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Abstract— This work focuses on modeling and control of
aggregate thin film surface morphology for improved light trap-
ping using a patterned deposition rate profile. The dynamics
of the evolution of the thin film surface height profile are
modeled by an Edwards-Wilkinson-type equation (a second-
order stochastic partial differential equation) in two spatial di-
mensions. The thin film surface morphology is characterized in
terms of aggregate surface roughness and surface slope. These
variables are computed with respect to appropriate visible light-
relevant characteristic length scales and defined as the root-
mean-squares of height deviation and slope of aggregate surface
height profiles, respectively. Analytical solutions of the expected
aggregate surface roughness and surface slope are obtained
by solving the Edwards-Wilkinson equation and are used in
the controller design. The model parameters of the Edwards-
Wilkinson equation can be estimated from kinetic Monte-Carlo
simulations using a novel parameter estimation procedure. This
parameter dependence on the deposition rate is used in the
formulation of the predictive controller to predict the influence
of the control action on the surface roughness and slope at the
end of the growth process. The cost function of the controller
involves penalties on both aggregate surface roughness and
mean slope from set-point values as well as constraints on
the magnitude and rate of change of the control action. The
controller is applied to the two-dimensional Edwards-Wilkinson
equation. Simulation results show that the proposed controller
successfully regulates aggregate surface roughness and slope to
set-point values at the end of the deposition that yield desired
levels of thin film reflectance and transmittance levels.

I. INTRODUCTION

Photovoltaic (solar) cells are an important source of sus-

tainable energy. Thin-film silicon solar cells are currently

among the most important and widely used solar cells

and their share of the overall solar cell market is steadily

increasing (e.g., [7], [23]). Research on optical modeling

of thin-film silicon solar cells indicates that the scattering

properties of the thin film interfaces directly influence the

light trapping process and the efficiencies of thin-film silicon

solar cells (e.g., [15], [17], [19], [20]). For example, a higher

diffused transmittance of incident light is desired for the

upper surface of solar cells for a maximum energy input.

The scattering properties of the interfaces have a complex

correlation with the surface morphology; in particular, the

root-mean-square roughness and slope [25] at characteristic
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length scales that are comparable to the wavelength of the

visible light. Specifically, significant increase of conversion

efficiency with appropriately roughened interfaces has been

reported in several works [12], [14], [21], [22]. However,

no efforts have been seen in improving the conversion

efficiency of thin-film solar cells via the regulation of the thin

film surface morphology during the manufacturing process

by appropriately tailoring the surface slope and roughness

to desired specifications. Thus, it is desirable to develop

systematic approaches to manufacture thin film solar cells

with optimal conversion efficiencies via computational mul-

tiscale modeling and real-time model-based control of the

manufacturing process.

In the context of modeling of thin film surface morphology

and microstructure, mathematical modeling techniques have

been developed to describe the microscopic features of

thin film growth including: 1) kinetic Monte-Carlo (kMC)

methods (e.g., [6], [18]), and 2) stochastic partial differential

equations [4], [13], [26]. In addition to microscopic mod-

eling, real-time feedback control of deposition conditions,

based on mathematical models, has become increasingly

important in order to meet stringent requirements on thin

film quality and reduce thin film variability. While deposition

uniformity and composition control can be accomplished on

the basis of continuum-type distributed parameter models,

precise control of thin film microstructure requires multiscale

distributed models that predict how the film state on the

microscopic level is affected by changes in the controllable

process parameters. Since kMC models are not available

in closed form, they cannot be readily used for feedback

control design and system-level analysis. On the other hand,

stochastic differential equation models can be derived from

the corresponding master equation of the microscopic pro-

cess and/or identified from process data [2], [16]. The closed

form of the SDE models enables their use as the basis for the

design of feedback controllers which can regulate thin film

surface roughness (e.g., [2], [16]), film porosity, and film

thickness [9]. Recently, we have initiated an effort towards

modeling and control of thin film surface morphology to

optimize the light reflectance and transmittance properties of

thin films. In this direction, we have studied the dynamics

and lattice size dependence of surface mean slope [11]

and have developed predictive control algorithms to regulate

both surface roughness and slope at an atomic level using

stochastic PDEs in one spatial dimension [29] and two

spatial dimensions [28]. However, control of thin film surface

morphology at a length scale comparable to the visible light

wavelength has remained an unsolved practical problem.
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Fig. 1. Thin film deposition process on a 2D square lattice.

This work focuses on modeling and control of aggregate

thin film surface morphology for improved light trapping

using a patterned deposition rate profile. The dynamics of

the evolution of the thin film surface height profile are mod-

eled by an Edwards-Wilkinson-type equation in two spatial

dimensions. It is first established that the use of a spatially

uniform deposition rate profile cannot generate significant

thin film surface roughness and slope at large length scales

(comparable to visible light wavelength), necessitating the

use of a sine-wave-patterned deposition rate profile in space.

Using analytical solutions of the expected aggregate surface

roughness and surface slope, the functional dependence of

the Edwards-Wilkinson equation model parameters on the

deposition rate is computed and used within a predictive

control framework to predict the influence of the control

action on the surface roughness and slope at the end of

the growth process. The controller is applied to the two-

dimensional Edwards-Wilkinson equation representing an

8,000 nm × 8,000 nm spatial domain and using a sine-wave-

patterned deposition rate profile in space, and it is shown to

successfully regulate aggregate surface roughness and slope

at the end of the deposition at levels that yield desired thin

film reflectance and transmittance levels.

II. AGGREGATE SURFACE MORPHOLOGY

A. Process description and modeling

In this work, the thin film deposition process is modeled by

an on-lattice kinetic Monte Carlo model. Details of the model

can be found in previous work of our group [10]. The two

dimensional square lattice where the deposition process takes

place is shown in Figure 1. Periodic boundary conditions

(PBCs) are applied in the directions perpendicular to the

growth direction. Two different types of micro-processes are

considered: an adsorption process and a migration process.

In the adsorption process, incident particles are incorporated

onto the thin film. The incidence direction in the adsorption

process is restricted to be the vertical direction. The rate

of adsorption is proportional to the average deposition rate

across the simulation domain. The site in which a particle

is deposited is randomly selected from all lattice sites with

equal probability. During the migration process, particles

on the thin film surface hop against appropriate energy

barriers and move to their vacant neighboring sites. The

migration rate follows an Arrhenius-type law and depends

on the local particle micro-configuration (i.e., number of

nearest neighboring particles). The substrate temperature

is fixed at 460 K. The lattice is initialized with a fully-

packed and fixed substrate. A continuous-time Monte Carlo

(CTMC)-type algorithm (e.g., [24]) is used to carry out the

simulations.

B. Aggregate surface roughness and slope

Thin film surface morphology can be characterized by

roughness and slope. Roughness is defined as the root-mean-

square (RMS) of the surface height profile

r(t) =

√
1

L2

∫ L

0

∫ L

0

(
h(x,y, t)− h̄(t)

)2 dxdy

≈
√√√√ 1

l2

l−1

∑
i=0

l−1

∑
j=0

(
h(i, j, t)− h̄

)2

(1)

where h(i, j, t) is the surface height measurement at the (i, j)
lattice site at time t, h̄ denotes the average surface height, L
is the dimension of the simulation domain, l is the number

of discrete height measurements on x or y direction. Slope is

defined as the root-mean-square of the gradient of the surface

height in x direction

m(t) =

√
1

L2

∫ L

0

∫ L

0

(
∂h
∂x

(x,y, t)
)2

dxdy

≈
√√√√ 1

L2

l−1

∑
i=0

l−1

∑
j=0

(h(i+1, j, t)−h(i, j, t))2

(2)

Roughness and slope can be defined at different length

scales. The top plot in Figure 2 shows a one-dimensional

(1D) surface with roughness at different length scales. In
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Fig. 2. 1D surface with roughness at different length scales: atomic surface
profile (top plot) and aggregate surface profile (bottom plot).

order to characterize surface morphology at different length

scales, an aggregate surface height profile hΔ(i, j) is intro-

duced in this work. The aggregate surface height profile is

the averaged height over an interval of length Δ in 1D and a

square of side Δ in 2D. In the 2D case, the aggregate surface

height takes the form

hΔ(i, j) =
∑Δ−1

ia=0 ∑Δ−1
ja=0 h(iΔ+ ia, jΔ+ ja)

Δ2
, i, j = 0,1 . . . , lΔ−1.

(3)

where lΔ is the number of points on the discrete aggregate

surface height profile. Then the aggregate surface roughness,
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rΔ, and the aggregate surface slope, mΔ, can be defined based

on the aggregate surface height profile as follows

rΔ(t) =

√√√√ 1

l2
Δ

lΔ−1

∑
i=0

lΔ−1

∑
j=0

(
hΔ(i, j, t)− h̄Δ(t)

)2
, (4)

mΔ(t) =

√√√√ 1

L2

lΔ−1

∑
i=0

lΔ−1

∑
j=0

(hΔ(i+1, j, t)−hΔ(i, j, t))2. (5)

C. Light reflection on a rough surface
For thin-film solar cells, the energy conversion efficiency

is directly related to the light trapping/scattering properties of

the thin film interfaces and surfaces, which in turn depend on

the surface roughness and slope. It should be pointed out that

the wavelength of visible light (380 nm-750 nm) is several

orders of magnitude greater than the distance between two

neighboring atoms (≈ 0.2 nm). The light reflection depends

on roughness and slope defined at a length scale comparable

to the light wavelength.
When incident light goes through a rough interface, it

is divided into four components: specular reflection, spec-

ular transmission, diffused reflection and diffused transmis-

sion [14], [22]. If a rough thin film surface is illuminated

with a beam of monochromatic light at normal incidence,

the total reflectance, R, can be approximated as follows [3]

R = R0e−
4πr2

Δ
λ2

+R0

∫ π/2

0
2

(
aΔrΔπ2

λ 2

)2

(cosθ +1)4 sinθe−
(πaΔ sinθ)2

λ2 dθ

(6)

where R0 is the reflection of a perfectly smooth surface, rΔ is

the aggregate surface roughness, θ is the reflectance angle, λ
is the light wavelength and aΔ is the auto-covariance length

of the surface. It can be proved that aΔ =
√

2rΔ/mΔ, where

mΔ is the slope of the aggregate profile of the surface [1]. The

numerical integration result of eq (6) is shown in Figure 3

using λ = 700 nm. Both rΔ and mΔ strongly influence the

intensity of light reflection (and therefore, light transmission)

of the surface/interface. Thus, it is important to regulate

rΔ and mΔ of the surfaces/interfaces of the thin-film solar

cells to appropriate values that optimize light reflection and

transmission during thin film manufacturing.
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Fig. 3. Reflection as a function of rΔ and mΔ of thin film surface.

D. Patterned deposition rate profile

Figure 4 shows the variation of roughness and slope as

a function of aggregation length for a deposition process

with uniform deposition rate profile. The results are from

a kinetic Monte-Carlo simulation of the two-dimensional

thin film deposition process of Figure 1 with l = 200. Both

aggregate roughness and slope decrease as aggregation length

increases. In this case, the surface roughness is due to atomic

level fluctuations and thus we conclude that atomic level

fluctuations contribute mainly to roughness and slope at

small length scales.
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Fig. 4. Dependence of the steady state values of aggregate roughness (top
plot) and aggregate slope (bottom plot) on aggregation length.

In order to generate significant roughness and slope at

large length scales (i.e., comparable to the wave length of

visible light), we introduce a patterned deposition rate profile

of the following form

w(x,y, t) = w0(t)+A(t)sin

(
2kπ

L
x
)

, (7)

where w0 is the mean deposition rate across the simulation

domain, A is the magnitude of the sine wave, k is the number

of complete periods of the sine wave within the simulation

domain, and L is the length of the simulation domain.

E. Edwards-Wilkinson equation for surface height dynamics

To design a feedback controller for the thin film deposition

process, a closed form model is needed. The Edwards-

Wilkinson (EW) equation, which is a second-order stochastic

partial differential equation (PDE), has been demonstrated

to adequately describe the dynamics of the evolution of the
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surface height profile in many thin film growth processes

that involve a thermal balance between atom adsorption and

surface migration [4], [5], [8], [11]. In this work, we consider

a two dimensional (2D) EW type equation of the following

form

∂hΔ
∂ t

= w(x,y, t)+ c2

(
∂ 2hΔ
∂x2

+
∂ 2hΔ
∂y2

)
+ξ (x,y, t) (8)

where x ∈ [0,L], y ∈ [0,L] are the spatial coordinates, t is the

time, hΔ(x,y, t) is the aggregate surface height, and ξ (x,y, t)
is a Gaussian white noise with zero mean and covariance〈

ξ (x,y, t)ξ (x′,y′, t ′)
〉

= σ2δ (x− x′)δ (y− y′)δ (t − t ′). (9)

where δ (·) denotes the Dirac delta function, w(x,y, t) is the

patterned deposition rate profile described in eq (7), and

c2 and σ2 are model parameters that depend on the mean

deposition rate, w0. The stochastic PDE of eq (8) is subject

to the following periodic boundary conditions

hΔ(0,y, t) = hΔ(L,y, t) hΔ(x,0, t) = hΔ(x,L, t) (10)

∂hΔ
∂x

(0,y, t) =
∂hΔ
∂x

(L,y, t),
∂hΔ
∂y

(x,0, t) =
∂hΔ
∂y

(x,L, t) (11)

and the initial condition hΔ(x,y,0) = h0Δ(x,y).
To analyze the dynamics and obtain a finite-dimensional

approximation of the EW equation, we first consider the

eigenvalue problem of the linear operator of eq (8) subject

to the periodic boundary conditions of eqs (10)-(11)

A φnx,ny(x,y) = c2(
∂ 2

∂x2
+

∂ 2

∂y2
)φnx,ny(x,y) = λnx,nyφnx,ny(x,y),

(12)

∇ jφnx,ny(0,y) = ∇ jφnx,ny(L,y), j = 0,1 (13)

∇ jφnx,ny(x,0) = ∇ jφnx,ny(x,L), j = 0,1 (14)

where λnx,ny denotes an eigenvalue, φnx,ny denotes an eigen-

function, and ∇ j, j = 0, 1, denotes the value and gradient of

a given function, respectively. The solution of the eigenvalue

problem is as follows

λnx,ny = −4c2π2

L2
(n2

x +n2
y) (15)

φ1,nx,ny =
2

L
sin(

2nxπ
L

x)sin(
2nyπ

L
y) (16)

φ2,nx,ny =

⎧⎪⎨
⎪⎩

1
L nx = 0, ny = 0
2
L cos( 2nxπ

L x)cos( 2nyπ
L y) nx �= 0, ny �= 0√

2
L cos( 2nxπ

L x)cos( 2nyπ
L y) otherwise

(17)

φ3,nx,ny =

⎧⎪⎨
⎪⎩

0 nx = 0
2
L sin( 2nxπ

L x)cos( 2nyπ
L y) nx �= 0, ny �= 0√

2
L sin( 2nxπ

L x) nx �= 0, ny = 0

(18)

φ4,nx,ny =

⎧⎪⎨
⎪⎩

0 ny = 0
2
L cos( 2nxπ

L x)sin( 2nyπ
L y) ny �= 0, nx �= 0√

2
L sin( 2nyπ

L y) ny �= 0, nx = 0

(19)

The solution of the EW equation of eq (8) can be expanded

in an infinite series in terms of the eigenfunctions of the

operator of eq (12) as follows

hΔ(x,y, t) =
+∞

∑
nx=0

+∞

∑
ny=0

4

∑
p=1

φp,nx,ny(x,y)zp,nx,ny(t), (20)

where zp,nx,ny(t), p = 1,2,3,4, are time-varying coefficients.

Substituting the previous expansion of hΔ(x,y, t) into eq (8)

and taking the inner product with the adjoint eigenfunctions,

the following system of infinite stochastic linear ordinary

differential equations (ODEs) for the temporal evolution of

the time-varying coefficients is obtained

dz2,0,0

dt
= w2,0,0 +ξ2,0,0(t), (21)

dzp,nx,ny

dt
= wp,nx,ny +λnx,nyzp,nx,ny +ξp,nx,ny(t) (22)

p = 1,2,3,4, nx,ny = 0,1, · · · ,∞, n2
x +n2

y �= 0,

where ξp,nx,ny(t) =
∫ L

0

∫ L
0 ξ (x,y, t)φp,nx,ny(x,y)dxdy is the pro-

jection of the noise ξ (x,y, t) on the ODE for zp,nx,ny . The

noise term, ξp,nx,ny , has zero mean and covariance〈
ξp,nx,ny(t)ξp,nx,ny(t

′)
〉

= σ2δ (t − t ′). (23)

Similarly, wp,nx,ny is the projection of w on the ODE for

zp,nx,ny ,

wp,nx,ny =
∫ L

0

∫ L

0
φp,nx,ny(x,y)w(x,y)dxdy (24)

w1,nx,ny = 0 (25)

w2,nx,ny =

⎧⎪⎨
⎪⎩

w0L+ AL
2kπ [1− cos(2kπ)] nx = 0,ny = 0√

2ALk
2π(n2

x−k2) [cos(2kπ)−1] nx �= 0,nx �= k,ny = 0

0 otherwise
(26)

w3,nx,ny =

⎧⎪⎪⎨
⎪⎪⎩

√
2AL
2 nx = k,ny �= 0√
2ALnx

2π(k2−n2
x) sin(2kπ) nx �= 0,nx �= k,ny = 0

0 otherwise

(27)

w4,nx,ny = 0 (28)

The temporal evolution of the variance of mode zp,nx,ny can

be obtained from the solution of the linear ODEs of eqs (21)

and (22) as follows

〈z2,0,0(t)〉 = w2,0,0(t − t0) (29)

var(z2,0,0(t)) = σ 2(t − t0) (30)

〈z(t)〉 = eλ (t−t0) 〈z(t0)〉+ wp

λ
(eλ (t−t0) −1) (31)

var(z(t)) = e2λ (t−t0) var(z(t0))+σ2 e2λ (t−t0) −1

2λ
(32)

where z(t) = zp,nx,ny(t) and wp = wp,nx,ny for n2
x +n2

y �= 0.
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For feedback control purposes (see Section III below), the

modes can be calculated from a surface height measurement

as follows

zp,nx,ny(t) =
∫ L

0

∫ L

0
hΔ(x,y, t)φp,nx,ny(x,y)dxdy. (33)

In many circumstances, only discrete height profile point

measurements are available, thus eq (33) can be approxi-

mated by

zp,nx,ny(t) ≈
(

L
lΔ

)2 lΔ−1

∑
i=0

lΔ−1

∑
j=0

hΔ(i, j, t)φp,nx,ny(i, j) (34)

where lΔ is the number of spatial height sampling (measure-

ment) points in [0,L]. It is worth pointing out that, when

discrete height point measurements are available, the largest

number of modes that can be accurately calculated is limited

by the spatial sampling points, i.e. nx,ny ≤ lΔ/2 [28].

Substituting eq (20) into eq (4), the expected value of r2
Δ

can be rewritten in terms of the state covariance as follows

〈
r2

Δ
〉

=
1

L2

∞

∑
nx,ny=0

n2
x+n2

y �=0

4

∑
p=1

〈
z2

p,nx,ny

〉
. (35)

The expected RMS slope square can also be expressed in

terms of the state covariance as follows

〈
m2

Δ
〉

=
∞

∑
nx,ny=0

n2
x+n2

y �=0

4

∑
p=1

Kp,nx,ny

〈
z2

p,nx,ny

〉
, (36)

where Kp,nx,ny can be computed by

Kp,nx,ny =
1

L2

lΔ−1

∑
i=0

lΔ−1

∑
j=0

(φp,nx,ny(i+1, j)−φp,nx,ny(i, j))2

=
4l2

Δ
L4

sin2

(
πnx

lΔ

)
.

(37)

F. Determination of model parameters

The EW equation has two parameters, c2 and σ2, that

are assumed to depend on the mean deposition rate w0.

In our previous work, the dependences of EW equation

parameters on operating conditions were found by fitting the

analytical solution of
〈
r2

〉
to open-loop kinetic Monte-Carlo

simulations. However, this approach is not applicable here

because a system with a much larger physical domain is

simulated. Assuming the distance between two neighboring

sites is 0.2 nm, there are 40000×40000 sites within the 8000

nm×8000 nm square domain that is simulated. Since it is not

possible to simulate such large lattice size directly, we use

the following steps to get estimates of c2 and σ2 as functions

of w0.

1) For each value of w0, a series of open-loop kinetic

Monte Carlo simulations is carried out with increasing

lattice size (l = 20,50,100,150,200,250). The values

of c2 and σ2 are then determined by fitting the ana-

lytical solution of
〈
r2(t)

〉
(without any aggregation) to

kMC simulation data using the least square method.

w0 ac bc c2

0.04 3.20×10−3 −3.04×10−2 128.06

0.12 1.97×10−3 −7.16×10−2 78.67

0.20 1.24×10−3 −4.34×10−2 49.67

0.30 9.61×10−4 −3.56×10−2 38.42

0.40 8.33×10−4 −3.63×10−2 33.28

w0 as bs σ2

0.04 4.17×10−3 5.50×10−2 9.50

0.12 1.43×10−2 1.17×10−1 14.43

0.20 2.90×10−2 1.87×10−1 15.95

0.30 4.71×10−2 3.00×10−1 19.84

0.40 6.29×10−2 4.48×10−1 24.54

TABLE I

VALUES OF THE COEFFICIENTS USED IN EQ. (38), (39) AND THE

EXTRAPOLATED VALUES OF c2 AND σ2 FOR LATTICE SIZE l = 40000.

As a result, c2 and σ2 as functions of lattice size

l are obtained for each value of w0, as shown in

Figure 5.The following functional forms are used for

the fitting of c2 and σ 2/c2

c2(l,w0) = ac(w0)l +bc(w0) (38)

σ 2

c2
(l,w0) = as(w0) log10(l)+bs(w0) (39)

where the values of the coefficients ac(w0), bc(w0),
as(w0) and bs(w0) for different w0 values are given in

Table I.
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Fig. 5. c2 (top plot) and σ2 (bottom plot) as functions of lattice size l

2) The values of c2 and σ2 at lattice size l = 40000 are

determined by extrapolating the c2 and σ2 according

to eq. (38) and (39). The extrapolated values c2(l =
40000,w0) and σ2(l = 40000,w0) are also included in

Table I.
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3) Subsequently, we fit the extrapolated values of c2 and

σ2 for l = 40000 as functions of w0, as shown in

Figure 6. The following functional forms for c2(w0)
and σ2(w0) are used

c2(w0) = pc1w3
0 + pc2w2

0 + pc3w0 + pc4 (40)

σ2(w0) = ps1w4
0 + ps2w3

0 + ps3w2
0 + ps4w0 + ps5 (41)

where

pc1 = −20.83 pc2 = 110.9 (42)

pc3 = −204.1 pc4 = 164.9 (43)

ps1 = −7.585 ps2 = 36.65 ps3 = −59.03

ps4 = 42.91 ps5 = 2.998.
(44)
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Fig. 6. c2 (top plot) and σ2 (bottom plot) as functions of deposition rate
w0.

To verify the above approach, we have successfully com-

pared the roughness obtained from the extrapolated values

of c2 and σ2 with that from direct extrapolation of
〈
r2

〉
; the

detailed results are omitted due to space limitation.

III. PREDICTIVE CONTROLLER DESIGN

In this section, a model predictive controller is developed

based on the dynamic model of the expected roughness

square and slope square. The mean deposition rate, w0, and

magnitude of sine wave, A, are used as the manipulated

variables. The control objective is to minimize the deviation

of the expected roughness square and slope square from

desired set-point values. Because the thin film deposition

process is a batch process, the interval between current time

and the end of the batch run is used as the prediction horizon.

During each predictive controller evaluation, the manipulated

variable is assumed to stay fixed until the end of the batch.

The constraints of the problem are: (1) the mean deposition

rate has lower and upper limits; (2) the rate of change of

the mean deposition rate should be less than an upper limit

due to actuator limitations; (3) the magnitude of sine wave

should be positive and smaller than the average deposition

rate. The resulting MPC formulation is as follows

min
w0,A

f (w0,A) = qr2

(
r2

set −
〈
r2

Δ(t f )
〉

r2
set

)2

+qm2

(
m2

set −
〈
m2

Δ(t f )
〉

m2
set

)2
(45)

where

〈
r2

Δ(t f )
〉

=
1

L2

∞

∑
nx,ny=0

n2
x+n2

y �=0

4

∑
p=1

〈
z2

p,nx,ny
(t f )

〉
(46)

〈
m2

Δ(t f )
〉

= ∑
nx,ny=0

n2
x+n2

y �=0

4

∑
p=1

(
Kp,nx,ny

〈
z2

p,nx,ny(t f )
〉)

(47)

〈
z2

p,nx,ny(t f )
〉

= var(zp,nx,ny(t f ))+
〈
zp,nx,ny(t f )

〉2
(48)

〈
zp,nx,ny(t f )

〉
= eλnx ,ny (t f −t) 〈zp,nx,ny(t)

〉
+

wp

λnx,ny

(eλnx ,ny (t f −t) −1) (49)

var(zp,nx,ny(t f )) =

e2λnx ,ny (t f −t) var(zp,nx,ny(t))+σ2 e2λnx ,ny (t f −t) −1

2λnx,ny

(50)

λnx,ny = −4c2π2

L2
(n2

x +n2
y), n2

x +n2
y �= 0 (51)

Subject to

wmin ≤ w0 ≤ wmax, |w0(t)−w0(t −dt)| ≤ Δwmax, (52)

0 ≤ A ≤ w0 (53)

where t f is the final time of the batch run, r2
set and m2

set
are the respective set-points for the surface roughness square

and the mean slope square, qr2 and qm2 are the weighting

factors for the deviations of
〈
r2

Δ(t f )
〉

and
〈
m2

Δ(t f )
〉

from their

respective set-points, r2
set and m2

set , dt is the time interval

between two successive sampling times, wmin and wmax are

the lower and upper bounds on the mean deposition rate,

respectively, and Δwmax is the limit on the rate of change of

the mean deposition rate. The optimization problem is solved

at each sampling time once a new measurement of the surface

height profile becomes available. An interior point method

optimizer, IPOPT [27], is used to solve the optimization

problem in the MPC formulation.
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IV. SIMULATION RESULTS

In this section, the model predictive controller of eq (45)

is applied to the two-dimensional EW equation model of

eq (8). The variation of deposition rate is from 0.02 nm/s

to 0.4 nm/s, the substrate temperature is fixed at 460 K and

the initial deposition rate is 0.2 nm/s; the maximum rate of

change of the deposition ΔWmax = 0.1 nm/s. The sampling

time is 1 s. Each closed-loop simulation lasts for 100 s.

Expected values are calculated from 100 independent closed-

loop simulation runs.

A. Control of film surface roughness

First, the problem of regulating film surface roughness is

considered. In this scenario, the cost function only contains

penalty on the deviation of the expected surface roughness

square from the set-point. The weighting factors are qr2 =
1 and qm2 = 0. The set-point is r2

set = 0.04 nm2. Because

the roughness set-point is small, the surface does not have

clear pattern. Figure 7 shows the profile of
〈
r2

Δ
〉

under the

model predictive controller of eq (45). It can be seen that the

controller drives the expected film roughness to the desired

value at the end of the simulation. Figure 8 shows a surface

snapshot at t = 100 s from a single run.
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Fig. 7. Profile of expected film surface roughness square from 100 closed-
loop simulations. qr2 = 1, qm2 = 0 and r2

set = 0.04 nm2.
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Fig. 8. Surface profile at the end of simulation, t = 100 s. qr2 = 1, qm2 = 0
and r2

set = 0.04 nm2.

B. Control of film surface slope

Next, we consider the regulation of thin film surface slope.

The cost function includes only penalty on the deviation of

the expected value of slope square from the set point by

choosing weighting factors qr2 = 0 and qm2 = 1. The set point

is m2
set = 0.025. Figure 9 shows the profile of the expected

slope square. The slope reaches its set point at t = 100 s. A

surface snapshot at t = 100 s is also given in Figure 10. The

surface in Figure 10 has clear sine wave pattern because the

slope set-point is relatively large for this case.
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Fig. 9. Profile of expected film surface slope square from 100 closed-loop
simulations. qr2 = 0, qm2 = 1 and m2

set = 0.025.
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Fig. 10. Surface profile at the end of simulation, t = 100 s. qr2 = 0, qm2 = 1
and m2

set = 0.025.

C. Simultaneous control of roughness and slope

Finally, simultaneous regulation of roughness and slope is

carried out. The set-points of the surface roughness square

and of the mean slope square are r2
set = 1.0 nm2 and m2

set =
0.025. The weighting factor of mean slope square is kept at

1, while the weighting factor of roughness square increases

from 10−9 to 1. Figure 11 shows the variation of
〈
r2

Δ
〉
(t =

100 s) and
〈
m2

Δ
〉
(t = 100 s) as a function of qr2/qm2 . It can

be seen that as the weighting on roughness square increases,

the expected roughness square approaches more closely to

its set-point value at the cost of larger deviation of slope

square from its set-point value and vice versa.

D. Application to light trapping efficiency

We now demonstrate how films of different reflectance can

be produced by simultaneous control of film surface rough-

ness and slope. Specifically, the expected surface roughness

square and mean slope square can be regulated to different

levels by using the same set points and choosing different

weighting schemes, i.e., different ratios of the weighting

factors, qr2/qm2 . In particular, qm2 is kept at 1.0 while q2
r
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at the end of closed-loop simulations (t = 100s)

for different penalty weighting factors: qm2 = 1, 10−9 ≤ qr2 ≤ 1, r2
set = 1.0,

m2
set = 0.025.

changes from 10−9 to 1. The corresponding light reflectance

for different weighting factor ratios can be computed accord-

ing to eq (6). In Figure 12, the roughness and slope obtained

from closed-loop simulations with different qr2/qm2 are

mapped to a contour of reflectance. The points from upper

right to lower left correspond to qr2/qm2 ratios of increasing

values. By changing the ratio, qr2/qm2 , different films can

be produced whose surface morphology is characterized by

a wide range of reflectance values.
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Fig. 12. Light reflectance of thin films deposited under closed-loop
operations with different weighting factor ratios: qm2 = 1, 10−9 ≤ qr2 ≤ 1
(corresponding to points from right to left), r2

set = 1.0, m2
set = 0.025
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