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Abstract—It is shown that, for real analytic control sys-
tems, small-time local controllability from an equilibrium
implies the existence of a locally asymptotically stabilising
piecewise analytic feedback.

I. INTRODUCTION

The motivation for the present work is to establish
a connection between small-time local controllability
and state feedback stabilisation for nonlinear control
systems. To this end, we rely on results proven by
Grasse [14] to relax the assumption of global control-
lability in Sussmann’s construction of a piecewise ana-
lytic feedback [24]. Important open problems related to
stabilisation, such as the connection between geometric
control and Lyapunov-theoretic techniques, the relation
between asymptotic and finite-time stabilisation for
general nonlinear control systems, or the obstructions
to the existence of stabilising feedbacks of a given
regularity, can potentially be addressed using ideas
along the lines of this paper.
In the sequel we refer to “small-time local control-

lability” simply as “local controllability” and to “state
feedback” simply as “feedback”.

A. Stabilisation of locally controllable systems.

For one-dimensional systems it can be shown that lo-
cal controllability implies local asymptotic stabilisation
using piecewise constant feedback controls [10, p. 342],
whereas for two-dimensional systems Kawski [17] has
proven that local controllability implies the existence
of a Hölder continuous asymptotically stabilising feed-
back. However, the technique of Kawski’s proof is
specific to the two-dimensional nature of the state
space and, indeed, in dimension three it can be shown
by counterexample [11] that there exist locally control-
lable systems that cannot be asymptotically stabilised
by continuous feedback (underactuated controllable
driftless systems belong to this category). If the dimen-
sion of the state space is not two or three, Coron [12]
has shown that certain sufficient conditions for local
controllability imply the existence of an almost smooth
time-varying periodic feedback that stabilises the sys-
tem in small time. Our observation in the present
paper is that local controllability from an equilibrium
implies the existence of a locally asymptotically stabil-
ising piecewise analytic feedback. The results we just
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mentioned relate local controllability to different types
of stabilisation and the relation between the different
types of feedback involved is an important issue that
requires further investigation.

B. Stabilisation of asymptotically controllable systems

Already in [7, p. 181], the observation is made that
asymptotic controllability is an obvious necessary con-
dition for asymptotic feedback stabilisation and it has
been shown [2], [9] that under additional hypotheses—
which authors usually incorporate in the definition
of asymptotic controllability—it becomes sufficient as
well, provided that a feedback is suitably defined.
Robustness issues associated with the feedbacks con-
structed in [2] and [9] have been addressed in [3], [18],
[20], [21] . The literature on the existence of control-
Lyapunov functions with special properties and, con-
sequently, of classes of stabilising controls for asymp-
totically controllable systems, under various sets of
assumptions, is vast. A useful overview of the main
results, along with entry points to the literature, can
be found in [4], while [13], [22], [27] contain recent
results for nonlinear control systems of a general form.
In the remainder of the paper we deal exclusively

with locally controllable systems. The relation between
local controllability from a point and asymptotic con-
trollability to the same point, regardless of optimality
considerations, is currently not well understood and
it is an interesting problem to find conditions un-
der which the two notions become equivalent. One
advantage of establishing the stabilisability of locally
controllable systems is that there exist general suf-
ficient conditions of a (Lie) algebraic nature for lo-
cal controllability [5], [25] and in certain cases—for
example, homogeneous systems—locally controllable
systems can be completely characterised [1]. To the best
of our knowledge, computable criteria for asymptotic
controllability exist only for a narrow class of systems,
namely, parametrised time-varying linear ones [28]. On
the other hand, as mentioned above, there are results
that show the existence of robust feedback stabilisers
for asymptotically controllable systems, whereas the
possibility of modifying our proof to obtain a robust
stabilising feedback has not yet been explored.

II. BACKGROUND

A. Basic definitions

All manifolds are by definition second-countable
Hausdorff topological spaces equipped with a maximal
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real analytic atlas. If M denotes a manifold, TM de-
notes the tangent bundle of M and this notation is
applied recursively to denote, for example, the tan-
gent bundle of TM by TTM . To avoid cumbersome
expressions, we sometimes write ΓωE for the space of
real analytic sections of a vector bundle (E,π,M). We
begin by making precise what is meant by a “control
system” [14], [15], [24].
Definition 1: Let M be a manifold and Ω a separable

metric space. A real analytic control system (or control
system) on M is a map f :M ×Ω → TM such that, for
any ω ∈Ω fixed, the map fω :M ∋ x 7→ f (x,ω) ∈ TM is
a real analytic vector field on M . The manifold M is
called the state space of the control system.

If we let Umeas denote the set of measurable func-
tions u : I ⊂ R → Ω , where I is an interval, then
the class of admissible controls for a control system
f is defined to be the subset Uf ⊂ Umeas containing
the functions u with the property that the differen-
tial equation ẋ(t) = f (x(t),u(t)) satisfies Caratheodory’s
theorem on the existence and uniqueness of solutions.
If T fω : TM ×Ω → TTM (fix ω to compute T fω and
consider the resulting map on TM ×Ω ) is continuous,
a property we always assume, then Uf contains the set
Ustep of piecewise constant maps with a finite number
of discontinuities [14], [15] [23, p. 474 Thm 54, p. 480
Prop. C3.4].
Given a control system f , we define the time-

reversed system to be the control system −f . The
name stems from the fact that, if γ is the trajectory
of f corresponding to a control u : [0,T ] → Ω , then
γ̃(t) = γ(T − t) is the trajectory of −f corresponding
to the control ũ(t) = u(T − t) and, in colloquial terms,
we can say that the trajectories of −f are those of f
run backwards. Observe that Uf = U−f (i.e., the minus
sign does not affect the conditions for existence and
uniqueness of solutions).
Next, we recall the definition of small-time local

controllability. Let p ∈ M and t ∈ R with t > 0. If
t 7→ x(t;p,u) is the trajectory that corresponds to an
admissible control u then the reachable set of f from
p at time t is the set

Rf (p,t) =
{

q ∈M | q = x(t;p,u) for some u ∈Uf

}

.

Definition 2: A control system f : M ×Ω → TM is
small-time locally controllable (or locally control-
lable) from a point p ∈M if, for every T > 0, the point
p is in the interior of the set

Rf (p, [0,T )) ,
⋃

t∈[0,T )

Rf (p,t).

B. Normal reachability

This section is concerned with a particular property
of locally controllable control systems which is essen-
tial for proving the existence of a piecewise analytic

feedback. In geometric control theory, there is an ob-
vious appeal in knowing that certain control-theoretic
tasks can be accomplished using piecewise constant
controls. This is due on the one hand to the simplicity
of the latter and on the other to the direct geometric
interpretation of a control system with piecewise con-
stant controls as a family of vector fields on a manifold.
In our case, in order to be able to construct a piecewise
analytic feedback, we need not only know that the
points in the reachable set of a locally controllable
system can be reached using a piecewise constant
control, but also that the concatenation of flows that
corresponds to the piecewise constant control has rank
equal to the dimension of the state space, as a map
from the space of switching times to the state space of
the control system. This last property is called normal
reachability and it has been shown [14] to be true for
a wide class of control systems. In the remainder of
the present section we make the aforementioned ideas
precise.
Recall from above that fω(x) = f (x,ω) and, therefore,

if a control system f : M ×Ω → TM is given, then fω
denotes the vector field obtained by fixing the control
to the value ω. Also, if

Φ f : R ×M ⊃U ∋ (t,p) 7→Φ f (t,p) ∈M

is the flow (defined on some open subset U ) of a vector

field f on a manifold M , we write Φ
f
p for the map

t 7→ Φ f (t,p) [8, p. 95].
Definition 3: Given a control system f :M×Ω → TM

and p,q ∈ M , we say that q is normally reachable
from p via f if there exist k ∈N, (ω1, . . . ,ωk) ∈Ω

k and

(s1, . . . , sk) ∈R
k such that q =Φ

fωk
sk ◦ · · · ◦Φ

fω1
s1 (p) and the

map (t1, . . . , tk) 7→ Φ
fωk
tk
◦ · · · ◦Φ

fω1
t1

(p) has rank equal to
dimM at (s1, . . . , sk ).
We can now state the following important theorem

that will be used later in the paper. The theorem is
a combination of results, all of which can be found
in [14], stated in a form suitable for our purpose.
Theorem 4: If a control system f : M ×Ω → TM is

locally controllable from p ∈M , then the time-reversed
system −f is also locally controllable from p and every
point in R−f (p; [0,T )) is normally reachable from p.
As stated earlier, the theorem guarantees that we can

actually reach an open neighbourhood of each point in
the reachable set of a locally controllable system.

C. Semianalytic and subanalytic sets

The notion of a piecewise analytic feedback that we
employ in the present paper was first introduced by
Sussmann [24] who proved that such a feedback exists
for globally controllable nonlinear systems. As in [24],
to prove the existence of a piecewise analytic feedback
for locally controllable systems we rely heavily on the
properties of subanalytic sets and we refer the reader
to the paper by Sussmann and the references therein
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for the necessary background. In the present section we
confine ourselves to recalling the definitions necessary
to state the main result of the paper.
Subanalytic sets are images of semianalytic sets and

so we begin by defining the latter. Let M be a manifold
and U an open subset of M . Let also Cω(U ;R) denote
the ring of real analytic functions defined on U , Z>0

denote the set of positive integers and set

S (Cω(U ;R)) =



















X ⊂U | X =

p
⋃

i=1

q
⋂

j=1

{x ∈U | fij σ 0},

fij ∈ C
ω(U ;R), σ ∈ {=,>}, p,q ∈Z>0



















.

Given the notation above, semianalytic and, subse-
quently, subanalytic sets are defined as follows.
Definition 5: (i) A subset X of M is semianalytic

if every point p ∈M has a neighbourhood U such
that X ∩U ∈ S (Cω(U ;R)).

(ii) A subset X of a manifold M is subanalytic if,
for all p in M , there exists a neighbourhood U
of p such that X ∩U = pr1(A), where pr1 denotes
the projection to the first factor, A is a relatively
compact semianalytic subset of M ×N and N is a
manifold.

In other words, subanalytic sets are locally projec-
tions of semianalytic sets.

D. Piecewise analytic feedbacks

The purpose of the present section is to define what
a piecewise analytic feedback is, building on a series of
more basic definitions. We also recall a theorem on sub-
analytic stratifications which is essential in construct-
ing a piecewise analytic feedback. We follow closely the
development in [24].
Definition 6: (i) An analytic stratification of a

manifold M is a partition P into connected real
analytic submanifolds (called strata) such that

a) P is locally finite,

b) S =
⋃

T∈P

T∩S,∅

T ,∀S ∈ P ; that is, the closure S

of every stratum S is the union of the stata
T in the partition P that have nonempty
intersection with S, and

c) (T ⊂ S) ∧ (T , S) ⇒ codimT > codimS; that
is, if a stratum T is contained in the closure
S and it is not the whole stratum S, then
the codimension of T is larger than the
codimension of S.

(ii) A subanalytic stratification is an analytic strati-
fication whose strata are subanalytic sets.

(iii) A stratification is called compatible with a family
A of subsets of M if every A is a union of strata.

Definition 7: A piecewise analytic vector field on a

manifold M is a quadruple V =
(

Σ, (Σ1,Σ2), {VS }S∈Σ1
,E
)

where

(i) Σ is an analytic stratification of M ,
(ii) (Σ1,Σ2) is a partition of Σ; strata in Σ1 are said to

be of the first kind and strata in Σ2 of the second
kind,

(iii) for every S ∈ Σ1, VS is an analytic vector field on
S,

(iv) E is a map which assigns to every point p in a
stratum S ∈ Σ2 a stratum E(p) ∈ Σ1,

(v) for every p ∈ S ∈ Σ1, the integral curve γ of VS

through p is either defined for all t ≥ 0 or, if the
integral curve is defined up to some time T > 0
and γ([0,T )) is contained in a compact subset of
M , then limt→T− γ(t) exists, and

(vi) for every p ∈ S ∈ Σ2, there exists a unique integral
curve γ of VE(p) such that limt→0+ γ(t) = p.

Before we comment on the previous definition, we
first relate, in the obvious manner, a piecewise analytic
vector field with the notion of feedback as is known
from control theory. For a piecewise analytic vector
field to be a feedback for a control system it has to
be “realisable” by means of the control system. This is
the content of the next definition.
Definition 8: A piecewise analytic feedback for a

control system f :M ×Ω → TM is a piecewise analytic
vector field V on M such that, for every p ∈ S ∈ Σ1,
there exists ω ∈Ω , such that VS (p) = f (p,ω).
The next theorem is fundamental for showing that

a piecewise analytic feedback, with all its defining
properties, exists for locally or globally controllable
systems.
Theorem 9: [24] Let A be a locally finite family of

nonempty subanalytic subsets of M and, for each A ∈
A , let F(A) be a finite collection of vector fields on M .
Then there exists a subanalytic stratification P of M
compatible with A and having the following property:
whenever P ∋ S ⊂ A ∈ A and X ∈ F(A), then either X
is everywhere tangent to S or X is nowhere tangent to
S.

III. LOCAL CONTROLLABILITY AND FEEDBACK

STABILISATION

A. Main result

Given a control system f :M ×Ω → TM , we say that
a point p ∈ M is an equilibrium for f if there exists
ω ∈Ω such that f (p,ω) = 0. We also say that f admits a
uniform bound if, given a positive real number T , there
exists a compact set containing all trajectories defined
on [0,T ] and starting at p [19].
Theorem 10: Let f : M ×Ω → TM be a control sys-

tem locally controllable from an equilibrium p ∈ M .
Suppose f admits a uniform bound, Ω is compact, and
{f (p,ω) | ω ∈Ω } is convex for every p ∈M . There exists
a locally asymptotically stabilising piecewise analytic
feedback.
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Proof: If ξ = (X1, . . . ,Xk) is a finite sequence of
vector fields, |ξ | denotes the number of elements in
ξ , i.e. |ξ | = k, and if τ = (t1, . . . , tk) is a k-tuple of real
numbers, |τ| is equal to the sum of the components of
τ, i.e. |τ| = t1 + · · ·+ tk . Given such a τ ∈ Rn, we denote
the cubical neighbourhood of τ of side 2ε by Cn

ε (τ); in
other words,

Cn
ε (τ) = {(s1, . . . , sk) ∈R

n | |ti − si | ≤ ε, i ∈ {1, . . . ,n}} .

The non-negative orthant of Rn will be denoted by R
n
≥0

and it is, by definition, the set {τ = (t1, . . . , tn) ∈R
n | ti ≥

0, i ∈ {1, . . . ,n}}. For a collection of vector fields ξ and
a k-tuple τ as above, Φ ξ

τ stands for the composition

Φ
X1
t1
◦ · · · ◦ Φ

Xk
tk

and, similarly to the case of a single

vector field, Φ ξ
p is the map τ 7→Φ ξ (τ,p).

Since the control system f is locally controllable
from p, the time-reversed system −f is also locally con-
trollable from p by Theorem 4. By the same theorem, if
q is a point in the reachable set R−f (p, [0,T ]) of −f , then
q is normally reachable from p via −f in time less than
T + α, where α is a positive real number. That this is
the case follows from the fact that p is an equilibrium
for f and, therefore, R−f (p, [0,T ]) ⊂ R−f (p, [0,T + α)).
Theorem 4 can then be applied directly to the set
R−f (p, [0,T + α)). Normal reachability of q from p via
−f in time less than T +α means precisely that we can
find a finite sequence of vector fields ξq = (X1, . . . ,X|ξq |)

and σq = (s1, . . . , s|ξq |) ∈ R
|ξq |

≥0 such that |σq | < T +α, each

Xi , i ∈ {1, . . . , |ξq |}, is of the form −fω, and Φ ξq (σq ,p) ,

Φ
X1
s1 ◦· · ·◦Φ

X|ξq |
s|ξq |

= q, with the map Φ
ξq
p having rank equal

to the dimension of M at σq . Since the rank of the map

Φ
ξq
p is dimM at σq, the set Φ

ξq
p (C

|ξq |
εq (σq)∩R

|ξq |

≥0 ) contains
a neighbourhood of q, for some (in fact, any) positive

εq. For every τ ∈ C
|ξq |
εq (σq)∩R

|ξq |

≥0 , we can define a curve

ητ : [0, |τ|] ∋ t 7→ ητ(t) ∈R
|ξq |

such that t 7→
(

Φ
ξq
p ◦ ητ

)

(t) is the concatenation of tra-

jectories of the control system −f that connects p and

Φ
ξq
p (τ) (see Figure 1). Let Aq denote the set of points

in R
|ξq |

≥0 which are of the form ητ(t), τ ∈ C
|ξq |
εq (σq)∩R

|ξq |

≥0 ,
t ∈ [0, |τ|]. The set Aq can be written as a finite union

of compact semianalytic sets: Aq = A1
q ∪ · · · ∪A

|ξq |
q . The

geometric meaning of the Ai
q is shown in Figure 2;

they are sets of increasing dimension and every Ai
q is

a rectangular “neighbourhood” of the i-th segment of
the curve ητ. The explicit description of the sets Ai

q
in terms of inequalities—inequalities that stem form

the fact that τ ∈ C
|ξq |
εq (σq) ∩ R

|ξq |

≥0 and t ∈ [0, |τ|]—is as

follows [24, p. 45]: the set Ai
q consists of those points

(t1, . . . , t|ξq |) that satisfy

(i) tj = 0, for j ≤ |ξq | − i,
(ii) 0 ≤ tj ≤ bj , for j = |ξq |+1− i, and

t3

t2

t1

ησq(t)

C
|ξq |
εq (σq)

s2s1

s3

σq

Fig. 1: The curve ητ is used to express a concatenation of flows for
a control system as one single curve.

A2
q

A1
q

t2

A3
q

t3

t1

Fig. 2: A graphical representation of the sets Ai
q used in the proof

of Theorem 10.

(iii) aj ≤ tj ≤ bj , for j > |ξq |+1− i,

where aiq = max
(

σq,i − εq,0
)

, biq = σq,i + εq, and σq,i
denotes the i-th component of σq. Since the sets Aq, A

i
q

are compact semianalytic, their images Bq = Φ
|ξq |
p (Aq),

Bi
q = Φ

|ξq |
p (Ai

q) are compact subanalytic sets and the set
Bq contains a neighbourhood of the point q.

Consider now a strictly decreasing sequence (Ti )
of positive real numbers with Ti → 0 and T1 = T .
The assumptions of the theorem imply that the sets
R−f (p, [0,Ti ]) form a decreasing sequence of compact
sets [19, p. 242]. For the ease of notation, set Ki =

R−f (p, [0,Ti ]) and
◦
K i = R−f (p, [0,Ti )). Each point q in

Ri , Ki \ intKi+1 is contained in a set Bq and, because
Ri is compact, every Ri can be covered with finitely
many sets Bq1 , . . . ,Bqki

. We reindex the points qi that

correspond to the sets that form the finite covers to
create a sequence Bq1 ,Bq2 , . . . of sets. Using the indices
i, j , and m uniquely defined by the relation

j = i + |ξq1 |+ · · ·+ |ξqm−1 |, (1)
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with 1 ≤ i ≤ |ξqm |, we define the sequence of sets

Dj = B
|ξqm |+1−i
qm and we set Hj = Dj \

⋃

i,j

Di . The se-

quence
(

Hj

)

j≥1
gives, by restriction of certain sets Hj

if necessary, a locally finite partition of the punctured

neighbourhood
◦
K1 \ {p} of p into relatively compact

subanalytic sets. To each set Hj , j ≥ 1, we assign the
vector field Yj = −Xi and to H0 , {p} we assign the zero
vector field; each vector field Xi is of the form −fω and,
therefore, Yj is of the form fω. Applying Theorem 9
to the family H = {Hj }j≥1 of subanalytic subsets, with
F(Hj ) = {Yj } (see the notation in the theorem), gives a

stratification Σ of
◦
K1, compatible with the family H .

The stratification Σ is partitioned into Σ1 and Σ2 (see
Definition 7) in the following way: every stratum S ∈ Σ
is a subset of an Hj , if Yj is everywhere tangent to S
then S ∈ Σ1, otherwise S ∈ Σ2.
We now show that trajectories of the piecewise an-

alytic feedback starting in a neighbourhood of p con-
verge to p. More specifically, let q be an arbitrary point

in
◦
K1 \ {p}; then q belongs to Hj , for some j > 0, and

there exists a time σ1
q such that γ1(σ

1
q ) ∈ Hk , for some

k > j , where γ1 is the integral curve of Yj through q.
If γ2 denotes the integral curve of Yk through γ1(σ

1
q ),

there exists a time σ2
q such that γ2(σ

2
q ) ∈ Hℓ, for some

ℓ > k and iterating this process shows, by definition of
the sets Hj , that the trajectory of the piecewise analytic
feedback that starts at q approaches p asymptotically.
Recall that an equilibrium p is Lyapunov stable if,

for any neighbourhood U of p, there exists a neigh-
bourhood V of p such that all trajectories starting in
V converge to p without leaving the set U . Because
Ki → {p}, for any neighbourhood U of p, there exists
λ ∈ Z>0 such that Kℓ ⊂ U . If we set V = Kℓ+µ, for
sufficiently large µ ∈Z>0, then the sets U and V satisfy
the conditions for Lyapunov stability and, therefore,
the closed-loop system with the piecewise analytic
feedback we constructed above is Lyapunov stable.
The verification that there is a well-defined map E

so that (Σ, (Σ1,Σ2), {VS }S∈Σ1
,E) is a piecewise analytic

feedback for f is the same as in [24].
Remark 11: The proof of Theorem 10 can be modi-

fied to obtain a piecewise analytic feedback that steers
a neighbourhood of p to p in finite time. In that
case, however, a weaker form of stability has to be
substituted for Lyapunov stability and it is a question
of ongoing research whether Lyapunov stability and
stabilisation in finite time (using a piecewise analytic
feedback) can be reconciled.

B. Corollary

The theory of linear control systems tells us that con-
trollability of the unstable eigenvalues of a system im-
plies the existence of a linear asymptotically stabilising
feedback (in fact, the implication is an equivalence). In

other words, it suffices to be able to control the unstable
dynamics in order to stabilise a system. Theorem 10
can be used to obtain an analogous result for nonlinear
control systems and the following corollary formalises
this idea.
Let f : M × Ω → TM be a control system with

dimM = n. We first perform some constructions with
vector fields following [26]. Let C be the Lie algebra of
vector fields generated by the vector fields fω, ω ∈ Ω .
Let D ⊂ C be the derived algebra which can be shown
to be the set of all finite real-linear combinations of
vector fields from the set

[fω1
, [fω2

, . . . , [fωk−1
, fωk

]]], k ≥ 1, ω1, . . . ,ωk ∈Ω.

Let X0 be the family of vector fields

X0 =
{

λ1fω1
+ · · ·+λkfωk

| k ≥ 1, ω1, . . . ,ωk ∈Ω,

λ1 + · · ·+λk = 0} .

Then take C0 = X0 +D ; this is a family of vector fields
that can be shown to be closed under Lie bracket. More-
over, this family of vector fields is invariant under the
vector fields fω, ω ∈Ω , in the sense that [fω,X] ∈C0 for
every X ∈ C0. Denote by C0 the distribution generated
by the family of vector fields C0. If C0 has constant rank
k in a neighbourhood of p ∈M , then we can find local
coordinates x = (x1, . . . ,xk ,xk+1, . . . ,xn) = (y1,y2) around
p such that C = span

{

∂
∂x1

, . . . , ∂
∂xk

}

and, because C is
invariant for f , we have the local decomposition [26]:

ẏ1 = f 1
(

y1,y2,ω
)

,

ẏ2 = f 2
0

(

y2
)

.
(2)

Corollary 12: If the subsystem f 1 is locally control-
lable from p and the vector field f 2

0 has p as a locally
asymptotically stable equilibrium, then the control sys-
tem f is asymptotically stabilisable at p.
Obviously, we can obtain variations of Corollary 12

depending on the type of stability we assume for the
uncontrolled dynamics f 2

0 .

IV. EXAMPLES

A. First example

Consider the question of whether some kind of sta-
bilising feedback exists for the class of control-affine
systems described by

ẋ = u,

ẏ =Q(x),
(3)

where (x,y) ∈ R
m × R

n, Q is a quadratic form (see
Problem 10.4 in [6, p. 315] and the references therein
for the long history of vector-valued quadratic forms
and their relevance to control theory), and u ∈U , with
U being a compact convex subset of Rm containing a
neighbourhood of the origin. One way to address this
question is to use centre manifold theory, however, if
n ≥ 2, the centre manifold is of dimension at least
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two and there is no general method for proving or
disproving stability.
On the other hand, it has been proven that control

systems of the form (3) are locally controllable from
the origin (0,0) ∈ R

m × Rn if and only if Q is indefi-
nite [16]. In that case, Theorem 10 implies that there
exists a piecewise analytic feedback that asymptotically
stabilises (3) to the origin.

B. Second example

The control system

ẋ = u,

ẏ = x2(y − z),

ż = x2(z − x),

(4)

with (x,y,z) ∈ R3 and u ∈ [a,b] ⊂ R, is locally control-
lable from the origin, asymptotically controllable to
the origin, and it satisfies Coron’s condition for stabili-
sation [11]. However, as is shown in [11], there does
not exist a continuous feedback that asymptotically
stabilises (4) to the origin. It is also remarked in [11]
that it is not known whether (4) can be stabilised using
dynamic feedback. Since (4) is locally controllable we
know from Theorem 10 that it can be stabilised to the
origin using a piecewise analytic feedback.

C. Third example

Our last example is meant to illustrate the behaviour
of control systems when the rank condition of Corol-
lary 12 does not hold. It is an instance of how the
notion of singularities, if properly understood, will
clarify further the relation between controllability and
stabilisability for nonlinear control systems, and indeed
the properties of these systems in general. It is worth
noting the simplicity of the example.
The control system

ẋ = (1− u)x,

where x,u ∈ R, becomes asymptotically stable at x = 0
for any choice of a constant control with value greater
than one. At the same time, the system is clearly not
locally controllable at x = 0.
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