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Abstract— In this paper we define a class of optimal con-
trol problems which we denote “embedded optimal control
problems”. These are not true optimal control problems since
the control system is not locally controllable on the manifold
on which it is defined. Despite this, they allow for a well
defined associated optimal control problem which does not
admit abnormal extremals. We apply Pontryagin’s maximum
principle to the embedded optimal control problem to derive the
generating differential equations for the normal and abnormal
extremals. We show that the normal extremal generating
equations in a sense contain the extremal generating equations
for the associated optimal control problem. We show that this is
not the case for the abnormal extremal generating equations.
This has applications to the study of the optimal control of
systems constrained to a given submanifold of a configuration
space, for example the sphere or hypersphere. We apply the
theory to three examples in order to illustrate its applicability
and to show how it relates to well known results.

I. INTRODUCTION

This paper studies so-called embedded optimal control

problems. These problems are not truly optimal control

problems, in the sense that the control system is not locally

controllable on the manifold on which the problem is defined.

Treating the problem as if it is an optimal control problem

nonetheless we apply Pontryagin’s maximum principle and

thereby we obtain generating equations for the normal and

abnormal extremals. We show that the normal extremal

generating equations in fact contain the extremal generating

equations for an associated optimal control problem, which

does not admit abnormal extremals, and that the abnormal

extremal generating equations do not provide such an in-

terpretation. This has several possible applications. For one

it provides an alternative method to analyze true optimal

control problems, an additional task then being to construct

an embedded optimal such that an associated optimal control

problem coincides with the optimal control problem under

consideration. If the space on which the embedded optimal

control problem is defined is linear (for example R3), but the

associated optimal control problem is on a nonlinear space

(for example the sphere S2), then the embedded optimal

control problem will be simpler to analyze, globally and

locally, than the associated optimal control problem.

This paper is an extension of our earlier work [1], [2],

[3], [4], the first paper introducing the so-called “symmetric
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representation”, which in turn is motivated by the Euler

equations for an n-dimensional rigid body as treated in, for

example, [5], [6], [7], [8]. The symplectic subflows of the

symmetric representation are studied in detail in [4]. In [9]

an analogous variational analysis was carried out for Stiefel

manifolds, which in the extreme cases give the geodesic

curves on an ellipsoid and the Euler equations on SO(n),
respectively. Euler’s fluid equations for incompressible in-

viscid flow were obtained in [10], [11] as the solutions to an

optimal control problem and a representation of the equations

resembling the symmetric representation was obtained. In

the recent article [12] a generalization of many of these

problems was obtained by formulating them as a Clebsch

optimal control problem. A discretization of the Clebsch

optimal control problem is analyzed in [13] and applications

as globally defined symplectic integrators for mechanical

systems are presented.

The paper is organized as follows. In section II we

introduce the embedded optimal control problem and discuss

how the equations generating the normal extremals contain

the extremal generating equations for an associated optimal

control problem. Section III presents three examples of em-

bedded optimal control problems and a detailed analysis of

their normal extremals. Finally, in section IV, we summarize

the results in a conclusion and discuss future directions of

this work.

II. RESULTS ON EMBEDDED OPTIMAL CONTROL

PROBLEMS

Let Q denote an n-dimensional manifold. Let X(Q) denote

the space of smooth vector fields on Q. Consider D ⊂ X(Q)
and D ⊂ TQ defined at every q ∈ Q by

D(q) = span{X(q), X ∈ D}.

This is an example of a generalized distribution; if the rank

of D is constant on Q it is a distribution in the classical

sense.

Consider the control system

q̇ =

m
∑

i=1

Xi(q)ui, (1)

where q ∈ Q, u = (u1, . . . , um) ∈ U with U ⊂ Rm an

open neighborhood of 0 ∈ Rm. Let N denote an invariant

submanifold of (1) and let ℓ : Q × U → R be a cost

function. For each choice of invariant submanifold N ( Q

we introduce the concept of an embedded optimal control

problem as follows:

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 7311



Problem A (Embedded optimal control problem):

Minimize
∫ T

0

ℓ
(

q(t), u(t)
)

dt,

subject to q̇ =
∑m

i=1 Xi(q)ui, q ∈ Q, u = (u1, . . . , um) ∈
U ⊂ Rm, and with fixed endpoints q(0) = q0 ∈ N and

q(T ) = qT ∈ N .

The embedded optimal control problem is well posed

when (1) restricted to N is accessible from q0. When this

is the case we can impose on qT that it lies in a small

neighborhood of q0 and thus belongs to the set of states

reachable from q0 in time T . The associated optimal control

problem is now given by:

Problem B (Associated optimal control problem):

Minimize
∫ T

0

ℓ
(

q(t), u(t)
)

dt,

subject to q̇ =
∑m

i=1 Xi|N (q)ui, q ∈ N , u =
(u1, . . . , um) ∈ U ⊂ Rm, and with fixed endpoints q(0) =
q0 ∈ N and q(T ) = qT ∈ N .

If we require that dim(span{X1(q0), . . . , Xm(q0)}) =
m or dim(span{X1(qT ), . . . , Xm(qT )}) = m, then the

associated optimal control problem does not admit abnormal

extremals. In what follows we make the standing assumption

that q0 and qT satisfy this constraint. We do this to reduce

the complexity by eliminating the possibility of abnormal

extremals for the associated optimal control problem.

If dim(N) = m, dim(span{X1(q), . . . , Xm(q)}) = m

for all q ∈ N , and U = Rm we can construct a cost

function L : TN → R satisfying L(q, q̇) = ℓ(q, u), with the

identification q̇ =
∑m

i=1 Xi(q)ui, so the associated optimal

control problem is in this case equivalent to a variational

problem, and vice versa.

When N ⊂ Q is an embedded submanifold of Q the

inclusion i : N →֒ Q is an embedding. The pullback bundle

i∗(T ∗Q) is defined as the vector bundle over N whose fiber

over n ∈ N is given by T ∗

i(n)Q. Since T ∗
n i : T

∗

i(n)Q → T ∗
nN ,

the dual of the tangent map of i is globally defined when

restricted to i∗(T ∗Q). Furthermore since i : N →֒ Q is an

embedding we have that Tni : TnN → Ti(n)Q is injective for

all n ∈ N and therefore T ∗
n i : T

∗

i(n)Q → T ∗
nN is surjective;

that is T ∗i|i∗(T∗Q) is surjective on fibers. When applying

Pontryagin’s maximum principle to the embedded optimal

control problem the pullback bundle i∗(T ∗Q) ⊂ T ∗Q must

be invariant under the resulting Hamilton’s equations due to

the fact that N is a an invariant manifold of (1).

Consider two manifolds MA and MB with dynamical

systems

ẋ = fA(x), x ∈ MA, system A,

ẏ = fB(y), y ∈ MB , system B.

System B is called a homomorphic image of system A if

there exists a differentiable surjective map Ψ : MA → MB ,

called a homomorphism, such that

TΨ ◦ fA = fB ◦Ψ.

Clearly this means that if x(t) is a solution to system

A with initial condition x(0) = x0 then Ψ
(

x(t)
)

is a

solution to system B with initial condition y(0) = Ψ(x0);
all solutions to system B can be generated from solutions

to system A by this procedure. The following proposition

shows that the normal extremal generating equations for

the embedded optimal control problem are related to the

extremal generating equations for the associated optimal

control problem via such a homomorphism:

Proposition 1: Assume that N is an embedded submani-

fold of Q and that u 7→ ∂ℓ
∂u

(q, u) is a diffeomorphism for

all q ∈ Q. The normal and abnormal extremal generat-

ing equations on T ∗Q, as given by Hamilton’s equations

prescribed by Pontryagin’s maximum principle for the em-

bedded optimal control problem, have i∗(T ∗Q) ⊂ T ∗Q as

an invariant manifold. The extremal generating equations

on T ∗N , as given by Hamilton’s equations prescribed by

Pontryagin’s maximum principle for the associated optimal

control problem, are the homomorphic image of the nor-

mal extremal generating equations on T ∗Q (restricted to

i∗(T ∗Q),) as given by Hamilton’s equations prescribed by

Pontryagin’s maximum principle for the embedded optimal

control problem. The map T ∗i|i∗(T∗Q) : i∗(T ∗Q) → T ∗N

provides a homomorphism.

Proof: That i∗(T ∗Q) ⊂ T ∗Q is invariant follows

trivially from the fact that N is a an invariant manifold of (1).

If N is an embedded submanifold of Q this means that

locally there exists a preferred coordinate system
(

V, φ =
(x, y)

)

, where V is an open subset of Q, satisfying φ|V ∩N :
V ∩ N → Rn × {0}, where n is the dimension of N .

We denote by (x, y, px, py) the local coordinates on T ∗V

induced by the preferred coordinates φ = (x, y); that is, if

α ∈ T ∗
q V then pxj

= α
(

∂
∂xj

)

and pyk
= α

(

∂
∂yk

)

. Locally

i∗(T ∗Q) is described by the coordinates (x, px, py) and the

map T ∗i|i∗(T∗Q) : i
∗(T ∗Q) → T ∗N is in these coordinates

given by (x, px, py) 7→ (x, px).

In a preferred coordinate system
(

V, φ = (x, y)
)

we have

that q̇ =
∑m

i=1 Xi(q)ui is given by

ẋ =

m
∑

i=1

X̃i(x, y)ui, ẏ =

m
∑

i=1

Ỹi(x, y)ui, (2)

where Ỹi(x, 0) = 0. According to Pontryagin’s maximum

principle the Hamiltonian for the extremals of the embedded

optimal control problem is

Ĥ(x, y, px, py, u) =
〈

(px, py),
(

m
∑

i=1

X̃i(x, y)ui,

m
∑

i=1

Ỹi(x, y)ui

)

〉

−p0ℓ(x, y, u), (3)
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and the extremal generating control u∗ satisfies

d

ds

∣

∣

∣

∣

s=0

Ĥ(x, y, px, py, u
∗ + sv) =

〈

(px, py),
(

m
∑

i=1

X̃i(x, y)vi,
m
∑

i=1

Ỹi(x, y)vi

)

〉

−p0

〈

∂ℓ

∂u
(x, y, u∗), v

〉

= 0, (4)

for all v ∈ U , where 〈·, ·〉 is the usual dot product. The

constant p0 is p0 = 1 (in general it just needs to be nonzero)

for normal extremals and p0 = 0 for abnormal extremals.

According to Pontryagin’s maximum principle the normal

extremals of the embedded optimal control problem on Q

locally satisfy

ẋ =
∂H∗

∂px
=

m
∑

i=1

Xi(x, y)u
∗

i ,

ẏ =
∂H∗

∂py
=

m
∑

i=1

Ỹi(x, y)u
∗

i ,

ṗx =−
∂H∗

∂x

=−

〈

(px, py),
(

m
∑

i=1

∂X̃i

∂x
(x, y)u∗

i ,

m
∑

i=1

∂Ỹi

∂x
(x, y)u∗

i

)

〉

+
∂ℓ

∂x
(x, y, u∗),

ṗy = −
∂H∗

∂y
,

where H∗(x, y, px, py) = Ĥ(x, y, px, py, u
∗). If q(t) ∈ N

(and thus y(t) = 0) the optimal control u∗ satisfies

0 =

〈

(px(t), py(t)),
(

m
∑

i=1

X̃i(x(t), 0)vi,

m
∑

i=1

Ỹi(x(t), 0)vi

)

〉

−

〈

∂ℓ

∂u
(x(t), 0, u∗), v

〉

=

〈

(px(t), py(t)),
(

m
∑

i=1

X̃i(x(t), 0)vi, 0
)

〉

−

〈

∂ℓ

∂u
(x(t), 0, u∗), v

〉

=

〈

(px(t), 0),
(

m
∑

i=1

X̃i(x(t), 0)vi, 0
)

〉

−

〈

∂ℓ

∂u
(x(t), 0, u∗), v

〉

,

for all v ∈ U , meaning that u∗ is independent of py(t). This

then gives that for q(t) ∈ N we have

ṗx(t) =−

〈

(px(t), py(t)),
(

m
∑

i=1

∂X̃i

∂x
(x(t), 0)u∗

i , 0
)

〉

+
∂ℓ

∂x
(x(t), 0, u∗)

=−

〈

(px(t), 0),
(

m
∑

i=1

∂X̃i

∂x
(x(t), 0)u∗

i , 0
)

〉

+
∂ℓ

∂x
(x(t), 0, u∗),

and since u∗ is independent of py(t) we thus see that in the

normal extremal generating equations (x(t), px(t)) evolve

independently of py(t). The equations that (x(t), px(t))
satisfy coincide with those giving the extremals for the

associated optimal control problem on N (which does not

admit abnormal extremals as this is a fully actuated optimal

control problem).

Proposition 1 shows how the extremal generating equa-

tions for the associated optimal control problem are con-

tained in the normal extremal generating equations for

the embedded optimal control problem. Thus the normal

extremal generating equations for the embedded optimal

control problem can be derived and analyzed instead of

the extremal generating equations for the associated optimal

control problem. If the space Q is linear but the space N

is nonlinear this approach will be much simpler to carry out

from a global perspective. If D is completely integrable then

the extremal generating equations for the embedded optimal

control problem give the solution to any associated optimal

control problem for N being a maximal integral manifold of

D. This means that the embedded optimal control problem

provides a foliation of solutions to all associated optimal

control problems on leaves of D.

The following proposition deals with the abnormal ex-

tremal generating equations for the embedded optimal con-

trol problem:

Proposition 2: Assume that N is an embedded submani-

fold of Q. Furthermore assume that u 7→ ∂ℓ
∂u

(q, u) is a dif-

feomorphism for all q ∈ Q and that ∂ℓ
∂u

(q, 0) = 0. Let α(t) ∈
i∗(T ∗Q) be a solution to the abnormal extremal generating

equations as given by Hamilton’s equations as prescribed by

Pontryagin’s maximum principle for the embedded optimal

control problem. Then β(t) = T ∗i
(

α(t)
)

∈ T ∗N is not a

solution to the extremal generating equations, as given by

Hamilton’s equations prescribed by Pontryagin’s maximum

principle for the associated optimal control problem, unless

trivially β(t) =
(

x(t), px(t)
)

= (x0, 0).

Proof: In a preferred coordinate system
(

V, φ = (x, y)
)

we have that q̇ =
∑m

i=1 Xi(q)ui is given by (2) for

Ỹi(x, 0) = 0. According to Pontryagin’s maximum principle

the Hamiltonian for the abnormal extremals of the embedded

optimal control problem is given by (3) with p0 = 0 and

the abnormal extremal generating control u∗ satisfies (4). If

q(t) ∈ N (and thus y(t) = 0) the optimal control u∗ is seen
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to solve

0 =

〈

(px(t), py(t)),
(

m
∑

i=1

X̃i(x(t), 0)vi, 0
)

〉

=

〈

(px(t), 0),
(

m
∑

i=1

X̃i(x(t), 0)vi, 0
)

〉

,

for all v ∈ U which is only satisfied for px(t) = 0.

The Hamiltonian giving the extremals for the associated

optimal control problem is

Ĥ(x, px, u) =

〈

px,

m
∑

i=1

X̃i(x, 0)ui

〉

− ℓ(x, 0, u).

The extremal generating control u∗ thus satisfies

d

ds

∣

∣

∣

∣

s=0

Ĥ(x, px, u
∗ + sv) =

〈

px,

m
∑

i=1

X̃i(x, 0)vi

〉

−

〈

∂ℓ

∂u
(x, 0, u∗), v

〉

= 0,

for all v ∈ U . Thus if px = 0 the assumption gives that

u∗ = 0 which in return gives x(t) constant.

Proposition 2 shows that the abnormal extemal generating

equations for the embedded optimal control problem are

not interesting in the sense that they do not contain any

information about the extremals for the associated optimal

control problem.

Let Φ be an action of a Lie group G on Q. The infinitesi-

mal generator of the action Φ is the vector field on Q defined

by

uQ(q) :=
d

dt

∣

∣

∣

∣

t=0

Φexp(tu)(q), q ∈ Q,

for u ∈ g, where g is the Lie algebra of G. A Clebsch optimal

control problem, see [12], is defined as an embedded optimal

control problem with control system

q̇ = uQ(q), u ∈ g

and cost function ℓ(q, u) = ℓ(u). Since a group orbit orb(q0)
is invariant under the flow of this system N can be chosen

as any group orbit. The equations generating the normal

extremals for Clebsch optimal control problems can despite

the very general framework be described in closed form

which involve the cotangent lift of Φ, the momentum map,

and the functional derivative of ℓ. Since these details are

beyond the focus of this paper we refer to [12] for a thorough

analysis.

III. EXAMPLES

In this section we treat three different embedded optimal

control problems in detail. First we discuss an embedded

optimal control problem with Q = gl(n) and N = G

a matrix Lie group and then we analyze two different

embedded optimal control problems with Q = R3 and

N = S2. The first two problems can be expressed as Clebsch

optimal control problems, which is not the case for the last

problem.

A. Q = gl(n) and N = G ⊂ Gl(n) a matrix Lie group

Consider the control system

q̇ = qu, (5)

where q ∈ Q = gl(n) and u ∈ g, g ⊂ gl(n) being the Lie

algebra of a matrix Lie group G ⊂ Gl(n). Then N = G is

an invariant manifold and qg = TqG for all q ∈ G so the

system (5) is accessible on G. For this system consider the

cost function

ℓ(q, u) = 〈u,Σ(u)〉 ,

where 〈A,B〉 = tr(ATB) is the trace inner product on gl(n)
and Σ is a positive definite self-adjoint operator. We notice

that this is a Clebsch optimal control problem with the action

being right matrix multiplication.

To find the normal extremal generating equations for this

embedded optimal control problem we apply Pontryagin’s

maximum principle. We define the Hamiltonian H : gl(n)×
gl(n)× g → R as

H(q, p, u) = 〈p, qu〉 − 1
2 〈u,Σ(u)〉

=
〈

P(qT p), u
〉

− 1
2 〈u,Σ(u)〉 ,

where p ∈ gl(n) is a costate and P : gl(n) → g is the

orthogonal projection onto g. The optimizing control u∗ must

satisfy

d

ds

∣

∣

∣

∣

s=0

H(q, p, u∗ + sũ) = 0, ∀ũ ∈ g,

giving

u∗ = Σ−1
(

P(qT p)
)

.

The maximum principle then gives the normal extremals

as generated by Hamilton’s equations with Hamiltonian

H(q, p, u∗(q, p)) = 1
2

〈

P(qT p),Σ−1
(

P(qT p)
)〉

, which are

the symmetric representation:

q̇ = qu, ṗ = −puT , u = Σ−1
(

P(qT p)
)

, (6)

where (q, p) ∈ gl(n)×gl(n). We notice that the sets Gl(n)×
gl(n), G× gl(n), and G×GT are invariant manifolds. It is

not surprising that G×gl(n) is an invariant manifold as this

is the pullback bundle i∗(T ∗Q) for this example.

When expressing the control as u = q−1q̇ the cost function

for the associated optimal control can be rewritten as

ℓ(q, u) = 〈u,Σ(u)〉 =
〈

q−1q̇,Σ
(

q−1q̇
)〉

.

Therefore the associated optimal control problem is equal

to the variational problem on G with the left-invariant

Lagrangian

L(q, q̇) =
〈

q−1q̇,Σ
(

q−1q̇
)〉

.

Since the Lagrangian is left-invariant the extremals are given

by the Euler-Poincaré equations, see, e.g., [1], [14], as

q̇ = qu, Ṁ = ad∗u(M), u = Σ−1(M). (7)
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Letting ζ, ξ, η ∈ g we get
〈

ζ, ad∗ξ(η)
〉

= 〈adξ(ζ), η〉 = 〈ξζ − ζξ, η〉

=
〈

ζ, ξT η − ηξT
〉

=
〈

ζ,P([η,−ξT ])
〉

.

Therefore ad∗ξ(η) = P([η,−ξT ]) and (7) can be rewritten as

q̇ = qu, Ṁ = P([M,−uT ]), u = Σ−1(M).

Let g⊥ ⊂ gl(n) be the orthogonal subspace to g of gl(n)
with respect to the trace inner product. In general we have

〈A, [B,C]〉 = 〈A,BC − CB〉

=
〈

[A,−BT ], C
〉

.

Letting A ∈ g⊥ and B,C ∈ g be arbitrary we therefore

obtain the commutation relation between g⊥ and gT as

[g⊥, gT ] ⊂ g⊥. (8)

Along solutions of the symmetric representation (6) we have

d

dt
P(qT p) = P(q̇T p+ qT ṗ) = P(uT qT p− qT pu)

= P([qT p,−uT ]) = P([P(qT p),−uT ]),

where we have used (8) in the last step. Proposition 1 gives

that the extremal generating equations for the associated

optimal control problem are contained in the normal extremal

generating equations for the embedded optimal control prob-

lem. The above calculations show this explicitly for this

example. In particular the extremal generating equations

for the associated optimal control problem and the normal

extremal generating equations for the embedded optimal

control problem are related by M = P(qT p).

B. Q = R3 and N = S2

First we consider the control system

q̇ = u× q, (9)

where q, u ∈ R3 and × is the cross product. For this system

we have q̇ ⊥ q and thus N = S2 is an invariant manifold.

Since TqS
2 = R3 × q the control system (9) is seen to be

accessible on S2. We consider the cost function

ℓ(q, u) = 1
2 (u

2
1 + u2

2 + u2
3) =

1
2u · u.

We remark that this is in fact a Clebsch optimal control

problem. The action for this is that of left multiplication of

SO(3) and an element of R3 is identified with an element

of so(3) via a 7→ a×, where a×b = a× b.

We apply Pontryagin’s maximum principle to find the

normal extremals of the embedded optimal control problem.

The Hamiltonian is

H(q, p, u) = p · (u× q)− 1
2u · u

= (q × p) · u− 1
2u · u,

and the optimal control u∗ is calculated as

d

ds

∣

∣

∣

∣

s=0

H(q, p, u∗ + sv) = 0, ∀v ∈ R3,

giving the optimal control as

u∗ = q × p.

The normal extremal generating equations are Hamilton’s

equations with Hamiltonian H(q, p, u∗(q, p)) = 1
2 (q × p) ·

(q × p) which are the differential equations:

q̇ = u× q, ṗ = u× p, u = q × p.

We notice that that the sets S2×R3 and S2×S2 are invariant

manifolds. The pullback bundle i∗(T ∗Q) is S2×R3 for this

example and therefore this set is expected to be invariant.

Calculating the time derivative of q × p along solutions of

this system gives

d

dt
(q × p) = q̇ × p+ q × ṗ

=
(

(q × p)× q
)

× p+ q ×
(

(q × p)× p
)

= −(q × p)× (q × p) = 0,

where we have used the Jacobi identity in the second to last

derivation. This shows that the optimal control u = q × p is

constant u = u0 = q0×p0 for this system. The solutions are

thus given by

q(t) = exp(tu×

0 )q0, p(t) = exp(tu×

0 )p0, (10)

where exp(tu×

0 )z is a rotation of z around u0 an angle of

t||u0|| (this is expressed in terms of the matrix exponential.)

Consider the geodesic problem on S2. The Lagrangian for

this problem is

L(q, q̇) = 1
2 q̇ · q̇,

for q ∈ S2. Since (u× q) · (u× q) ≤ u ·u and (u× q) · (u×
q) = u · u if and only if u ⊥ q we have that the associated

optimal control problem of the embedded optimal control

problem above is equivalent to the geodesic problem. This

is the reason why the solutions to the embedded optimal

control problem as given by (10) indeed are geodesic curves

on S2.

Consider instead the control system

q̇ = e1 × qu1 + e2 × qu2, (11)

where q ∈ R3, ui ∈ R, e1 = (1, 0, 0)T , and e2 = (0, 1, 0)T .

Since q̇ ⊥ q we have that the sphere N = S2 is an invariant

manifold. The reason we consider this system is because

span(e1 × q, e2 × q) is not equal to TqS
2 for all q ∈ S2

and it cannot be expressed as a Clebsch optimal control

problem. Since [e1 × q, e2 × q] = −e3 × q, where [·, ·] is

the Lie bracket of vector fields and e3 = (0, 0, 1)T , the

Lie algebra rank condition (see,e.g. [15]) is satisfied on S2

and therefore the restriction of (11) to S2 is accessible.

The set where dim(span{e1 × q, e2 × q}) 6= 2 is given

by {q ∈ R3 | q3 = 0}. Therefore to satisfy the standing

assumption the third components of the two end points

cannot both be zero which will guarantee that the associated

optimal control problem does not admit abnormal extremals.

For this system we consider the cost function

ℓ(q, u) = 1
2 (u

2
1 + u2

2) =
1
2u · u,
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where · denotes the Euclidean dot product. To find the normal

extremals of the embedded optimal control problem we apply

Pontryagin’s maximum principle. The Hamiltonian is defined

as

H(q, p, u) = p ·
(

B(q)u
)

− 1
2u · u

= (B(q)T p) · u− 1
2u · u,

where the 3 × 2 matrix B(q) is defined as B(q) := [e1 ×
q, e2 × q]. The optimal control control is seen to be

u∗ = B(q)T p =

[

(e1 × q) · p
(e2 × p) · p

]

.

The maximum principle then gives the normal extremals

as generated by Hamilton’s equations with Hamiltonian

H(q, p, u∗(q, p)) = 1
2p

TB(q)B(q)T p, which are the differ-

ential equations

q̇ = e1 × qu1 + e2 × qu2, ṗ = e1 × pu1 + e2 × pu2,

u1 = (e1 × q) · p, u2 = (e2 × q) · p,

where q, p ∈ R3. We notice that the sets S2×R3 and S2×S2

are invariant manifolds. Again it is not surprising that S2 ×
R3 is an invariant manifold as this is the pullback bundle

i∗(T ∗Q) for this example.

IV. CONCLUSION

In this paper we defined the class of embedded optimal

control problems and introduced an associated optimal con-

trol problem. An embedded optimal control problem is not

locally controllable whereas its associated optimal control

problem is. We applied Pontryagin’s maximum principle

to the embedded optimal control problem to obtain the

generating equations for its normal and abnormal extremals.

It was shown that the extremal generating equations for

the associated optimal control problem are contained in

the normal extremal generating equations for the embed-

ded optimal control problem (in the sense that they are

the homomorphic image of the normal extremal generating

equations.) A similar description is not available for the

abnormal extremals.

We applied the theory to three examples. The first two

examples can be stated as Clebsch optimal control prob-

lems, but not the last. For the first example we showed

explicitly how the normal extremal generating equations,

the so-called symmetric representation, are related to the

extremal generating equations for the associated optimal

control problem. In this case the associated optimal control

problem is equivalent to a left-invariant variational problem

and the extremal equations can therefore easily be obtained

from the Euler-Poincaré equations. The second example

revealed its explicit normal extremal to extremal relationship

through a close connection to the geodesic problem on S2.

In [13] we are continuing parts of this work. In particular

we examine how to express a mechanical system as a Cleb-

sch optimal control problem and we analyze a discretization

of the Clebsch optimal control problem. Combined this

provides a method for globally defining variational (and thus

symplectic) integrators for certain mechanical systems.
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