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Abstract— The graph topology plays a central role in char-
acterizing the robustness of feedback systems. In particular, it
provides necessary and sufficient conditions for the continuity
properties of the transfer matrices of stabilized closed-loop sys-
tems. It is possible to derive stronger conclusions by confining
our attention to a compact set of controllers. Specifically, if
a family of plants is stabilized by each controller belonging
to a compact set of controllers, then the closed-loop transfer
matrix is uniformly continuous. However, at present a precise
characterization of compactness in the graph topology is not
available. That is the topic of the present paper. In general it
appears difficult to give a necessary and sufficient conditions for
a set to be compact. Hence we give a necessary condition and a
sufficient condition, and discuss the gap between the two. The
necessary condition is standard, while the proof of the sufficient
condition is based on three major theorems in analysis: the
Baire category theorem, Montel’s theorem on normal families
of analytic functions, and the corona theorem for H∞. Finally, it
is shown how the notion of a compact set of controllers can be
applied to the problem of approximate design and performance
estimation for sampled-data control systems.

I. INTRODUCTION

Many control system design problems inherently or in-
evitably involve system approximation. If nothing else, the
system model itself is an approximation since no model can
be exact. One then encounters the following question: Let a
model M be an approximation of system Σ in some sense.
Let K be a controller that is designed for M. How do we
guarantee the performance of the closed-loop system when
we connect K to Σ?

This is of course a question of robustness, typically robust
stability. But normally, it is placed in the context of an analy-
sis problem, to guarantee that the designed controller satisfies
certain performance criteria. Or else, one can formulate a
synthesis problem in such a way that a certain performance
estimate be satisfied. But what if we have only a rough
estimate on the set of controllers and still wish to guarantee
overall performance and “convergence” of the closed-loop
system? We need to guarantee some uniform estimate for
a closed-loop performance for a certain prescribed class of
controllers out of which a desired controller is to be chosen.

To deal with such a problem, the notion of the graph
topology (or the gap metric) has been introduced in [16],
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[17], [22]. Roughly speaking, the graph topology is the
weakest topology on controllers that makes closed-loop
stability a robust property. Suppose {Pλ} is a family of plant
models parametrized by some parameter λ assuming values
in some topological space Λ, and let Pλ0 denote the ‘nominal’
plant model. Then there exists a controller that stabilizes Pλ

for all λ in some neighborhood of λ0, and in addition the
closed-loop transfer function is continuous at λ0, if and only
if the open-loop transfer function Pλ is continuous in the
graph topology at λ0. The graph topology is metrizable and
there are several metrics that generate the same topology,
one of which is the gap metric.

To be more specific, consider the following rather spe-
cialized, but quite realistic, problem: Suppose that we are
given a sequence of plant approximants Pn, n = 1,2, . . ., that
converges to the “true” plant P, and we have a prescribed
set K from which a controller K may be chosen. Can
we guarantee the performance of the closed-loop in the
limit? The essence of the problem here is that we do not
know a priori the controller K until it is chosen; but on
the other hand, we do wish to guarantee the closed-loop
performance for the whole class of problems where K is
chosen from K . In other words, we aim at guaranteeing
the convergence of the design problem. Precisely stated, the
question is the following: Can we ensure that the closed-
loop transfer matrix which is denoted by H(Pn,K) converges
uniformly to H(P,K) for every controller K ∈K ? If the set
of controllers K is ‘too large’ then uniform convergence will
not hold. Thus the set K has to be ‘sufficiently small’ in
order for uniform convergence to hold. It is easy to see that
a simple sufficient condition for such uniform convergence is
that the set K should be compact in the graph topology. That
is the motivation for studying the question of compactness
in the graph topology.

Such a problem arises naturally in varied situations where
we have approximate system models. One example is the
case of fast-sampling/fast-hold approximations for sampled-
data systems (see Section IV-A below); yet another can
arise often in discrete approximation of distributed parameter
systems. For such systems, we often execute system design
based on approximate models, and wish to guarantee the
performance of the obtained controller in the limit.

This problem in itself presents an interesting mathemat-
ical challenge. While it seems difficult to give a complete
necessary and sufficient condition, we can give a necessary
condition, and an interesting sufficient condition, based on
the notion of boundedness in the space H∞. Using such a
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notion of compactness, we will prove some results on the
estimate of the limiting behavior of approximate design.

II. PRELIMINARIES

In this subsection we give a very brief introduction to
the graph topology. Complete details can be found in [18,
Chapter 7]. We begin with the extremely important notion
of coprimeness.

A. Coprimeness

Let B denote a commutative Banach algebra with identity
over the complex field C. Actually the graph topology can
be defined in far broader settings, but this is sufficient for
our purposes. Examples of commutative Banach algebras
include H∞, the set of functions on C that are analytic on D
and bounded on D, and the disc algebra, consisting of the
functions in H∞ that are not merely bounded on D but also
continuous on D. Suppose n,d ∈ B. Then we say that n,d
are coprime or Bézout if there exist other elements x,y ∈ B
such that

xn+ yd = 1,

where 1 = 1B, the identity element of B. More generally,
suppose N ∈ Bp×m,D ∈ Bm×m. Then we say that N,D are
right coprime or right Bézout if there exist matrices X ,Y
over B of compatible dimensions such that

XN +Y D = I,

where I denotes the identity matrix over B.
It is possible to give an abstract necessary and sufficient

condition for two matrices to be coprime, using the notion of
the Gel’fand transform. Let M denote the space of maximal
ideals of B. For every a ∈ B, and I ∈ M , [a]I denotes
the coset a+ I in the quotient algebra B/I. By the well-
known Gel’fand-Mazur theorem [3], B/I ∼=C. Now suppose
a ∈ B. As a result, for each I ∈M , the coset a+ I is (or
more accurately, can be uniquely identified with) a complex
number, which is denoted by âI . Note that âI and [a]I are two
different ways of denoting the same object. The association
a 7→ âI as I varies over M maps the element a into a
complex-valued function on M and is denoted by â. This
mapping is called the Gel’fand transform of a. The so-
called ‘carrier space topology’ on M is the weakest topology
on M in which the mapping â : M → C is continuous for
every a ∈ B. It is customary to denote the set M with the
carrier space topology by Ω, and individual elements of Ω

(which are actually maximal ideals of B) by ω . One of
the most useful results of Gel’fand theory is that, in the
carrier-space topology, the set Ω is compact [3]. Moreover,
if the Banach algebra B is ‘semi-simple’, meaning that
the intersection of all maximal ideals of B consists of the
singleton set {0}, then the Gel’fand transform is a one-to-one
mapping from B into C(Ω), the set of continuous functions
on Ω.

Yet another very important result in Gel’fand theory is
that the spectrum of an element a ∈ B (i.e., the set of λ for
which λ1−a is not invertible) consists precisely of the set

{â(ω),ω ∈Ω}. Hence λ1−a has an inverse in B if and only
if â(ω) 6= λ for every ω ∈Ω. In particular a has an inverse
in B if and only if â(ω) 6= 0 ∀ω . This leads to the following
easy consequence [18, Lemma 8.1.9]:

Lemma 2.1: Let a1, . . . ,an ∈ B. Then there exist
x1, . . . ,xn ∈ B such that

n

∑
i=1

xiai = 1 (1)

if and only if

rank[â1(ω), . . . , ân(ω)] = 1 (2)

for every ω ∈Ω.
Observe now that a pair (N,D) over B is right coprime if

and only if it is left-invertible over B. Hence we now give
the following general characterization of left invertibility [18,
Theorem 8.1.12]:

Theorem 2.2: Suppose A ∈ Bn×m with n ≥ m. Then A
admits a left inverse in Bm×n if and only if

rank[Â(ω)] = m (3)

for every ω ∈Ω.
A brief indication of its proof will be given in Appendix.

B. The Graph Topology

Given B, let F denote the associated field of fractions. So
we can think of B as the set of ‘stable’ systems, while F is
the set of ‘unstable’ systems. Since B is a Banach algebra,
there is a natural topology on B. The graph topology extends
the topology on B to a topology on the associated field F of
fractions. Specifically, suppose n,d ∈B are coprime with d 6=
0, and let p = n/d. Then the set of all fractions n′/d′, where
n′,d′ belong to some open balls around n,d respectively,
and in addition the ball around d′ does not contain zero,
is defined as a neighborhood of p. In the case of multi-
input, multi-output systems, suppose N,D are matrices over
B, with D being square and nonsingular (meaning that its
determinant is not the zero element of B). Then P = ND−1

is well-defined as a matrix over F. Now suppose that in
addition N,D are right Bézout. Then the set of all ratios
N′(D′)−1, where N′,D′ belong to open balls around N,D
respectively, and in addition, all matrices in the ball around
D are nonsingular, constitutes a neighborhood of P.

As mentioned in the Introduction, the significance of the
graph topology is that it is the weakest topology in which
feedback stability is a continuous property. Specifically we
have the following following [17]:

Theorem 2.3: Suppose {Pλ} is a family of plant models
parametrized by some parameter λ assuming values in some
topological space Λ, and let Pλ0 denote the ‘nominal’ plant
model. Then there exists a controller that stabilizes Pλ for all
λ in some neighborhood of λ0, and in addition the closed-
loop transfer function is continuous at λ0, if and only if the
open-loop transfer function Pλ is continuous in the graph
topology at λ0.
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III. COMPACT SETS IN THE GRAPH TOPOLOGY

As stated in the Introduction, the topic of study in the
present paper is the compactness of sets in the graph topol-
ogy. The topic can be motivated quite simply. As we have
seen in Theorem 2.3, feedback stability is a continuous prop-
erty in the graph topology. Thus if Pn is a sequence of plants
converging to some P0 in the graph topology, and if K is a
controller that stabilizes P0, then K also stabilizes Pn for all
sufficiently large n, and in addition, the closed-loop transfer
function H(Pn,K) converges to H(P0,K) as n approaches
infinity. As noted in the Introduction, however, while this
convergence guarantees the convergence of H(Pn,K) for a
chosen K, the problem is that we do not know a priori which
K will be chosen until the synthesis is done. Instead, suppose
we would like to guarantee the convergence of the design
problem before choosing a controller. That is to say, we wish
to guarantee the convergence of the closed-loop performance
for a prefixed class K of controllers. In particular, this
entails us to guarantee H(Pn,K) to converge uniformly to
H(P0,K) for K ∈ K . Since a continuous function on a
compact set is uniformly continuous, it readily follows that
the desired uniform convergence behavior holds true if the
set of controllers K is compact in the graph topology.

Next we will present conditions for compact sets in the
graph topology.

We start with the following easy necessary condition:
Theorem 3.1: Let (NΛ,DΛ) be a family of functions in

(H∞)p×m×(H∞)m×m. Suppose (NΛ,DΛ) is compact. Then it
is a closed bounded subset of (H∞)p×m× (H∞)m×m.

This follows readily from the standard fact that in any
normed linear space, an unbounded set cannot be compact.

The sufficiency part is more subtle:
Theorem 3.2: Let (NΛ,DΛ) be a family of functions in

(H∞)p×m × (H∞)m×m. Suppose that there exists an open
subset U ⊂C that contains the closure D such that (NΛ,DΛ)
is a subset of (H∞)p×m(U)× (H∞)m×m(U) and is a closed
bounded subset there. Then (NΛ,DΛ) is a compact subset of
(H∞)p×m(D)× (H∞)m×m(D).

In other words, the above conditions require that (NΛ,DΛ)
constitutes a closed bounded subset in the topology of
H∞(U) (which is a smaller space than H∞(D)), and then it
is compact. The gap between boundedness over D and over
U yields the gap between necessity (which requires bound-
edness only on D) and sufficiency that requires boundedness
on U ⊃ D.

We give a proof of this theorem in two steps: first for the
SISO case, i.e., m= p= 1, for simplicity, and then generalize
it to the MIMO case.

A. SISO case

Let us start with the following lemma:
Lemma 3.3: The subset of pairs (n,d) that are coprime is

an open subset of H∞×H∞.
Proof Take any (n,d) that is coprime. Then by the well-
known corona theorem [4], [8], there exists a positive con-

stant c such that

|n(z)|+ |d(z)| ≥ c > 0, ∀z ∈ D.

Take ε neighborhoods of n and d, and let ñ and d̃ belong
to these neighborhoods, respectively. It follows that |ñ(z)| ≥
|n(z)|− ε , and similarly for |d̃(z)|. They by taking ε = c/4,
we see that

|ñ(z)|+ |d̃(z)| ≥ c/2 > 0

for every z ∈ D. Then (ñ, d̃) is coprime again by the corona
theorem. That is, the set of all coprime pairs constitute an
open subset of H∞×H∞. 2

To prove the compactness of (NΛ,DΛ), we assume,
without loss of generality, that the cardinality of the set
(NΛ,DΛ) = ∞; for otherwise, (NΛ,DΛ) is clearly compact.
Then (NΛ,DΛ) is a complete metric space as a closed subset
of H∞×H∞.

Now let {(nλ ,dλ )} be any infinite sequence in (NΛ,DΛ).
Since (NΛ,DΛ) is a bounded subset of (H∞)p×m(U) ×
(H∞)m×m(U), {(nλ ,dλ )} constitutes a normal family in
(H∞)p×m(U)× (H∞)m×m(U) by Montel’s theorem [6]. That
is, there exists a subsequence {(nλp ,dλp)}∞

p=1 that is conver-
gent to (n∞,d∞)∈ (H∞)p×m(U)×(H∞)m×m(U) uniformly on
every compact subset of U . But D⊂U is a compact subset
of U in itself, so this convergence is uniform on D. This
means that (nλp ,dλp) converges to (n∞,d∞) in the H∞ norm
of H∞(D). However, this by itself is not sufficient to establish
the desired result, because (n∞,d∞) might not be a coprime
pair. For that purpose, further reasoning is required.

Let M be the closure of {(nλp ,dλp)}∞
p=1, i.e., M =

{(nλp ,dλp)}∞
p=1∪{(n∞,d∞)}. Note that M could in principle

be strictly smaller than the closure of the original collection
{(nλ ,dλ )}. Then M is a complete metric space as a closed
subset of (NΛ,DΛ). Moreover, since (nλp ,dλp) converges to
(n∞,d∞), it follows that (nλp ,dλp) is the only possible limit
point of the set M.

Now let

S := {(n,d) ∈M : (n,d): coprime}.

By Lemma 3.3, S is an open subset of M with respect to
its relative topology. As an open subset of a complete metric
space, S is in itself a space of second category by the Baire
category theorem [13].

For each positive integer n, define a subset Cn of S as

Cn := {(n,d) ∈S | inf
z∈D
|n(z)|+ |d(z)| ≥ 1/n}.

Cn is clearly a closed subset of M.
Now observe that

S = ∪∞
n=1Cn. (4)

Since S is of second category, at least one, say Cm, contains
an open subset. Hence it contains an infinitely many element.
Moreover, such infinitely many elements should converge
to (n∞,d∞) because they constitute a subset of M which is
convergent to (n∞,d∞). This means (NΛ,DΛ) is compact, and
completes the proof. 2
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B. MIMO case

We first quote the following result:
Theorem 3.4 (Fuhrmann [7], Treil[14], Vidyasagar[18]):

Let N ∈ (H∞)p×m and D ∈ (H∞)m×m. Then there exist
X ∈ (H∞)m×p and Y ∈ (H∞)m×m such that the Bézout
identity

XN +Y D = I (5)

is satisfied if and only if

inf
z∈D

σmin

[
N(z)
D(z)

]
> 0 (6)

where σmin denotes the minimum singular value.
We give a brief indication of the proof in the Appendix.
Let us now give a proof for Theorem 3.2 for the MIMO

case.
We start with the following generalization of Lemma 3.3:
Lemma 3.5: The subset of pairs (N,D) that are coprime

in the sense of (5) is an open subset of (H∞)p×m×(H∞)m×m.
Sketch of Proof
By Theorem 3.4, there exists c > 0 such that

σmin

[
N(z)
D(z)

]
≥ c > 0

for all z ∈ D. Take sufficiently small neighborhoods of N
and D, and let Ñ and D̃ belong to these neighborhoods,
respectively. Then similarly as in the proof of Lemma 3.3,
we readily see that

inf
z∈D

σmin

[
Ñ(z)
D̃(z)

]
> 0

for all Ñ and D̃ belonging to these neighborhoods. It follows
that (Ñ, D̃) is coprime again by Theorem 3.4, and this
completes the proof. 2

Let us again assume that #(NΛ,DΛ) = ∞ without loss of
generality. Then (NΛ,DΛ) is a complete metric space as a
closed subset of (H∞)p×m× (H∞)m×m.

The rest of the proof can be almost a verbatim repetition
of that for the SISO case. That is,

1) We take any infinite sequence in (NΛ,DΛ), take its con-
vergent subsequence (convergent uniformly on D due
to the boundedness in H∞(U)) according to Montel’s
theorem.

2) Complete the subsequence as M by adding the limit
point to it, making the closure again a complete metric
space, and observing that the set M can have only one
limit point.

3) Consider a subset S consisting of coprime pairs.
Then by Lemma 3.5, S becomes an open subset, which is
in in itself a space of second category by the Baire category
theorem.

Now define a subset Cn of S as

Cn := {(N,D) ∈S | inf
z∈D

σmin

[
N(z)
D(z)

]
≥ 1/n},

and then Cn is a closed subset of M.

wz
y uP(s)

Sh K(z) Hh

Fig. 1. Sampled-Data Control System

The rest is exactly the same. We cover S with Cn as

S = ∪∞
n=1Cn, (7)

and extract a convergent subsequence there. This completes
the proof. 2

Remark 3.6: It may appear odd or possibly unnatural that
we require boundedness in H∞(U) rather than H∞(D). Let us
first note that boundedness in H∞(D) cannot be a sufficient
condition. For otherwise, it would imply that a closed unit
ball of H∞(D) (which is a Banach space) would become a
compact set. However, this contradicts a well-known result
in functional analysis, i.e., every normed linear space whose
closed unit ball is compact must be necessarily a finite-
dimensional space; see, e.g., [15]. On the other hand, there
are topological vector spaces in which every closed bounded
set is compact. Montel’s theorem [6] guarantees that the
space of analytic functions H(D) is such a space. In fact,
every infinite sequence of H(D) contains a subsequence that
is convergent on every compact subset of D, but this does
not yield uniform convergence on the whole of D (otherwise
it will yield a contradiction as above). The boundedness in
H∞(U) guarantees such uniformity because D is a compact
subset of U . The gap between the boundedness on D (i.e.,
in H∞(D)) and the boundedness on U (i.e., in H∞(U)) thus
yield the gap between necessity and sufficiency here.

As an aside we point out that the set A (D) of all functions
that are analytic over D, with no additional assumptions of
being bounded over D, is an example of a ‘Bezout domain’.
Thus A (D) a commutative ring with identity in which every
finitely generated ideal is principal. As a result, every finite
collection of elements in A (D) has a greatest common
divisor. However, A (D) is not a principal ideal domain
(PID). Consequently, an infinite collection of elements in
A (D) need not have a greatest common divisor.

IV. APPLICATION TO APPROXIMATE SYSTEM DESIGN

A. Approximation in sampled-data systems

Consider the sampled-data control system in Fig. IV-
A consisting of a continuous-time generalized plant P =[

P11 P12
P21 P22

]
and a discrete-time controller K with sampler

Sh and zero-order hold Hh with sampling period h. The
closed-loop transfer operator from w to z will be denoted by
Tzw(K)(z).

Assume that P21 is strictly proper, which is necessary to
assure that sampling is well-defined. Likewise, we assume
that P11 and P12 are also strictly proper.
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wz
y uP(s)

Sh K(z) Hh

Hh/NSh/N

Fig. 2. Sampled-Data Control System

Whereas the sampled-data H∞ controller design problem
of Fig. IV-A can be reduced to a norm-equivalent discrete-
time H∞ design problem [1], [5], [9], discretization via
fast-sampling and fast-hold as studied in [10], [11], [21] is
practically effective and simple in obtaining a solution for
this problem.

Let us thus consider the fast-sampling approximation
shown in Fig. IV-A for this design problem. The N-step
closed-loop transfer operator from w to z will be denoted by
T N

zw(K)(z). The fast hold device Hh/N approximates inputs
with step functions with step size h/N, and the fast-sampling
component Sh/N approximates the output by taking samples
with the faster rate h/N. For detailed formulae, see, e.g.,
[10], [21].

It is proven in [21] that the frequency response gain of
such approximants converges to that of the limit uniformly
for 0≤ ω ≤ 2π/h, for a fixed controller K.

Finally, let us note the following lemma on the continuity
of the closed-loop operator with respect to K, which is
nothing but a consequence of the graph topology [17]:

Lemma 4.1: Consider the closed-loop operator Tzw(K)
where K is assumed to be stabilizing. Then Tzw(K) is
continuous in K with respect to the graph topology.

Although this is sufficient for analysis purposes, we still
need to go one step further. In synthesis, we do not know in
advance which controller will enter in the closed-loop. The
convergence result of [21] requires that the controller be fixed
in advance, and this assumption is (in effect) not satisfied
for synthesis problems. To this end, we must guarantee the
uniform convergence, with respect to controller K, of the
norms of the fast-sampling approximants if we are going
to use such approximants in designing the controller. This
motivates the following theorem.

Theorem 4.2: Let K be a set of controllers K such
that i) every K ∈ K is stabilizing for all approximating
plants, and ii) K is compact with respect to the graph
topology. Then the frequency response gain

∥∥T n
zw(K)(e jωh)

∥∥
of the n-step fast-sampling approximant T n

zw(K) converges
to

∥∥Tzw(K)(e jωh)
∥∥ uniformly in K ∈K . This convergence

is also uniform in ω ∈ [0,2π/h).
Proof Fix ε > 0, and take any K ∈K . By the convergence
result of [21], there exists N such that∣∣∣∥∥∥T n

zw(K)(e jωh)
∥∥∥−∥∥∥Tzw(K)(e jωh)

∥∥∥∣∣∣< ε for all n≥ N,

and this is uniform in ω . We will thus omit the dependence
on ω below. Take the least such N and name it N(K,ε).

Let d(·, ·) denote a metric that defines the graph topology.
Since

∥∥T n
zw(K)

∥∥−∥∥Tzw(K)
∥∥ is continuous with respect to

K as Lemma 4.1 below shows, there exists a neighborhood
B(K,δ ) := {K′ : d(K′,K)< δ} of K such that∣∣∣∥∥T n

zw(K
′)
∥∥−∥∥Tzw(K

′)
∥∥∣∣∣< ε

for all n≥ N(K,ε) and K′ ∈ B(K,δ ). This yields a covering
of the controller set:

K = ∪K∈K B(K,δ ).

By the compactness of K , there exists a subcovering

K = B(K1,δ1)∪·· ·∪B(Km,δm).

Taking Nmax := {N(K1,ε), . . . ,N(Km,ε)}, we readily have
that n≥ Nmax implies∣∣∣∥∥T n

zw(K)
∥∥−∥∥Tzw(K)

∥∥∣∣∣< ε (8)

for all K ∈K . 2

Remark 4.3: A preliminary version of this theorem has
been obtained in [20]. However, a crucial assumption there
was that the controller set was constrained to be stable. As
a result, the topology for the controller set was taken in the
H∞-norm. To remedy this problem, we have now modified
the proof to be compatible with the graph topology. The
question, however, still remains: what are the compact sets
in the graph topology. This was indeed the basic motivation
for the present study.

B. General approximation results

As briefly mentioned in the Introduction, distributed pa-
rameter systems are often discretized in the spatial domain
and this yields a sequence of finite-dimensional systems
(with increasing dimensions) that is shown to “converge”
to the original system. For example, the so-called averag-
ing approximation for delay-differential systems is such an
example [2]; see also [19] for a more general setting on
finite-dimensional approximations. Both these results are in
some sense for open-loop plants. For closed-loop plants, a
relevant approximation result is found in [12]. It is shown in
this paper that if a controller is designed on the basis of a
sequence of finite-dimensional Galerkin-type approximations
to an infinite-dimensional system, then the resulting closed-
loop responses converge to that of the infinite-dimensional
system with that particular controller.

Let us now state the following theorem:
Theorem 4.4: Let Pn be a sequence of plants that con-

verges to a plant P0 in the graph topology, and let K be a
set of controllers K such that i) every K ∈K is stabilizing for
all approximating plants, and ii) K is compact with respect
to the graph topology. Then H(Pn,K) converges uniformly
to H(P0,K) for K ∈K .

Sketch of Proof
The proof is entirely similar to that of Theorem 4.2. Then
take ε > 0 and take any K ∈K . There exists N such that

d(H(Pn,K),H(P0,K))< ε
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for all n ≥ N. By Lemma 4.1, there exists a neighborhood
B(K,δ ) := {K′ : d(K′,K)< δ} of K such that

d(H(Pn,K′),H(P0,K))< ε

for all n ≥ N(K,ε) and K′ ∈ B(K,δ ). Using compactness,
find a finite subcovering, and this readily yields uniformity
of convergence as the proof of Theorem 4.2. 2

APPENDIX: PROOF OF THEOREM 3.4
For the sake of completeness, we here give a proof of the

generalization Theorem 3.4 based on the result of the scalar
case. The proof here goes along the line of the treatment in
[18, Chapter 8].

Let R be a Gel’fand algebra, i.e., complex commutative
Banach algebra with identity. H∞ is a well-known example.
We defer the proof until the very end of Appendix, and
proceed to the proof of Theorem 3.4.

An easy consequence of Theorem 2.2 is the following:
Corollary 4.5: Suppose N and D have the same number

of columns. Then N and D are right coprime if and only if[
N
D

]
has full column rank for every I ∈M .

Theorem 3.4 then easily follows from this and the corona
theorem:
Proof of Theorem 3.4
For every a ∈ D, let Ia denote { f ∈ H∞(D) : f (a) = 0}. Ia
is easily seen to be a maximal ideal of H∞(D). The corona
theorem [8] asserts that {Ia : a∈D} constitute a dense subset
of M . Hence (3) is satisfied for H∞ if and only if

inf
z∈D

σmin

[
N(z)
D(z)

]
> 0,

that is, if and only if (6) holds. 2

It remains only to prove Theorem 2.2.
Sketch and Indication of Proof of Theorem 2.2

The necessity is obvious.
For sufficiency, first note that the case m = n is obvious,

since in this case condition (3) means that detA does not
belong to any maximal ideal, and hence is invertible.

For the case m < n, we only give an indication and the
flavor. The detailed proof can be found in [18, Theorem
8.12]. Condition (3) implies that for every maximal ideal I
there exists a full-sized minor (size m) that does not vanish
over R/I. Since there are only finitely many full-sized minors
f1, . . . , fL, they together satisfy

rank[[ f1]I , . . . , [ fL]I ] = 1

and by Lemma 2.1 they generate R, i.e.,

∑xi fi = 1.

For each f j, define B j as a suitable cofactor matrix corre-
sponding to the minor f j such that

B jA = f jI.

Define B := ∑x jB j. Then BA is easily seen to be equal to I,
and this completes the proof. 2
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