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Abstract— This paper is concerned with the H∞ dynamic
output feedback (DOF) control problem for discrete-time
switched Itô stochastic hybrid systems. By applying the average
dwell time method and the piecewise Lyapunov function tech-
nique, a sufficient condition is first proposed, which guarantees
the closed-loop switched stochastic system to be mean-square
exponentially stable with a weighted H∞ performance. Then
the solvability condition for the H∞ DOF control is also
established, by which the DOF controller can be found by
solving a set of linear matrix inequalities (LMIs).

I. INTRODUCTION

Switched systems have attracted much attention in the past
decade due to the fact that they have extensive applications,
such as power systems, transmission and stepper motors,
constrained robotics, and automated high ways. Typically,
a switched system consists of a number of subsystems, and
a switching law, which defines a specific subsystem being
activated during a certain interval of time. The switching rule
in such systems is usually considered to be arbitrary, and if
the switching signals are governed by stochastic processes,
the corresponding system is termed as jump systems (e.g.,
Markovian jump systems [7]). The motivation to study such
systems is mainly in twofold. Firstly, from the practical
application point of view, switching among different system
structures is an essential feature of many real-world systems.
Secondly, from the control point of view, multi-controller
switching provides an effective mechanism to cope with
complex systems and/or systems with large uncertainties.
Switched systems have been studied in a large number of
papers, such as, stability and stabilization [1], [2], [3], [4],
[8]; H∞ control problem [10]; and model reduction [11].

Recently, there is enormous growth of interest in using the
dwell time approach to deal with the switched systems [3],
[8], [10], [11]. To mention a few, Hespanha and Morse [3]
investigated the stability of switched systems with average
dwell time; Sun et al. [8] used the average dwell time
approach to study the exponential stability and L2-gain
for delay switched systems; Wu et al. [10] considered the
stability, stabilization and H∞ control of switched stochastic
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systems; Wu and Zheng [11] applied this approach to inves-
tigate the weighted H∞ model reduction for linear switched
systems with time-varying delay.

On the other hand, stochastic systems play an important
role in many branches of science and engineering applica-
tions, thus have been received much attention during the past
decades. Many results reported on stochastic systems can
be found in the literature, see, e.g., [5], [6], [9], [12] and
references therein. Recently, there are some results reported
on the stochastic systems with Markovian switching; see, for
example, Niu et al. [5] investigated the sliding mode control
for Itô stochastic systems with Markovian switching; Wang et
al. [9] investigate the stabilization of bilinear uncertain time-
delay stochastic systems with Markovian jumping parame-
ters; Xu and Chen [12] study the robust H∞ control problem
for uncertain discrete-time stochastic bilinear systems with
Markovian switching. The above-mentioned results are all
based on the Markovian switching. When the switching
signal is arbitrary, the results should be very different. This
motivates us to study some interesting topics on stochastic
systems whose parameters operate by an arbitrary switch-
ing signal, that is, the switched stochastic systems. These
research should be interesting and challenging since they in-
tegrate the switched hybrid systems into that of the stochastic
systems, and thus theoretically and practically significant.

In this paper, we shall investigate the mean-square expo-
nential stability and the H∞ dynamic output feedback (DOF)
control problem control problems for discrete-time switched
stochastic systems. The average dwell time approach com-
bined with the piecewise Lyapunov function technique is
applied to derive the main results. The advantage of using
this approach to the switched system is mainly in twofold.
Firstly, this approach uses a mode-dependent Lyapunov func-
tion, which avoids some conservativeness caused by using a
common Lyapunov function for all the subsystems. At this
point, the present approach is superior than the quadratic
approach (a common Lyapunov function approach) for the
switched systems. The other advantage of using the present
approach is that the obtained result is not just an asymptotic
stability condition, but an exponential one. Specifically, the
problems to be studied can be formulated as:

1. Stability Analysis. Propose a condition guaranteeing the
mean-square exponential stability of the discrete-time
switched stochastic system.

2. H∞ DOF Control. Design a DOF controller such that
the closed-loop system is mean-square exponentially
stable with a weighted H∞ performance.
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II. SYSTEM DESCRIPTION AND PRELIMINARIES

Consider a discrete-time nonlinear switched stochastic
system with time-delays, which can be described by the
following dynamical equation:

x(k + 1) = A(αk)x(k) +Ad(αk)x(k − d(k))

+Aτ (αk)f (x(k − τ)) +Bu(αk)u(k) +Bυ(αk)υ(k)

+ [C(αk)x(k)+Cd(αk)x(k−d(k))+Dυ(αk)υ(k)]ω(k),

z(k) = L(αk)x(k),

x(θ) = ϕ(θ), −max{τ, d2} < θ ≤ 0, (1)

for k = 1, 2, . . ., where x(k) ∈ Rn is the state vector;
u(k) ∈ Rm represents the control input; υ(k) ∈ Rp is the
noise signal that belongs to ℓ2[0,+∞); z(k) ∈ Rq is the
controlled output; ω(k) is a zero-mean real scalar process on
a probability space (Ω,F ,P) relative to an increasing family
(Fk)k∈N of σ-algebras Fk ⊂ F generated by (ω(k))k∈N.
The stochastic process {ω(k)} is independent, which is
assumed to satisfy

E{ω(k)} = 0, E{ω2(k)} = δ, k = 0, 1, . . .

where δ > 0 is a known scalar. In addition,
ϕ(θ), − max{τ, d2} < θ ≤ 0 are the initial conditions;
{(A(αk), Ad(αk), Aτ (αk), Bu(αk), Bυ(αk), C(αk), Cd(αk),
Dυ(αk), L(αk)) : αk ∈ N} is a family of matrices
parameterized by an index set N = {1, 2, . . . , N} and
αk : Z+ → N is a piecewise constant function of time,
called a switching signal, which takes its values in the finite
set N . At an arbitrary discrete time k, the value of αk,
denoted by α for simplicity, might depend on k or x(k),
or both, or may be generated by any other hybrid scheme.
We assume that the sequence of subsystems in switching
signal αk is unknown a priori, but its instantaneous value
is available in real time. For the switching time sequence
k0 < k1 < k2 < · · · of switching signal α, the holding time
between [kl, kl+1] is called the dwell time of the currently
engaged subsystem, where l ∈ N . The delay d(k) satisfying
1 ≤ d1 ≤ d(k) ≤ d2, where d1 and d2 are constant positive
scalars representing the minimum and maximum delays,
respectively. In addition, f(·) : Rn → Rn is nonlinear
function, which satisfies the following assumption.

Assumption 1: For the nonlinear function f(·), there exist
matrices Π1 and Π2 such that

(f(x)−Π1x)
T
(f(x)−Π2x) ≤ 0, x ∈ Rn. (2)

As is well known, the state feedback controller design re-
quires that the current system state is fully accessible. While
in practical applications, it is usually either not accessible
or hard to access. In such cases, one option is to assume
availability of a measured output signal given by
y(k) = E(αk)x(k) + Ed(αk)x(k − d(k))

+Eτ (αk)f (x(k − τ)) + Fυ(αk)υ(k) + [G(αk)x(k)

+Gd(αk)x(k − d(k)) +Hυ(αk)υ(k)]ω(k), (3)

where y(k) ∈ Rr is the measured output; E(αk), Ed(αk),
Eτ (αk), Fυ(αk), G(αk), Gd(αk) and Hυ(αk) are real
constant matrices.

Here, we are interested in designing a DOF controller of
general structure described by

x̂(k + 1) = Ac(αk)x̂(k) +Bc(αk)y(k),

u(k) = Cc(αk)x̂(k), (4)

where x̂(k) ∈ Rn is the controller state; Ac(αk), Bc(αk)
and Cc(αk) are matrices to be determined.

Augmenting the model of (1) to include the state of
controller (4), we obtain the closed-loop system as
ξ(k + 1) = Ã(αk)ξ(k) + Ãd(αk)Mξ(k − d(k))

+Ãτ (αk)Mf̃ (x(k − τ)) + B̃v(αk)υ(k)

+
[
C̃(αk)Mξ(k) + C̃d(αk)Mξ(k − d(k))

+D̃v(αk)υ(k)
]
ω(k),

z(k) = L̃(αk)ξ(k),

x(θ) = ϕ(θ), −max{τ, d2} < θ ≤ 0, (5)

where ξ(k) ,
[
xT (k) x̂T (k)

]T
, f̃ (x(k − τ)) ,[

fT (x(k − τ)) fT (x̂(k − τ))
]T

and

Ã(αk),
[

A(αk) Bu(αk)Cc(αk)
Bc(αk)E(αk) Ac(αk)

]
,

Ãd(αk),
[

Ad(αk)
Bc(αk)Ed(αk)

]
,D̃υ(αk),

[
Dυ(αk)

Bc(αk)Hυ(αk)

]
,

Ãτ (αk),
[

Aτ (αk)
Bc(αk)Eτ (αk)

]
,B̃υ(αk),

[
Bυ(αk)

Bc(αk)Fυ(αk)

]
,

C̃(αk),
[

C(αk)
Bc(αk)G(αk)

]
, C̃d(αk),

[
Cd(αk)

Bc(αk)Gd(αk)

]
,

L̃(αk),
[
L(αk) 0

]
, M ,

[
I 0

]
. (6)

Remark 1: For each possible value αk, we will denote
it by i, that is, αk = i, i ∈ N . Corresponding to the
switching signal αk, we have the switching sequence
{(i0, k0), (i1, k1), . . . , (il, kl), . . . , | il ∈ N , l = 0, 1, . . .}
with k0 = 0, which means that the ilth subsystem is
activated when k ∈ [kl, kl+1).

Definition 1: For switching signal and any ki > kj > k0,
let Nαk

(kj , ki) be the switching numbers of αk over the
interval [kj , ki]. If for any given N0 > 0 and Ta > 0, we
have Nαk

(kj , ki) ≤ N0+(ki − kj) /Ta, then Ta and N0 are
called average dwell time and the chatter bound, respectively.

Definition 2: The equilibrium x∗ = 0 of the discrete-time
switched time-delay system in (1) with u(k) = 0 and υ(k) =
0 is said to be mean-square exponentially stable under αk if
the solution x(k) satisfies

E {∥x(k)∥} ≤ ηρ(k−k0) ∥x(k0)∥C1 , ∀k ≥ k0,

for constants η ≥ 1 and 0 < ρ < 1, and
∥x(k0)∥C1 , {∥x(k + θ)∥ , ∥ς(k + θ)∥ , ∥f(ς(k + θ))∥}︸ ︷︷ ︸

sup−max{τ,d2}<θ≤0

,

where ς(θ) , x(θ + 1)− x(θ).
Definition 3: For 0 < β < 1 and γ > 0, the system in (1)

with u(t) = 0 is said to be mean-square exponentially stable
with a weighted H∞ performance γ under αk, if it is mean-
square exponentially stable with υ(t) = 0, and under zero
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initial condition, that is, x(θ) = ϕ(θ) = 0, −max{τ, d2} <
θ ≤ 0, it holds for all nonzero υ(t) ∈ ℓ2[0,∞) that

E
{∑∞

s=k0

βszT (s)z(s)
}
< γ2

∑∞

s=k0

ωT (s)ω(s). (7)

III. MAIN RESULTS

A. Performance Analysis

In this section, we will investigate weighted H∞ perfor-
mance for the closed-loop system in (5).

Theorem 1: For given constants β > 0 and γ > 0,
supposed that there exist matrices P (i) > 0, Q(i) > 0 and
R(i) > 0 such that matrix inequality (8) (shown at the top
of the next page) holds for i ∈ N , Then the closed-loop
system in (5) is mean-square exponentially stable with a
weighted H∞ performance level γ for any switching signal
with average dwell time satisfying Ta > T ∗

a = ceil
(
− lnµ

ln β

)
,

where µ ≥ 1 satisfies
P (i) ≤ µP (j), Q(i) ≤ µQ(j), R(i) ≤ µR(j). (9)

In (8), Φ11(i) , −βP (i) + β(d2 − d1 + 1)Q(i) − z1

with z1 , diag (H1,H1), z2 , diag (H2,H2), H1 ,
ΠT

1 Π2+ΠT
2 Π1

2 and H2 , ΠT
1 +ΠT

2

2 .
Proof. Choose a Lyapunov function of the form:

V (ξk, αk) ,
4∑

i=1

Vi(ξk, αk),

V1(ξk, αk) , ξT (k)P (αk)ξ(k),

V2(ξk, αk) ,
k−1∑

l=k−d(k)

βk−lξT (l)Q(αk)ξ(l),

V3(ξk, αk) ,
−d1∑

s=−d2+1

k−1∑
l=k+s

βk−lξT (l)Q(αk)ξ(l),

V4(ξk, αk) ,
k−1∑

l=k−τ

βk−lfT (ξ(l))R(αk)f(ξ(l)),

(10)

where P (αk) > 0, Q(αk) > 0 and R(αk) > 0 are real
matrices to be determined.

For k ∈ [kl, kl+1), we define E {∆Vj(ξk, αk)} ,
E {Vj(ξk+1, αk)− Vj(ξk, αk)}, j = 1, 2, 3, 4, thus we have
E {∆V (ξk, αk)} =

∑4
i=1 E {∆Vi(ξk, αk)} with

E {∆V1(ξk, αk)}=E
{[

Ã(αk)ξ(k)+Ãd(αk)Mξ(k−d(k))

+ Ãτ (αk)Mf (ξ(k − τ))
]T

P (αk)
[
Ã(αk)ξ(k)

+Ãd(αk)Mξ(k − d(k)) + Ãτ (αk)Mf (ξ(k − τ))
]

+
[
C̃(αk)Mξ(k) + C̃d(αk)Mξ(k − d(k))

]T
δP (αk)

×
[
C̃(αk)Mξ(k) + C̃d(αk)Mξ(k − d(k))

]
−ξT (k)P (αk)ξ(k)

}
, (11)

E {∆V2(ξk, αk)}≤E

−(1−β)
k−1∑

l=k−d(k)

βk−lξT (l)Q(αk)ξ(l)

+

k−d1∑
l=k+1−d2

βk+1−lξT (l)Q(αk)ξ(l)+βξT (k)Q(αk)ξ(k)

−βd2+1ξT (k − d(k))Q(αk)ξ(k − d(k))
}
, (12)

E {∆V3(ξk, αk)} =

E

{
−(1− β)

−d1∑
s=−d2+1

k−1∑
l=k+s

βk−lξT (l)Q(αk)ξ(l)

+β(d2 − d1)ξ
T (k)Q(αk)ξ(k)

−
k−d1∑

l=k+1−d2

βk+1−lξT (l)Q(αk)ξ(l)

}
, (13)

E {∆V4(ξk, αk)} ≤

E

{
−(1− β)

k−1∑
l=k−τ

βk−lfT (ξ(l))R(αk)f(ξ(l))

+βfT (ξ(k))R(αk)f(ξ(k))

−βτ+1fT (ξ(k − τ))R(αk)f(ξ(k − τ))
}
, (14)

Moreover, Assumption 1 gives

E

{[
ξT (k) fT (ξ)

][ z1 −z2

⋆ I

][
ξ(k)
f(ξ)

]}
≤0. (15)

where z1 and z2 are defined in Theorem 1.
Consider (11)–(15), we have

E {∆V (ξk, αk)}+ (1− β)E {V (ξk, αk)}
, E

{
ζT (k)Φ(αk)ζ(k)

}
, (16)

where ζ(k) ,
[
ξT (k) ξT (k − d(k)) fT (ξ) fT (ξ(k−τ))

]T
,

and Φ(αk) is defined as

Φ(αk),


Φ11(αk) 0 z2 0

⋆ −βd2+1Q(αk) 0 0
⋆ ⋆ βR(αk)−I 0
⋆ ⋆ ⋆ −βτ+1R(αk)



+


ÃT (αk)

MT ÃT
d (αk)
0

MT ÃT
τ (αk)

P (αk)


ÃT (αk)

MT ÃT
d (αk)
0

MT ÃT
τ (αk)


T

+


MT C̃T (αk)

MT C̃T
d (αk)
0
0

 δP (αk)


MT C̃T (αk)

MT C̃T
d (αk)
0
0


T

,

Moreover, by Schur complement to (8), it follows that
Φ(αk) < 0, then one can easily achieve ∀k ∈ [kl, kl+1),

E {∆V (ξk, αk) + (1− β)V (ξk, αk)} < 0. (17)

Now, for an arbitrary piecewise constant switching signal
αk, and for any k > 0, we let k0 < k1 < · · · < kl < · · · ,
l = 1, . . ., denote the switching points of αk over the interval
(0, k). As mentioned earlier, the ilth subsystem is activated
when k ∈ [kl, kl+1). Therefore, for k ∈ [kl, kl+1), it holds
from (17) that

E {V (ξk, αk)} < βk−klE {V (ξkl
, αkl

)} . (18)

Using (9) and (10), we have

E {V (ξkl
, αkl

)} ≤ µE
{
V (ξkl

, αkl−1
)
}
. (19)
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

Φ11(i) 0 z2 0 0 ÃT (i)P (i) δMT C̃T (i)P (i) L̃T (i)

⋆ −βd2+1Q(i) 0 0 0 MT ÃT
d (i)P (i) δMT C̃T

d (i)P (i) 0
⋆ ⋆ βR(i)− I 0 0 0 0 0

⋆ ⋆ ⋆ −βτ+1R(i) 0 MT ÃT
τ (i)P (i) 0 0

⋆ ⋆ ⋆ ⋆ −γ2I B̃T
υ (i)P (i) δD̃T

υ (i)P (i) 0
⋆ ⋆ ⋆ ⋆ ⋆ −P (i) 0 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −δP (i) 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −I


< 0, (8)

Therefore, it follows from (18)–(19) and the relationship ϑ =
Nα(k0, k) ≤ (k − k0)/Ta that
E {V (ξk, αk)} ≤ βk−klµE

{
V (ξkl

, αkl−1
)
}

≤ · · ·
≤ β(k−k0)µϑE {V (ξk0

, αk0
)}

≤ (βµ1/Ta)(k−k0)E {V (ξk0 , αk0)} . (20)

Notice from (10) that there exist two positive constants a
and b (a ≤ b) such that

E {V (ξk, αk)} ≥ aE
{
∥ξ(k)∥2

}
,

E {V (ξk0 , αk0)} ≤ b ∥ξ(k0)∥2C1 . (21)

Combining (20) and (21) yields

E
{
∥ξ(k)∥2

}
≤ 1

a
E {V (ξk, αk)}

≤ b

a
(βµ1/Ta)(k−k0) ∥ξ(k0)∥2C1 . (22)

Furthermore, letting ρ ,
√
βµ1/Ta , it follows that

E {∥ξ(k)∥} ≤
√

b

a
ρ(k−k0) ∥ξ(k0)∥C1 . (23)

By Definition 2, we know that if 0 < ρ < 1, that is,
Ta > T ∗

a = ceil
(
− lnµ

ln β

)
, the closed-loop system in (5)

is mean-square exponentially stable, where function ceil(h)
represents rounding real number h to the nearest integer
greater than or equal to h.

Now, we will establish the weighted H∞ performance
defined in (7), to this end, introduce the following index:
J , E {∆V (ξk, αk) + (1− β)V (ξk, αk)

+zT (k)z(k)− γ2υT (k)υ(k)
}
, (24)

For k ∈ [kl, kl+1), we have
E {∆V (ξk, αk) + (1− β)V (ξk, αk)

+zT (k)z(k)− γ2υT (k)υ(k)
}

≤ E
{
χT (k)Π(αk)χ(k)

}
, (25)

where χ(k) ,
[
ζT (k) ωT (k)

]T
and Π(αk) is shown

at the top of the next page. By Schur complement, LMI (8)
equals to Π(αk) < 0, thus J < 0. Let Γ(k) , zT (k)z(k)−
γ2υT (k)υ(k), then we have
E {∆V (ξk, αk)} < E {−(1− β)V (ξk, αk)− Γ(k)} . (26)

Therefore, for k ∈ [kl, kl+1), it holds from (26) that

E{V (ξk,αk)}<βk−klE{V (ξkl
,αkl

)}−E

{
k−1∑
s=kl

βk−1−sΓ(s)

}
.

Using (9) and (10), we have
E {V (ξkl

, αkl
)} ≤ µE

{
V (ξkl

, αkl−1
)
}
.

Thus, by the above two inequalities we have
E {V (ξk, αk)} < βk−klE {V (ξkl

, αkl
)}

−E

{
k−1∑
s=kl

βk−1−sΓ(s)

}
,

E {V (ξkl
, αkl

)} < βkl−kl−1µE
{
V (ξkl−1

, αkl−1
)
}

−µE


kl−1∑

s=kl−1

βkl−1−sΓ(s)

 ,

...
E {V (ξk1

, αk1
)} < βk1−k0µE {V (ξk0

, αk0
)}

−µE

{
k1−1∑
s=k0

βk1−1−sΓ(s)

}
.

Therefore, it follows from the above inequalities and the
relationship ϑ = Nα(k0, k) ≤ (k − k0)/Ta that

E {V (ξk, αk)} < βk−klE {V (ξkl
, αkl

)}

−E

{
k−1∑
s=kl

βk−1−sΓ(s)

}
< βk−k0µNα(k0,k)E {V (ξk0 , αk0)}

−βk−k1µNα(k0,k)E

{
k1−1∑
s=k0

βk1−1−sΓ(s)

}

−βk−k2µNα(k1,k)E

{
k2−1∑
s=k1

βk2−1−sΓ(s)

}
− · · ·

−βk−kl−1µ2E


kl−1−1∑
s=kl−2

βkl−1−1−sΓ(s)


−βk−klµE


kl−1∑

s=kl−1

βkl−1−sΓ(s)


−E

{
k−1∑
s=kl

βk−1−sΓ(s)

}
= βk−k0µNα(k0,k)E {V (ξk0 , αk0)}

−E

{
k−1∑
s=k0

βk−1−sµNα(s,k)Γ(s)

}
. (27)
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Π(αk) ,


Φ11(αk) + L̃T (αk)L̃(αk) 0 z2 0 0

⋆ −βd2+1Q(αk) 0 0 0
⋆ ⋆ βR(αk)− I 0 0
⋆ ⋆ ⋆ −βτ+1R(αk) 0
⋆ ⋆ ⋆ ⋆ −γ2I



+


ÃT (αk)

MT ÃT
d (αk)
0

MT ÃT
τ (αk)

B̃T
υ (αk)

P (αk)


ÃT (αk)

MT ÃT
d (αk)
0

MT ÃT
τ (αk)

B̃T
υ (αk)


T

+


MT C̃T (αk)

MT C̃T
d (αk)
0
0

DT
υ (αk)

 δP (αk)


MT C̃T (αk)

MT C̃T
d (αk)
0
0

DT
υ (αk)


T

,

Under zero initial condition, (27) implies

E

{
k−1∑
s=k0

βk−1−sµNα(s,k)zT (s)z(s)

}

< γ2E

{
k−1∑
s=k0

βk−1−sµNα(s,k)υT (s)υ(s)

}
. (28)

Multiplying both sides of (28) by µ−Nα(0,k) yields

E

{
k−1∑
s=k0

βk−1−sµ−Nα(0,s)zT (s)z(s)

}

< γ2E

{
k−1∑
s=k0

βk−1−sµ−Nα(0,s)υT (s)υ(s)

}
.(29)

Notice that Nα(0, s) ≤ s/Ta and Ta > − lnµ
ln β , we have

Nα(0, s) ≤ −s ln β
lnµ . Thus, (29) implies

E

{
k−1∑
s=k0

βk−1−sµs ln β
lnµ zT (s)z(s)

}

< γ2E

{
k−1∑
s=k0

βk−1−sυT (s)υ(s)

}
.

which yields that

E

{ ∞∑
s=k0

βszT (s)z(s)

}
< E

{ ∞∑
s=k0

υT (s)υ(s)

}
.

By Definition 3, we know that the closed-loop system in (5)
is mean-square exponentially stable with a weighted H∞
performance γ under αk. This completes the proof. �

Remark 2: In Theorem 1, we propose a sufficient condi-
tion for the mean-square exponential stability condition for
the considered the discrete-time switched stochastic time-
delay system (the closed-loop system) in (5). Here, β plays
a key role in controlling the low bound of the average dwell
time, which can be seen from Ta > T ∗

a = ceil
(
− lnµ

ln β

)
,

specifically, if β is given a smaller value, the low bound
of the average dwell time becomes smaller with a fixed µ,
which may result in the instability of the system.

Remark 3: Note that when µ = 1 in Ta > T ∗
a =

ceil
(
− lnµ

ln β

)
we have Ta > T ∗

a = 0, which means that

the switching signal αk can be arbitrary. In this case, (9)
turns out to be P (i) = P (j) = P , Q(i) = Q(j) = P ,
R(i) = R(j) = P , ∀i, j ∈ N , and the proposed approach
becomes quadratic one thus conservative. On the other hand,
when β = 1 in Ta > T ∗

a = ceil
(
− lnµ

ln β

)
, we have Ta = ∞,

that is, there is no switching.

B. H∞ Dynamic Output Feedback Control
Now, we are in a position to present a solution to the H∞

dynamic output feedback control problem based on Theorem
1, and give the following result.

Theorem 2: Consider the discrete-time nonlinear switched
stochastic system in (1). For given constants β > 0 and
γ > 0, suppose there exist matrices P(i) > 0, X (i) > 0,
Z (i), Q1(i) > 0, Q2(i), Q3(i) > 0, R1(i) > 0, R2(i),
R3(i) > 0, Ac(i), Bc(i) and Cc(i) such that (30) (shown at
the top of the next page) holds for i ∈ N , where

Ω11(i) , −βP(i) + β(d2 − d1 + 1)Q1(i)−H1,

Ω12(i) , −βI + β(d2 − d1 + 1)Q2(i)−H1X (i),

Ω22(i) , −βP(i)+β(d2 − d1 + 1)Q3(i)−2Z (i)+H−1
1 ,

Ω33(i) , −βd2+1Q1(i),

Ω34(i) , −βd2+1Q2(i),

Ω44(i) , −βd2+1Q3(i),

Ω25(i) , X (i)H2,

Ω26(i) , Z (i)H2,

Ω55(i) , βR1(i)− I,

Ω56(i) , βR2(i),

Ω66(i) , βR3(i)− I,

Ω77(i) , −βτ+1R1(i),

Ω78(i) , −βτ+1R2(i),

Ω88(i) , −βτ+1R3(i),

Ω110(i) , AT (i)P(i) + ET (i)BT
c (i),

Ω111(i) , A(i),

Ω210(i) , A T
c (i),

Ω211(i) , X (i)AT (i) + C T
c (i)BT

u (i),

Ω310(i) , AT
d (i)P(i) + ET

d (i)B
T
c (i),

Ω311(i) , AT
d (i),

Ω410(i) , X (i)AT
d (i)P(i) + X (i)ET

d (i)B
T
c (i),
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

Ω11(i) Ω12(i) 0 0 H2 0 0 0 0 Ω110(i) Ω111(i) Ω112(i) Ω113(i) Ω114(i)
⋆ Ω22(i) 0 0 Ω25(i) Ω26(i) 0 0 0 Ω210(i) Ω211(i) Ω212(i) Ω213(i) Ω214(i)
⋆ ⋆ Ω33(i) Ω34(i) 0 0 0 0 0 Ω310(i) Ω311(i) Ω312(i) Ω313(i) 0
⋆ ⋆ ⋆ Ω44(i) 0 0 0 0 0 Ω410(i) Ω411(i) Ω412(i) Ω413(i) 0
⋆ ⋆ ⋆ ⋆ Ω55(i) Ω56(i) 0 0 0 0 0 0 0 0
⋆ ⋆ ⋆ ⋆ ⋆ Ω66(i) 0 0 0 0 0 0 0 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Ω77(i) Ω78(i) 0 Ω710(i) Ω711(i) 0 0 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ Ω88(i) 0 0 0 0 0 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −γ2I Ω910(i) Ω911(i) Ω912(i) Ω913(i) 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −P(i) −I 0 0 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −X (i) 0 0 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −δP(i) −δI 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −δX (i) 0
⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −I



<0, (30)

Ω411(i) , X (i)AT
d (i),

Ω710(i) , AT
τ (i)P(i) + ET

τ (i)B
T
c (i),

Ω711(i) , AT
τ (i),

Ω910(i) , BT
υ (i)P(i) + FT

υ (i)BT
c (i),

Ω911(i) , BT
υ (i),

Ω112(i) , δCT (i)P(i) + δGT (i)BT
c (i),

Ω113(i) , δCT (i),

Ω212(i) , δX (i)CT (i)P(i) + δX (i)GT (i)BT
c (i),

Ω213(i) , δX (i)CT (i),

Ω312(i) , δCT
d (i)P(i) + δGT

d (i)B
T
c (i),

Ω313(i) , δCT
d (i),

Ω412(i) , δX (i)CT
d (i)P(i) + δX (i)GT

d (i)B
T
c (i),

Ω413(i) , δX (i)CT
d (i),

Ω912(i) , δDT
υ (i)P(i) + δHT

υ (i)B
T
c (i),

Ω913(i) , δDT
υ (i),

Ω114(i) , LT (i),

Ω214(i) , X (i)LT (i).

Then the closed-loop H∞ dynamic output feedback control
system in (5) is mean-square exponentially stable with a
weighted H∞ performance level γ for any switching signal
with average dwell time satisfying Ta > T ∗

a = ceil
(
− lnµ

ln β

)
,

where µ ≥ 1 satisfies that ∀i, j ∈ N ,[
P(i) I
I X (i)

]
≤ µ

[
P(j) I
I X (j)

]
,[

Q1(i) Q2(i)
⋆ Q3(i)

]
≤ µ

[
R1(j) R2(j)

⋆ R3(j)

]
,[

R1(i) R2(i)
⋆ R3(i)

]
≤ µ

[
R1(j) R2(j)

⋆ R3(j)

]
. (31)

Moreover, if the above conditions are feasible then a desired
weighted H∞ dynamic output feedback controller realiza-
tion is given by

Ac(i) , P−1
2 (i) [Ac(i)−P(i)A(i)X (i)−P(i)Bu(i)

×Cc(i)Z
T (i)−P2(i)Bc(i)E(i)X (i)

]
Z −T (i),

Bc(i) , P−1
2 (i)Bc(i),

Cc(i) , Cc(i)Z
−T (i). (32)

The proof of Theorem 2 is omitted due to page limit.

IV. CONCLUSION

In this paper, the H∞ DOF control problem has been
investigated for discrete-time switched stochastic systems.
A sufficient condition has been proposed, which guarantees
the closed-loop switched stochastic system to be mean-
square exponentially stable with a weighted H∞ perfor-
mance. Then, the H∞ DOF controller has been found by
solving a set of LMI. In deriving the main results, the
average dwell time approach combined with the piecewise
Lyapunov function technique has been applied, which avoids
some conservativeness caused by using a common Lyapunov
function for all the subsystems.
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