we develop a sliding mode control

approach to enhance the robustness of quantum systems. In

particular, two approaches based on sliding mode design [24]

have been proposed for the control of quantum systems in

[21] and potential applications of sliding mode control to

quantum information processing have been presented. Ref.

[22] presents a detailed sliding mode control method for two-

level quantum systems to deal with bounded uncertainties

in the system Hamiltonian. This paper will focus on a

robust control problem for two-level quantum systems based

on sliding mode design and will propose a sampled-data

control approach [25] to enhance the performance of a

quantum system with bounded uncertainties. The sampled-

data control scheme in this paper involves a fixed sampling

period T . However, the approach in [22] involves at least

two measurement periods T and T1 (T1 ≪ T ). This means

that the approach of [22] may require measurements which

are very close together and this may be difficult to achieve

in practice. In this sense, the sampled-data control approach

in this paper is more practicable than the control method in

[22].

The objective of this paper is to design a control law

for a two-level quantum system to guarantee the required

robustness when bounded uncertainties exist in the system

Hamiltonian. The required robustness is defined as follows:

maintaining the system’s state in a sliding mode domain

D in which the system’s state has a high fidelity with the

sliding mode state |0〉 (an eigenstate of the free Hamiltonian

of the two-level quantum system); once the system’s state

collapses out of D when making a measurement (sampling),

driving it back to D within a short time period (1−β )T and

maintaining the state in D for the following time period β T

(where 0 < β ≤ 1, T is the sampling period and generally

we choose β satisfying
1−β

β ≪ 1).

This paper is organized as follows. Section II introduces

the robust control approach based on sliding mode design

for two-level quantum systems. In Section III, we present the

main results involving the control method, the main theorem

and an illustrative example. Section IV gives the proof of the

main theorem. Concluding remarks are given in Section V.

II. CONTROL PROBLEM FORMULATION

The quantum control model under consideration can be

described as (we have assumed h̄ = 1 by using atomic units)

i|ψ̇(t)〉= (H0 +H∆ +Hu)|ψ(t)〉,
|ψ(t = 0)〉= |ψ0〉. (1)

Here, the quantum state |ψ(t)〉 corresponds to a two-

dimensional complex unit vector in a Hilbert space, the

free Hamiltonian is H0 = 1
2
σz, the uncertainties are H∆ =

δ (t)Iz + εx(t)Ix + εy(t)Iy (δ (t),εx(t),εy(t) ∈ R), the control

Hamiltonian is Hu = ∑k=x,y,z uk(t)Ik, (uk(t) ∈ R, Ik = 1
2
σk)

and the Pauli matrices σ = (σx,σy,σz) take the following

form:

σx =

(

0 1

1 0

)

, σy =

(

0 −i

i 0

)

, σz =

(

1 0

0 −1

)

. (2)

Furthermore, we assume that the uncertainties are bounded:

|δ (t)| ≤ δ (0 ≤ δ < 1),
√

ε2
x (t)+ ε2

y (t) ≤ ε (ε > 0).

To deal with the uncertainties H∆, we have proposed a

sliding mode control approach where the eigenstate |0〉 is

identified as the sliding mode S [22]. We further define a

sliding mode domain D = {|ψ〉 : |〈0|ψ〉|2 ≥ 1− p0,0 < p0 <
1}, where p0 is a given constant. We aim to drive and then

maintain a two-level quantum system’s state in the sliding

mode domain D using a sampled-data control method [25].

However, the uncertainties H∆ may take the system’s state
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away from D . Since the sampling process (a measurement

operation) unavoidably makes the sampled system’s state

change, we expect that the control laws will guarantee that

the system’s state remains in D except that the sampling

process may take it away from D with a small probability

(not greater than p0).

III. MAIN RESULTS

A. Control method

The basic method we use is illustrated in Fig. 1. For any

sampling time nT (n = 0,1,2, . . . ), if the measured value

corresponds to |0〉, we apply zero control and wait for

the next measurement at time (n + 1)T ; otherwise, apply

a control law designed using the Lyapunov methodology

to drive the system’s state from |1〉 back to a subset of

D at t ∈ [nT,(n + 1 − β )T ], then apply zero control for

t ∈ ((n+ 1− β )T,(n+ 1)T ) and sample again at the time

(n+ 1)T . For every time point nT (n = 0,1,2, . . . ), whether

the Lyapunov control law should be used depends on the

measurement result (|0〉 or |1〉). The sampling period T and

the Lyapunov control law can be designed offline in advance.

Using a similar argument to Theorem 1 in [22], we have

the following result.

Lemma 1: For a two-level quantum system with the

initial state |ψ(0)〉= |0〉 at the time t = 0, the system evolves

to |ψ(t)〉 under the action of H(t) = [1+ δ (t)]Iz + εx(t)Ix +

εy(t)Iy (where |δ (t)| ≤ δ , 0 ≤ δ < 1,
√

ε2
x (t)+ ε2

y (t)≤ ε and

ε > 0). If t ∈ [0,T ], where

T =
arccos(1− 2p0)

ε
, (3)

the system’s state will remain in D = {|ψ〉 : |〈0|ψ〉|2 ≥
1− p0} (where 0 < p0 < 1). When one makes a projective

measurement with the measurement operator σz at the time

t, the probability of failure p= |〈1|ψ(t)〉|2 is not greater than

p0.

Hence, we use T defined in (3) as the sampling period

to guarantee the required performance. If the measurement

result corresponds to |1〉, a control law is required to drive

the system’s state back to a subset of D . Different control law

design approaches can be used to accomplish this task. Here

we employ a Lyapunov method to design the control law.

In quantum control, several Lyapunov functions have been

constructed, such as state distance-based and average value-

based approaches [11]-[14], [26]. Here we select a Lyapunov

function based on the Hilbert-Schmidt distance between a

state |ψ〉 and the sliding mode state |φ j〉 [12], [26]; i.e.,

V (|ψ〉,S) = 1

2
(1−|〈φ j|ψ〉|2).

The control law can be selected as (for details, see [22],

[26]):

uk = Kk fk(ℑ[e
i∠〈ψ|φ j〉〈φ j |Ik|ψ〉]), (k = x,y,z) (4)

where ℑ[a+bi] = b (a,b∈ R), ∠c denotes the argument of a

complex number c, Kk > 0 may be used to adjust the control

amplitude and f (·) satisfies x f (x)≥ 0. Define ∠〈ψ |φ j〉= 0◦

when 〈ψ |φ j〉= 0.

To guarantee the required robustness, the Lyapunov con-

trol should drive the system’s state into a subset E of D . The

subset E can be defined as E = {|ψ〉 : |〈0|ψ〉|2 ≥ 1−α p0,0<
p0 < 1,0 ≤ α ≤ 1}. The main theorem (Theorem 2) in the

following subsection will give a sufficient condition on the

relationships between α , p0 and β to guarantee the required

robustness.

B. Main Theorem

Theorem 2: For a two-level quantum system with the

initial state |ψ(0)〉 satisfying |〈ψ(0)|1〉|2 ≤ α p0 (0 ≤ α ≤
1) at the time t = 0, the system evolves to |ψ(t)〉 under

the action of H(t) = [1+ δ (t)]Iz + εx(t)Ix + εy(t)Iy (where
√

ε2
x (t)+ ε2

y (t) ≤ ε , ε > 0, |δ (t)| ≤ δ and 0 ≤ δ < 1). If

t ∈ [0,β T ] and

α ≤ 1− cos[(1−β )arccos(1− 2p0)]

2p0

(5)

where 0 < β ≤ 1 and

T =
arccos(1− 2p0)

ε
, (6)

the system’s state will remain in D = {|ψ〉 : |〈0|ψ〉|2 ≥
1− p0} (where 0 < p0 < 1). When one makes a projective

measurement with the measurement operator σz at the time

t, the probability of failure p= |〈1|ψ(t)〉|2 is not greater than

p0.

Remark 1: The proof of Theorem 2 will be presented

in Section IV. Using Lemma 1 and Theorem 2, we aim to

maintain the system’s state in D by implementing periodic

sampling with the sampling period T in (3). This theorem

provides a sufficient condition to guarantee the required

robustness. Given p0, β , we can select α satisfying (5) in

Theorem 2. If the sampled result is |1〉, we apply a Lyapunov

control law designed to drive the system’s state into E .

The sampling period and the Lyapunov control law can be

designed in advance.

C. Illustrative example

Now we present an illustrative example to demonstrate

the proposed method. Assume p0 = 0.01. Consider the case:

ε = 0.2, β = 0.95. From the simulation in [22], we find the

fact that the Lyapunov control is also not sensitive to small

uncertainties in the system Hamiltonian. More simulation re-

sults suggest that the robustness for the Lyapunov control can

be enhanced if we select the terminal condition |〈1|ψ(t)〉|2 ≤
ηα p0 (where 0 < η < 1) instead of |〈1|ψ(t)〉|2 ≤ α p0.

Here, we select η = 0.8. Hence, we design the sampling

period T = 1.002 using (3). Using Theorem 2, we select

α = 0.0025. We design the Lyapunov control using (4) and

the terminal condition |〈1|ψ(t)〉|2 ≤ ηα p0 = 2× 10−5 with

the control Hamiltonian Hu =
1
2
u(t)σy. Using (4), we select

u(t)=K(ℑ[ei∠〈ψ(t)|0〉〈0|σy|ψ(t)〉]) and K = 500. Let the time

stepsize be given by δ t = 10−6. We can obtain the probability

curve of |0〉 shown in Fig. 2 and the control value shown in

6237



Fig. 1. The proposed sampled-data control scheme for a two-level quantum system based on sliding mode design. In this figure, the labels “Lyapunov”,
“sampling” and “uncertainties” refer to the evolution process of the quantum system under the Lyapunov control law, the sampling process and uncertainties
in the system Hamiltonian, respectively.

Fig. 2. The probability of |0〉 under the Lyapunov control law.

Fig. 3. For the noise ε(t)Ix or ε(t)Iy where ε(t) obeys a

uniform distribution in [−0.2,0.2], more simulation results

show that the system’s state is also driven into E using the

Lyapunov control law in Fig. 3.

IV. PROOF OF THE MAIN THEOREM

In practical applications, we often use the density oper-

ator ρ to describe the quantum state of a quantum sys-

tem. For a two-level quantum system, the state ρ can be

represented in terms of the Bloch vector r = (x,y,z) =
(tr{ρσx}, tr{ρσy}, tr{ρσz}):

ρ =
1

2
(I + r ·σ). (7)

Fig. 3. The control value u(t).

The dynamical equation for ρ can be written as

ρ̇ =−i[H,ρ ] (8)

where [A,B] = AB−BA. After we represent the state ρ with

the Bloch vector, the pure states (satisfying ρ = |ψ〉〈ψ |) for

a two-level quantum system correspond to the surface of the

Bloch sphere, where (x,y,z) = (sinθ cosϕ ,sinθ sinϕ ,cosθ ),
θ ∈ [0,π ], ϕ ∈ [0,2π ]. An arbitrary pure state |ψ〉 for a two-

level quantum system can be represented as

|ψ〉= cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉, (9)

where |0〉 and |1〉 are eigenstates of H0.
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Assume that the state at time t is ρt . If we sample using

projective measurements on this system, the probability p

that it will collapse into |1〉 (the probability of failure) is

p = 〈1|ρt |1〉=
1− zt

2
. (10)

To prove Theorem 2, we first prove two lemmas (Lemma

3 and Lemma 4).

Lemma 3: For a two-level quantum system with the

initial state (x0,y0,z0) = (0,0,1), the system evolves to

(xA
t ,y

A
t ,z

A
t ) and (xB

t ,y
B
t ,z

B
t ) under the action of HA = [1+

δ (t)]Iz+ε cosγ0Iy+ε sinγ0Ix (constant ε > 0 and |δ (t)| ≤ δ )

and HB = ε cosγ0Iy + ε sinγ0Ix, respectively. For arbitrary

t ∈ [0, π

2
√

4+ε2
], zA

t ≥ zB
t .

Proof: For the system with Hamiltonian HA = [1+
δ (t)]Iz + ε cosγ0Iy + ε sinγ0Ix, using ρ̇ = −i[H,ρ ] and (7),

we obtain the following state equations




ẋA
t

ẏA
t

żA
t



=





0 −[1+ δ (t)] ε cosγ0

1+ δ (t) 0 −ε sinγ0

−ε cosγ0 ε sinγ0 0









xA
t

yA
t

zA
t



 ,

(11)

where (xA
0 ,y

A
0 ,z

A
0 ) = (0,0,1).

We now consider δ (t) as a control input and select the

performance measure as

J(δ ) = z f . (12)

Also, we introduce the Lagrange multiplier vector λ (t) =
(λ1(t),λ2(t),λ3(t))

T and obtain the corresponding Hamilto-

nian function H=H(r(t),δ (t),λ (t), t) as follows:

H≡ λ T (t)





0 −[1+ δ (t)] ε cosγ0

1+ δ (t) 0 −ε sinγ0

−ε cosγ0 ε sinγ0 0









xt

yt

zt



 ,

(13)

where r(t) = (xt ,yt ,zt ). That is

H(r(t),δ (t),λ (t), t)
= [1+ δ (t)](λ2(t)xt −λ1(t)yt)
+ε cosγ0(λ1(t)zt −λ3(t)xt)
−ε sinγ0(λ2(t)zt −λ3(t)yt).

(14)

According to Pontryagin’s minimum principle [27], a neces-

sary condition for δ ∗(t) to minimize J(δ ) is

H(r∗(t),δ ∗(t),λ ∗(t), t)≤H(r∗(t),δ (t),λ ∗(t), t). (15)

Hence, if we do not consider singular cases (i.e., λ2(t)xt −
λ1(t)yt ≡ 0), the optimal control δ ∗(t) should be chosen as

follows:

δ ∗(t) =−δ sgn(λ2(t)xt −λ1(t)yt). (16)

That is, the optimal control strategy for δ (t) is bang-bang

control; i.e., δ ∗(t) = δ̄ =+δ or−δ . Now we consider HA =
(1+ δ̄)Iz+ε cosγ0Iy+ε sinγ0Ix, which leads to the following

state equations




ẋA
t

ẏA
t

żA
t



=





0 −(1+ δ̄) ε cosγ0

1+ δ̄ 0 −ε sinγ0

−ε cosγ0 ε sinγ0 0









xA
t

yA
t

zA
t



 ,

(17)

where (xA
0 ,y

A
0 ,z

A
0 ) = (0,0,1). The corresponding solution is

as follows

(xA
t yA

t zA
t )

T =










ε cosγ0√
(1+δ̄)2+ε2

sinωt − (1+δ̄)ε sinγ0

(1+δ̄ )2+ε2 cosωt + (1+δ̄ )ε sinγ0

(1+δ̄)2+ε2

− ε sinγ0√
(1+δ̄)2+ε2

sin ωt − (1+δ̄)ε cosγ0

(1+δ̄)2+ε2 cosωt + (1+δ̄)ε cosγ0

(1+δ̄)2+ε2

ε2

(1+δ̄)2+ε2 cosωt + (1+δ̄)2

(1+δ̄)2+ε2











(18)

where ω =
√

(1+ δ̄)2 + ε2.

From (18), we know that zt is a monotonically decreasing

function in t when t ∈ [0, π

2
√

4+ε2
]. Hence, we only consider

the case t ∈ [0, t f ] where t f ∈ [0, π

2
√

4+ε2
].

Now consider the optimal control problem with a fixed

final time t f and a free final state r f = (x f ,y f ,z f ).
According to Pontryagin’s minimum principle, λ ∗(t f ) =
∂
∂r

r∗(t f ). From this, it is straightforward to verify that

(λ1(t f ),λ2(t f ),λ3(t f )) = (0,0,1). Now let us consider anoth-

er necessary condition λ̇ (t) =− ∂H(r(t),ε(t),λ (t),t)
∂r

which leads

to the following relationships:

λ̇ (t) = (λ̇1(t) λ̇2(t) λ̇3(t))
T =





0 −(1+ δ̄) ε cosγ0

1+ δ̄ 0 −ε sinγ0

−ε cosϕ0 ε sinγ0 0









λ1(t)
λ2(t)
λ3(t)



 ,

(19)

where (λ1(t f ),λ2(t f ),λ3(t f )) = (0,0,1). The corresponding

solution is

λ1(t) =− ε cosγ0
√

(1+ δ̄)2 + ε2

sinω(t f − t)

− (1+ δ̄)ε sinγ0

(1+ δ̄)2 + ε2
cosω(t f − t)+

(1+ δ̄)ε sinγ0

(1+ δ̄)2 + ε2
,

λ2(t) =
ε sinγ0

√

(1+ δ̄)2 + ε2

sin ω(t f − t)

− (1+ δ̄)ε cosγ0

(1+ δ̄)2 + ε2
cosω(t f − t)+

(1+ δ̄)ε cosγ0

(1+ δ̄)2 + ε2
,

λ3(t) =
ε2

(1+ δ̄)2 + ε2
cosω(t f − t)+

(1+ δ̄)2

(1+ δ̄)2 + ε2
. (20)

We obtain

λ2(t)xt −λ1(t)yt =
ε2(1+ δ̄)

ω3/2
[sinωt+sinω(t f −t)−sinωt f ].

(21)

It is easy to show that the quantity (λ2(t)xt −λ1(t)yt)≥ 0 oc-

curring in (16) does not change its sign when t f ∈ [0, π

2
√

4+ε2
]

and t ∈ [0, t f ]. Hence, the optimal control is δ ∗(t) = δ̄ =−δ .

Now, we exclude the possibility that there exists a singular

case. Suppose that there exists a singular interval [t0, t1]
(where t0 ≥ 0 and we assume that [t0, t1] is the first singular

interval) such that when t ∈ [t0, t1]

h(t) = λ2(t)xt −λ1(t)yt ≡ 0. (22)
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We also have the following relationship

ḧ(t) = λ3(t)xt −λ1(t)zt ≡ 0 (23)

where we have used (11) and the following costate equation

λ̇(t) = (λ̇1(t) λ̇2(t) λ̇3(t) )
T

=





0 −[1+ δ (t)] ε cosγ0

1+ δ (t) 0 −ε sinγ0

−ε cosγ0 ε sinγ0 0









λ1(t)
λ2(t)
λ3(t)



 .

(24)

If t0 = 0, we have (x0,y0,z0) = (0,0,1). By the principle of

optimality [27], we may consider the case t f = t1. Using (22),

(23) and (λ1(t1),λ2(t1),λ3(t1)) = (0,0,1), we have xt1 = 0

and yt1 = 0. Using the relationship of x2
t + y2

t + z2
t = 1, we

obtain zt1 = 1 or −1. If zt1 = 1, the initial state and the final

state are the same state |0〉. However, if we use the control

δ (t) = δ̄ , from (18) we have zt1(δ̄ ) =
ε2

(1+δ̄)2+ε2 cosωt1 +

(1+δ̄ )2

(1+δ̄)2+ε2 < zt1 = 1. Hence, this contradicts the fact that we

are considering the optimal case minz f . If zt1 = −1, there

exists 0 < t̃1 < t1 such that zt̃1
= 0. By the principle of

optimality [27], we may consider the case t f = t̃1. From the

two equations (22) and (23), we know that z2
t̃1
= 1 which

contradicts zt̃1
= 0. Hence, no singular condition can exist if

t0 = 0.

If t0 > 0, using (16) we must select δ (t) = δ̄ when

t ∈ [0, t0]. From (21), we know that there exist no t0 ∈ (0, t f )
satisfying λ2(t0)xt0 − λ1(t0)yt0 = 0. Hence, there exist no

singular cases for our problem. From the previous analysis,

δ (t) =−δ is the optimal control when t ∈ [0, π

2
√

4+ε2
].

For the system with Hamiltonian HB = ε cosγ0Iy +
ε sinγ0Ix, using ρ̇ =−i[H,ρ ] and (7), we obtain the following

state equations




ẋB
t

ẏB
t

żB
t



=





0 0 ε cosγ0

0 0 −ε sinγ0

−ε cosγ0 ε sinγ0 0









xB
t

yB
t

zB
t



 ,

(25)

where (xB
0 ,y

B
0 ,z

B
0 ) = (0,0,1). The corresponding solution is

as follows:




xB
t

yB
t

zB
t



=





cosγ0 sinεt

−sinγ0 sinεt

cosεt



 . (26)

We define F(t) and f (t) as follows:

F(t)= zA
t −zB

t =
ε2

(1− δ )2 + ε2
cosωt+

(1− δ )2

(1− δ )2 + ε2
−cosεt,

(27)

f (t) = Ḟ(t) =− ε2

√

(1− δ )2 + ε2
sinωt + ε sinεt. (28)

Now, we consider t ∈ [0, π

2
√

4+ε2
] and obtain

ḟ (t) = ε2(cosεt − cosωt)≥ 0. (29)

It is clear that ḟ (t) = 0 only when t = 0. Hence f (t) is a

monotonically increasing function and

min
t

f (t) = f (0) = 0.

Hence, we have

f (t)≥ 0. (30)

From this, it is clear that F(t) is a monotonically increasing

function and

min
t

F(t) = F(0) = 0.

Hence F(t) ≥ 0 when t ∈ [0, π

2
√

4+ε2
]. Therefore, we can

conclude that zA
t ≥ zB

t for arbitrary t ∈ [0, π

2
√

4+ε2
].

We now present another lemma.

Lemma 4: For a two-level quantum system with the

initial state (x0,y0,z0) = (0,0,1), suppose the system evolves

to (xt ,yt ,zt) under the action of H = ε(cosγIy+ sinγIx) (γ is

a constant). Then, zt is independent of γ .

Proof: For H =ω(sinγIx+cosγIy), from (26), we have

zt = cosεt.

It is clear that zt is independent of γ .

Remark 2: Since zt is independent of γ , it is enough

to consider a special case γ = π
2

when analyzing zt under

H = ε(cosγIy + sinγIx).
Now we can prove Theorem 2.

Proof: For HA = [1+ δ (t)]Iz + εx(t)Ix + εy(t)Iy, using

ρ̇ = −i[HA,ρ ] and (7), we obtain the following state equa-

tions




ẋA
t

ẏA
t

żA
t



=





0 −[1+ δ (t)] εy(t)
1+ δ (t) 0 −εx(t)
−εy(t) εx(t) 0









xA
t

yA
t

zA
t



 .

(31)

We first consider z0 = cosθ0 = 1−2α p0, where θ0 ∈ (0, π
2
).

Define ε(t) =
√

ε2
x (t)+ ε2

y (t) and εx(t) = ε(t)sin γt ,

εy(t) = ε(t)cosγt . This leads to the following equation

(ẋA
t ẏA

t żA
t )T

=





0 −[1+ δ (t)] ε(t)cosγt

1+ δ (t) 0 −ε(t)sinγt

−ε(t)cosγt ε(t)sin γt 0









xA
t

yA
t

zA
t





(32)

where (xA
0 ,y

A
0 ,z

A
0 ) = (sinθ0 cosϕ0,sinθ0 sinϕ0,cosθ0) and

ϕ0 ∈ [0,2π ].
Define N(t) = −ε(t)sin θ0 cos(γt + ϕ0). From (32), we

have

żA
t |t=0 = lim

t→0
N(t). (33)

Now we take an arbitrary evolution state (except |1〉) start-

ing from |0〉 as a new initial state. For HB = εIx, the initial

state can be represented as (x′0,y
′
0,z0) = (0,−sinθ0,cosθ0),

where θ0 ∈ (0,π). We have




ẋB
t

ẏB
t

żB
t



 =





0 0 0

0 0 −ε
0 ε 0









xB
t

yB
t

zB
t



 . (34)

Hence,

żB
t |t=0 =−ε sinθ0. (35)
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It is clear that for any t

−ε sin θ0 ≤ N(t)≤ ε sin θ0. (36)

Therefore, for ∆t → 0, we have

zA
∆t ≥ zB

∆t . (37)

When sin θ0 = 0, using Lemma 3 and Lemma 4, we can also

obtain the same conclusion zA
∆t ≥ zB

∆t .

From (34), we know that zB
t = cos(θ0 + εt). When 0 <

t < π−2θ0
2ε , zB

t decreases monotonically in t. We now define

g(t) = zA
t − zB

t and assume that there exist t = t1 ∈ [0, π−2θ0
2ε )

such that zA
t1
< zB

t1
. That is, g(t1)< 0. Since g(t) is continuous

in t and g(0) = 0, there exists a time t∗ = sup{t|0 ≤ t <
t1,g(t) = 0} satisfying g(t)< 0 for t ∈ (t∗, t1]. However, we

have established that for any zA
t = zB

t and ∆t → 0, zA
t+∆t ≥

zB
t+∆t , which contradicts g(t) < 0 for t ∈ (t∗, t1]. Hence, we

have the following relationship for t ∈ [0, π−2θ0
2ε )

zA
t ≥ zB

t . (38)

From (10), it is clear that the probabilities of failure satisfy

pA
t = 1−zA

t
2

≤ pB
t = 1−zB

t
2

. That is, the probability of failure pA
t

is not greater than pB
t for t ∈ [0, π−2θ0

2ε ).

Since zB
t = cos(θ0+εt), we have ∆zB

β T
= cosθ0−cos(θ0+

εβ T ), where

T =
arccos(1− 2p0)

ε
. (39)

Using the relationship (38), we have

zA
β T ≥ 1− 2α p0+ cos(θ0 + εβ T)− cosθ0 = M.

Now let

p =
1− zA

β T

2
≤ 1−M

2
≤ p0.

Using the fact θ0 = arccos(1−2α p0), we have the following

relationship

α ≤ 1− cos[(1−β )arccos(1− 2p0)]

2p0

. (40)

V. CONCLUSIONS

This paper proposes a sampled-data control scheme to

deal with the uncertainties in the system Hamiltonian for

two-level quantum systems. The control law consisting of a

periodic sampling process and a Lyapunov control law can be

designed offline. We give a sufficient condition for the design

of the control law to guarantee the required robustness. The

proposed sampled-data control approach can be extended to

more general finite-level quantum systems with uncertainties

and has potential applications to robust quantum information

processing.
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