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Abstract— This paper introduces a new method for model
falsification using Set-Valued Observers (SVOs), which can be
applied to a class of discrete Linear Time-Invariant (LTI)
dynamic systems with time-varying model uncertainties. In
comparison with previous studies, the main advantages of this
approach are as follows: the computation of the convex hull
of the set-valued estimate of the state can be avoided under
certain circumstances; in order to guarantee convergence of
the set-valued estimate of the state, the required number of
previous set-valued estimates is at most as large as the number
of states of the nominal plant; it provides a straightforward
non-conservative method to falsify uncertain models of dynamic
systems, including open-loop unstable plants. The results ob-
tained are illustrated in simulation.

I. INTRODUCTION

The problem of model falsification or model invalidation
is relevant in a wide range of applications, such as Fault
Detection and Isolation (FDI), Multiple-Model Adaptive
Control (MMAC) and model identification methodologies. In
any of these situations, the key aspect to take into account
is the fact that a model can never be validated in practice,
as stressed in [1].

Unmodeled and/or unknown dynamics (present in virtually
every physical system) and adverse exogenous disturbances,
can result in erroneous model falsification. Hence, it is imper-
ative that the formulation of the problem takes into account
these uncertainty terms, in order to avoid undue invalidation
of models. As an example, the solution proposed in [1] for
uncertain Linear Time-Invariant (LTI) systems, and later on
extended to Linear Parameter-Varying (LPV) systems [2],
assumes that the system is described by an LTI nominal
model interconnected with an LTI or LTV unknown system
which can be used, for instance, to describe unmodeled
dynamics and parametric uncertainty. However, the methods
provided in [1], [2] are not recursive, which means that, after
a given amount of input/output data is obtained, we verify
whether or not the data sequence is compatible with the
model of the system. Hence, the complexity of the algorithms
grows with the number of measurements. Other alternatives
in the literature include frequency-based model validation
and probabilistic estimates – see [3], [4], [5] and references
therein.

A different approach to model falsification can be found
in the FDI literature – see, for instance, [6]. The main idea in
such architectures stems from the designing of filters that are
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more reactive to faults than to disturbances and model uncer-
tainty. This can be achieved, for instance, by using geometric
considerations regarding the plant (see [7], [8], [9], [10]), or
by optimizing a particular norm minimization objective, such
as the H∞- or ℓ1-norm (see [11], [12], [13], [14], [15]). The
latter approach provides, in general, important robustness
properties, as stressed in [11], [16], [17], [18], by explicitly
accounting for model uncertainty. After synthesizing the
filters, a set of residuals is then generated by comparing the
actual output of the plant with the ones estimated by each
filter. A model is thereafter invalidated if the corresponding
residual is greater than a given threshold, which may be
time-varying and that, in general, depends on the model
uncertainty and on the amplitude of the disturbances. As
a caveat, these methodologies are typically conservative, or
can only be applied to a particular class of systems.

A novel model falsification strategy was proposed in [19],
[20], [21], which relies on Set-Valued Observers (SVOs)
to invalidate discrete-time Linear Parameter-Varying (LPV)
models of dynamic systems. The reasoning behind this
approach is similar to that of [1], [2], but a recursive
algorithm is proposed instead, allowing it to run in real-
time. Due to the properties inherited from the SVOs, this
model falsification method guarantees that valid models of
the plant are never invalidated. Moreover, under certain
distinguishability conditions briefly discussed in the sequel,
it can also be shown that the correct model of the plant is
selected.

In [19], [20], an extension of the SVOs introduced in
[22] to LPV uncertain systems is presented. The proposed
solution is able to cope with descriptions of the plant that can
be time-varying and partially unknown. In order to constrain
the number of faces of the set-valued estimate of the state of
the system, an overbound was proposed which is guaranteed
not to grow unbounded, under certain assumptions on the
plant. Nevertheless, a few questions regarding the imple-
mentation of these SVOs were left unresolved. In particular,
in order to guarantee a bounded set-valued estimate of the
state, an arbitrarily large number of previous state estimates
was required, possibly leading to excessive computational
requirements. Furthermore, it was assumed that the plant (at
least in closed-loop) was asymptotically stable.

Thus, this paper describes a new SVO-based method to
invalidate a class of discrete-time dynamic systems, guar-
anteeing that the set-valued estimates of the state remain
bounded under mild assumptions, and requiring at most the
n previous state estimates, where n is the number of states
of the model of the system. Moreover, the proposed solution
can be applied to a class of dynamic systems described by
LTI models with time-varying uncertainties.

The remainder of this paper is organized as follows. We
start by introducing the notation used in this work and
describing some of the techniques available in the literature
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for the design of SVOs in Section II. In Section III, the
main results of this paper regarding the convergence of the
SVOs and its applicability to a class of dynamic systems is
presented. The theory is illustrated by means of a simulation
example, in Section IV. Finally, some conclusions regarding
this work are discussed in Section V.

II. PRELIMINARIES AND NOTATION

A. Set-Valued Observers

The subspace of all proper and real rational stable transfer
matrices is denoted by RH∞. We represent the elements of
v(k) ∈ R

m, for some m, k ∈ Z,m > 0, as vi(k), so that
v(k) = [v1(k), v2(k), · · · , vm(k)]T. The concatenation of
vectors v(k), v(k − 1), · · · , v(k − N + 1), for N ∈ Z

+ is
denoted as

vN =





v(k)
...

v(k −N + 1)



 .

For the sake of simplicity, v is used instead of vN whenever
N can be inferred from the context. For a, b ∈ R

n, we say
that a ≤ b if ai ≤ bi for all i ∈ {1, · · · , n}.

At this point, we assume that the input/output data avail-
able for model falsification can be obtained through an LTI
system, described by

{

x(k + 1) = Ax(k) +Bu(k) + Ld(k),
y(k) = Cx(k) + n(k),

(1)

with bounded exogenous disturbances, d(·), uncertain initial
state, x(0) ∈ X(0), control input, u(·), and measurement
output, y(·), corrupted by additive noise, n(·). It is also
assumed that |d(k)| := max

i
|di(k)| ≤ 1, and |n(k)| :=

max
i

|ni(k)| ≤ n̄. At each sampling time, k, the vector

of states is denoted by x(k), and we define X(0) :=
Set(M0,m0), where

Set(M,m) := {q : Mq ≤ m} (2)

represents a convex polytope. Moreover, let x(k) ∈ R
n,

d(k) ∈ R
nd , u(k) ∈ R

nu , and y(k) ∈ R
ny .

Let X(k + 1) represent the set of possible states at time-
instant k+1, i.e., the state x(k+1) verifies (1) with x(k) ∈
X(k) if and only if x(k+1) ∈ X(k+1). An SVO aims to find
X(k+1), based upon (1) and with the additional knowledge
that x(k) ∈ X(k), x(k − 1) ∈ X(k − 1), · · · , x(k − N) ∈
X(k − N) for some finite N . We further require that for
all x ∈ X(k + 1), there exists x⋆ ∈ X(k) such that, for
x(k) = x⋆, the observations are compatible with (1). In other
words, we want X(k+1) to be the smallest set containing all
the solutions to (1). A procedure for time-varying discrete-
time linear systems was introduced in [22], and a preliminary
extension to uncertain plants is presented in [19], [20].

The computation of X(k + 1) based upon X(k) for
systems with no model uncertainty can be performed using
the technique described in [22]. Indeed, let the system be
described by (1). Then, as shown in [22], x(k+1) ∈ X(k+1)
if and only if there exist x(k), n(k) and d(k), such that, for
the current measurement, y(k + 1), we have

P (k)

[

x(k + 1)
x(k)
d(k)

]

≤













Bu(k)
−Bu(k)

1

1

m̃(k)
m(k − 1)













=: p(k) (3)

where

P (k):=

















I −A −L
−I A L
0 0 I
0 0 −I

M̃(k) 0 0
0 M(k-1) 0

















,M̃(k)=

[

C
−C

]

,m̃(k)=

[

n̄ + y(k + 1)
n̄ − y(k + 1)

]

,

and where M(k − 1) and m(k − 1) are defined such that
X(k) = Set (M(k − 1),m(k − 1)). Notice that the distur-
bances and measurement noise, d(·) and n(·), respectively,
are treated differently by the SVOs, as the former typically
impact the dynamics in more than a single direction.

The inequality in (3) provides a description of a set in
R

2n+nd , denoted by Γ(k+1) = Set (P (k), p(k)) . Therefore,
it is straightforward to conclude that

x̂ ∈ X(k + 1) ⇔ ∃
x∈Rn,d∈R

nd

:

[

x̂
x
d

]

∈ Γ(k + 1)

Hence, the set X(k+1) can be obtained by projecting Γ(k+
1) onto the subspace of the first n coordinates.

The projection of Γ(k+1) onto R
n can be done resorting

to the Fourier-Motzkin elimination method (see [22], [23]).
Therefore, we obtain a description of all the admissible x(k+
1), which does not depend upon specific x(k) nor d(k).

The formulation in (3) can be easily extended, in case
it is convenient to compute X(k + 1) not only based upon
X(k), but also upon X(k − 1), · · · , X(k − N). Indeed,
x(k+1) ∈ X(k+1) if and only if there exist x(k+1), · · · ,
x(k−N +1), y(k), and d(k), · · · , d(k−N +1), such that,

PN (k)
[

x(k + 1)T xT
N dT

N

]T
≤ pN (k) (4)

where

PN (k) :=






































I -A ··· 0 -L 0 ··· 0
-I A ··· 0 L 0 ··· 0
I 0 ··· 0 -L -AL ··· 0
-I 0 ··· 0 L AL ··· 0
...

...
. . .

...
...

... ···
...

I 0 ··· -AN -Lk ··· ··· -AN -1L
-I 0 ··· AN L ··· ··· AN -1L
0 ··· ··· 0 I 0 ··· 0
0 ··· ··· 0 -I 0 ··· 0
...

...
...

...
...

...
...

...
0 ··· ··· 0 0 ··· ··· I
0 ··· ··· 0 0 ··· ··· -I

M̃(k) 0 ··· 0 0 ··· ··· 0
0 M(k-1) ··· 0 0 ··· ··· 0

...
...

. . .
...

...
...

...
...

0 ··· 0 M(k-N) 0 ··· ··· 0







































and pN (k) can be inferred from (1).
For plants with uncertainties, the set X(k + 1) is, in

general, non-convex, even if X(k) is convex. Thus, it cannot
be represented by a linear inequality as in (2). The approach
suggested in [19] is to overbound this set by a convex

polytope, X̂(k + 1), therefore adding some conservatism to
the solution. A generalization of this result is presented in
[21]. An alternative in the literature to the design of SVOs
uses Luenberger observers to provide bounded errors for the
estimates of the states – see [24] and references therein.

B. Coprime Factorization of LTI Systems

The so-called left-coprime factorization of discrete-time
LTI systems will be used in the following section:
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Definition 1: Let M,N ∈ RH∞. Then, M and N are
left-coprime over RH∞ if there exist X,Y ∈ RH∞ such
that

[M N ]

[

X
Y

]

= MX +NY = I.

Moreover, if P is a proper real-rational matrix, then a left-
coprime factorization of P is a factorization P = M−1N,
where N and M are left-coprime over RH∞. ⋄

We also recover the following result (see, for instance, [25,
p. 554]):

Proposition 1: Let

P (z) := D + C(zI −A)−1B :=

[

zI −A B
C D

]

be observable and define

[N M ] =

[

zI −A+KC −K B −KD
RC R RD

]

,

where R is any non-singular matrix. Then, P = N−1M.

III. MAIN RESULTS

We are now in conditions of stating the main results in
this paper. We will start by extending the applicability of
the SVOs in the context of model falsification. Thereafter,
guarantees of convergence of the SVOs are provided and,
finally, we illustrate how to use these methods to falsify
models with uncertain dynamics.

A. Model Falsification using SVOs

In [19], [21], the main idea was to invalidate dynamic
models associated with SVOs whose state estimate, at a given
time, is the empty set. Thus, as long as a given SVO provides
non-empty set-valued estimates for the state of the plant, the
corresponding dynamic model cannot be discarded. Hence,
the first part of this subsection is devoted to the development
of a method to invalidate dynamic models, while in the
second part we show how to use this method on a model
selection architecture.

We consider the class of discrete-time dynamic systems
described by LTI models driven by unknown but bounded
disturbances, connected to time-varying uncertainties, as
depicted in Fig. 1.

M

WdDd

+
-1

N

Wn Dn

+

n

y

d

u
u1

Fig. 1. Block-diagram of a class of discrete-time LTI dynamic systems
with time-varying uncertainties and unknown disturbances.

We assume that M , N , Wd and Wn are LTI dynamic
systems, and that ∆d(k) ∈ R

p, ∆n(k) ∈ R
q , |∆d(k)| ≤ 1,

|∆n(k)| ≤ 1, for all k ≥ 0. Moreover, the control input,
u(·), and noisy measurements, y(·), are assumed known, and
|d| ≤ 1, |n| ≤ 1.

Notice that

y = N−1
(

u1 +Wn∆nn
)

⇔ u1 = Ny −Wn∆nn,
(5)

and
u1 = Mu+Wd∆dd. (6)

Therefore, u1 can either be estimated using (5) or (6).
Due to the uncertainties and to the exogenous disturbances,
the values of u1(k) for each k is also, in general, uncertain.
Thus, an SVO as in [22], [19] and as described in Section
II, referred to as SVOA and depicted in Fig. 2(a), can be
designed to generate the set-valued estimates of u1 based
upon (5), while an SVO, designated by SVOB and illustrated
in Fig. 2(b), can be synthesized to obtain the set-valued
estimates of u1 based upon (6).

N

WnDn

+

n

y
u1

(a) Block-diagram used by
SVOA to obtain u1 based on u
and on the bounds on m.

M

WdDd

+

d

u
u1

(b) Block-diagram used by
SVOB to obtain u1 based on y
and on the bounds on n.

Fig. 2. Block-diagrams used to compute the set-valued estimates of u1.

Using this line-of-thought, the architecture depicted in Fig.
3 is proposed for single-model falsification using SVOs, as
described in the sequel.

Uncertain Plant

SVOA

u(k)
y(k)

Sensor
noise

Plant
disturbances

d(k) n(k)

Logic

U (SVO )(k)1 A

Empty
Set?

YesNo

Model Currently
Valid

Model

Invalidated

Model invalidated/
not invalidated

Single-Model Falsification
using SVOs

SVOB

U (SVO )(k)1 B

Intersect

Fig. 3. Architecture for single-model falsification using SVOs, including
the interconnection between the true plant, SVOA and SVOB .

The set-valued estimates of u1(k), generated by SVOA

and SVOB , denoted by U1

(

SVOA

)

(k) and U1

(

SVOB

)

(k),
respectively, are obtained by driving the SVOs with the
(noisy) measurements output, y(·), and with the control
inputs, u(·), respectively. If, at a given time k, the set-valued
estimate of u1(k), obtained with SVOA, i.e., U1

(

SVOA

)

(k),
does not intersect with the set-valued estimate of u1(k),
obtained with SVOB , i.e., U1

(

SVOB

)

(k), the model of the
system is not compatible with the true dynamics. Hence, such
a model is falsified or invalidated.

In summary, we have that

• if ∃
ko≥0

: U1

(

SVOA

)

(ko)
⋂

U1

(

SVOB

)

(ko) = ∅, then

the model of the plant is not compatible with the
observations and input commands, for k ≥ ko;

• if ∀
k≤ko

: U1

(

SVOA

)

(k)
⋂

U1

(

SVOB

)

(k) 6= ∅, then the

model of the plant is compatible with the observations
and input commands, at least up to k ≤ ko.
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Therefore, if a set of plausible dynamic models of a
given plant is available, then a couple of SVOs can be
designed for each of these models, in order to invalidate
them or not. Thus, the architecture in Fig. 4 is proposed as
a model selection approach, where NS denotes the number
of considered dynamic models.

Uncertain Plant

Falsification of Model #1
using SVOs

u(k)
y(k)

Sensor
noise

Plant
disturbances

d(k) n(k)

Model #1 invalidated/
not invalidated

Falsification of Model
using SVOs

 #2

Falsification of Model

using SVOs

 #NS

..
...
.

..
.

Model #2 invalidated/
not invalidated

Model #N  invalidated/S

not invalidated

Fig. 4. Multiple-model falsification architecture using SVOs.

Remark 1: The architecture in Fig. 4 does not guarantee
that only a single model is not going to be invalidated.
Indeed, as shown in [20], this approach only guarantees that
the “correct” model of the plant is not falsified. It does not,
however, provide any guarantees in terms of invalidating all
the other plausible models of the plant. These topics are still
under research and some preliminary results are presented in
[26]. The interested reader is further referred to [27], [28],
[29], [30], [31]. ⋄

B. Guarantees of Convergence

As stated in [19], one possible shortcoming of the SVOs
is related to the numerical approximations used during the
computation of the set-valued estimates. In other words,
since we do not have infinite precision in the computations
that have to be carried out every sampling time to obtain

the set-valued estimate X̂(k), the actual set where the state
can take value, X(k), need not be entirely contained inside

X̂(k). Therefore, it may happen that the true state does not

belong to X̂(k), and hence we may end up by discarding
the “correct” model of the plant.

The solution proposed in [19] is to “robustify” the al-

gorithm by slightly enlarging the set X̂(k). As long as
the maximum error in the computation of the set X(k) is
known, we have, for every time k, a vector ǫ∗(k) such that
X(k) ⊆ Set (M(k),m(k) + ǫ∗(k)) .

Moreover, it may happen that, from time-step to time-step,
the number of faces of the polytope containing the set-valued
estimate of the state of the system increases exponentially.
Hence, it is useful to overbound, in such circumstances, that
polytope by another one, with a constrained number of faces.

Nonetheless, using an overbound to guarantee that we do
not discard valid states of the plant also has its shortcomings.
Besides adding conservatism to the solution, it may be
responsible for the unbounded increase with time of the area
of the polytope of the set-valued estimate.

Remark 2: One of the first algorithms developed to com-
pute (ellipsoidal) set-valued estimates of the state of a system
was presented in [32] and [33]. Using ellipsoids to describe
the set-valued estimates of the state is an alternative method

to the one discussed in this paper, with the advantage of hav-
ing less computationally demanding calculations. However,
unlike the convex polytope-based approach presented herein,
the ellipsoid-based approach does not guarantee convergence
of the set of state estimates, even if the system at hand is
stable. ⋄

Consider a time-invariant plant described by (1), and let
x(0) ∈ X(0), with X(0) bounded.

Let Ψ(k) denote the smallest hyper-cube centered at the
origin, such that Ψ(0) is the smallest hyper-cube containing
X(0) and Ψ(k) for k > 0 is obtained through (1). Define
ǫ(k) as the maximum distance between a face of Ψ(k) and

the corresponding face of the estimate Ψ̂(k). The following
proposition provides sufficient conditions to guarantee that

Ψ̂(k) is bounded. It should be noticed that Ψ̂(k) can be

interpreted as a rough approximation of X̂(k), in the sense

that X̂(k) ⊆ Ψ̂(k), which means that if Ψ̂(k) is bounded, so

does X̂(k).
Proposition 2 ([19]): Consider an asymptotically stable

plant described by (1) with the aforementioned constraints.
Suppose that the maximum numerical error (previously de-
fined) at every sampling time is ǫ(k), with ǫ(k) ≤ ǫ∗|xi(k)|,
for some 0 ≤ ǫ∗ < ∞ and for every x(k) ∈ X(k). Further
suppose that ǫ∗ < 1−ρ(A), where ρ(A) denotes the spectral

radius of A. Then, Ψ̂(k) is bounded.
The main drawback associated with Proposition 2 is that

the required number of previous set-valued estimates of the
state – i.e., the size of N , in (4) – can be arbitrarily large –
see [19]. This can obviously jeopardize the implementability
of the SVOs, due to a pronounced computational burden.
Moreover, this result can only be applied to asymptotically
stable systems, which constrains the applicability of the
SVOs for model falsification of unstable plants.

The solution proposed in this paper to both problems is
to use the left-coprime factorization (see Definition 1) of
the dynamic model of the system, together with the model
falsification architecture depicted in Fig. 3.

Theorem 1: Consider a system described by the observ-
able realization

P (z) := D + C(zI −A)−1B :=

[

zI −A B
C D

]

,

with state x(·) ∈ R
nx , actuated by control input u(·),

|u(·)| < ∞, with exogenous disturbances d(·), and with
measurements y(·), |y(·)| < ∞, corrupted by additive noise
n(·), such that |d(·)| ≤ 1 and |n(·)| ≤ 1. Moreover, suppose
that the (previously defined) maximal numeric error at each
sampling time is ǫ(k), with ǫ(k) ≤ ǫ⋆|xi(k)|, for some
0 ≤ ǫ⋆ < 1 and for every x(k) ∈ X(k). Then, there exist
M(z) and N(z) such that

i) P (z) = N(z)−1M(z),
ii) the set-valued estimates of the states of N and M ,

respectively Ψ̂(SVOA)(k) and Ψ̂(SVOB)(k), obtained
from the overbounding of (4), are bounded, for N ≥
nx.

Proof: The first part of the proof comes directly from
Proposition 1. In particular, let K in Proposition 1 satisfy
(A − KC)nx = 0. It should be noticed that the existence
of such K is guaranteed, from the existence of a deadbeat
observer for any observable LTI system – see, for instance,
Theorem 5.3 in [34]. We now show that the set-valued
estimates of the state of system N(z) are bounded.
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Consider the smallest hypercubes, denoted by Ψ̂(k), Ψ̂(k+
1), · · · , Ψ̂(k + N), that contain the sets X̂(k), X̂(k + 1),
· · · , X̂(k+N), respectively, plus the maximal numeric error
at each sampling time, ǫ(k), with ǫ(k) ≤ ǫ⋆|xi(k)|, for some
0 ≤ ǫ⋆ < 1 and for every x(k) ∈ X(k). Then, for N ≥ nx,
an overly conservative SVO can be synthesized to generate

the sets Ψ̂(k), Ψ̂(k+1), · · · , Ψ̂(k+N), using the following
inequality:

|x(k+N)|≤|(A−KC)Nx(k)|+ǫ⋆|x(k)|+δN=ǫ⋆|x(k)|+δN ,

since (A−KC)N = 0, for N ≥ nx, and where

δN=maxd(k),··· ,d(k+N−1) |(A−KC)N−1Ld(k)+···+Ld(k+N−1)|.

Notice that is suffices to show that the sequence Ψ̂(k), Ψ̂(k+
1), · · · , Ψ̂(k + N) does not grow without bound, since it
contains the sequence of set-valued estimates provided by
an SVO as described in Section II. Given that ǫ⋆ < 1 by
assumption, and that |δN | < ∞ since |y| < ∞, the sets
defined by (4) for system N(z), with maximal numeric error
at each sampling time, ǫ(k), are bounded. A similar result
can be obtained for the set-valued estimates of the state of
M(z).

C. Model Uncertainty in the Dynamics

Notice that the model in Fig. 1 can be used not only
to represent dynamic systems with exogenous disturbances
and measurement noise, but also models with uncertainty
in the input and in the outputs. Moreover, this technique
can also be used to model uncertainty in matrix A, if the
linear combination of states multiplying this uncertainty can
be obtained by the measured outputs.

To see this, assume that A = Ao + ∆A1, where
rank (A1) = 1 and with |∆| ≤ 1. Hence, there exist vectors
e1 and f1 such that A1 = e1f

T
1 . Now, suppose that the

signal fT
1 x(·) can be obtained from the outputs of the plant,

assuming no measurement noise1. Then, as described in [25],
we can obtain a feedback description of the uncertain plant,
where ∆ is interconnected with the nominal plant, i.e., the
plant for ∆ = 0 – see Fig. 5.

D

+ yu G

Fig. 5. Feedback interconnection between the nominal plant and the
uncertainty in A.

Using the left-coprime decomposition, this interconnection
can be transformed into the one depicted in Fig. 6. Hence,
we can use the results in the previous subsection to assess
whether or not the model with uncertain A matrix can
describe a given input/output sequence.

In comparison to our previous results [19], we are now
able of handling uncertainties in matrix A, without using the
convex hull of the set-valued state estimates. Nevertheless,
this is only true if the linear combination of the states that
multiplies the uncertainty can be recovered from the outputs
of the plant.

1The measurement noise will impact the estimate of the state by the SVO
as a bounded disturbance. Therefore, it can be considered as such during
the design of the SVO.

M
-1

N+ yu
u1

M D

Fig. 6. Feedback interconnection between the nominal plant and the
uncertainty in A, using the left-coprime decomposition.

IV. SIMULATIONS

In this section, some advantages of the methods described
in Section III are illustrated by means of an example. We
consider a plant with a continuous-time realization

{

ẋ(t) = Ax(t) +Bu(t) + Ld(t),
y(t) = Cx(t) + n(t),

(7)

where x(·) ∈ R
5 denotes the state of the system, y(·) ∈ R

is the measured output, corrupted by noise n(·), u(·) is
the control input and d(·) is an exogenous disturbance.
Moreover, we have that

A =

[

0 0 1 0 0
0 0 0 1 0
−2 2 −0.2 0.2 0
2 −2.15 0.2 −0.3 1
0 0 0 0 −10

]

, B =

[

0
0
1
0
0

]

, L =

[

0
0
0
0

−10

]

,

C = [0 1 0 0 0] .

There are several real life applications that share the
dynamics of the aforementioned described. In particular,
these dynamics have been used in our previous studies, in
order to describe a double mass-spring-dashpot plant, where
the control input is non-collocated with the measured output
– see, for example, [35], [36]. In this case, the output of the
plant is the position of mass m2, while the control input is
the force applied to mass m1.

The system in (7) was discretized using a sampling period
of T = 300 ms. Moreover, the disturbances and measurement
noise are assumed to follow a uniform distribution, with zero
mean, and maximum absolute values of d̄ := 1 N and n̄ :=
0.001 m, respectively. For the sake of simplicity, the control
signal is defined as u(k) := u(kT ) := As sin(ωkT ), where
As = 2 N and ω = 2 rad/s. Hence, the state of the system
at time kT can be described by

{

x(k + 1) = Adx(k) +Bdu(k) + Ldd(k),
y(k) = Cdx(k) + n(k),

(8)

where the matrices Ad, Bd, Ld and Cd are straightforwardly
obtained from the discretization of (7).

The model falsification architecture depicted in Fig. 4 was
adopted, using a set of 3 plausible models of the plant,
described by (8), but with different Cd matrices:

• Model M#1: Cd = [0 1 0 0 0];
• Model M#2: Cd = [0 2 0 0 0];
• Model M#3: Cd = [0 0.5 0 0 0].

As a physical interpretation, these models represent different
gains in the sensor that measures the position of mass
m2. For each of these models, a pair of SVOs for the
corresponding coprime factorization was designed.

Notice that, if an SVO is designed for (8) as in [20], then
the convergence of the set-valued estimate of the state would
only be guaranteed if N > 177 in (4), since there exist
k ∈ N with k ≤ 177 such that ‖Ak

d‖ > 1. However, by
using the coprime factorization-based approach introduced in
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this paper, we guarantee the convergence of the set-valued
estimates of the state for any N ≥ 5 in (4). Hence, the
computational burden associated with the implementation of
the SVOs is significantly decreased.

The results obtained for a typical Monte-Carlo run of the
aforementioned scenario are depicted in Fig. 7. In this case,
model M#3 was falsified in 1.8 s, while 5.4 s were required
to invalidate model M#2. Hence, the only remaining model
is the one compatible with (8) and with the observations.

0 5 10 15 20 25 30
ï3

ï2

ï1

0

1

2

3

Time [s]

y
 [

m
]

@ M#3 invalidated

@ M#2 invalidated

Fig. 7. Output of the plant for a typical Monte-Carlo run.

V. CONCLUSIONS

A coprime factorization-based approach was proposed in
this paper to address the problem of model falsification of
dynamic systems, using Set-Valued Observers (SVOs). The
results presented indicate that using SVOs as a means of
model invalidation is possible, not only for stable, but also
for unstable systems. Moreover, in terms of implementability,
using the coprime factors of a transfer function matrix, rather
than the “original” transfer function matrix, may also have
its own advantages. In particular, this method allows us to
bound the number of required previous estimates of the state
not to be larger than the number of states of the system.
This particular benefit of the proposed methodology was also
illustrated in simulation.

As a caveat, SVO-based model falsification is a worst case
approach, in the sense that a model can only be invalidated
if none of the allowable sequences of disturbances and
measurement noise explains the measured output sequence.
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