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Abstract— The problem of scheduling measure-
ments of a continuous-time finite-state Markov jump
process is considered. This model is relevant to de-
termining the optimal frequency for performing med-
ical exams, inventories, polls, and for many other
applications. Unlike the LQG case, where the Kalman
filter gain is independent of the measured signals,
for this system, the optimal measurement schedule
depends on the actual measurements obtained. The
feedback rule for generating a measurement schedule
is optimized to trade-off between uncertainty about
the state of the system and the cost of measurement.
Analysis of this trade-off leads to the determination of
a critical cost-per-observation above which measure-
ments are too costly, and the best policy is never to
observe the system.

I. Introduction

A partially-observed Markov jump process is a versa-
tile model that may be used to represent a system whose
state transitions between a number of discrete config-
urations. Although the state of the underlying system
is hidden, by means of observable outputs, that hidden
state may be inferred. The knowledge about the hidden
process is summarized by the conditional probability
distribution of the underlying state, given the sequence
of past observations. We will work with systems where
the underlying hidden process evolves in continuous time,
independent of any control, but where the process by
which observations are obtained may be optimized.

This sort of model can be used to describe optimal
search problems, where a target moves between a number
of positions according to a known probabilistic rule, and
limited resources mean that only a subset of the search
space can be inspected at each stage. It may be used to
model the progression of a chronic disease in a patient,
where the schedule of tests and checkups must be opti-
mized to trade-off between the cost and inconvenience of
testing and the cost of uncertainty about the health of
the patient. This model may also be used to address the
question of how frequently to perform inventories, audits,
polls, and many other applications.

A. Past work on control of observations of jump systems

Sondik’s papers [1] and [2] presented the original work
on optimal control of partially-observed Markov decision
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processes (POMDP) via dynamic programming. [3] gives
a survey of more recent research on average-cost prob-
lems for discrete-time controllable Markov processes.

A discrete-time sensor selection problem where the
system evolved according to a hidden Markov process
was described in [4]. Policies for a finite horizon prob-
lems were found via approximate dynamic programming.
In [5], the effectiveness of an observation policy for a
discrete-time POMDP is discussed in terms of the esti-
mation entropy. [6] and [7] both considered the problem
of timing inspection and repair of machinery to maximize
the economic gain. The latter paper permitted policies
specifying random times-to-inspection, but proved that
the best observation strategy is deterministic.

In the field of public health, the design of screening
programs for disease involves trading off between the cost
and inconvenience of periodic screening and the personal
and societal costs of the disease. [8] considered the design
of an optimal mass screening protocol. In that paper,
the onset of disease was assumed to occur according to a
Poisson process, and the objective was to minimize the
average disutility associated with the detection delay. In
[9], Kirch and Klein optimized the frequency of breast
cancer screenings to trade-off between the detection
delay and the number of tests adminstered. [10] also
described a model for evaluating policies for repeated
testing for a medical condition.

B. Contributions of this paper

We consider the problem of designing feedback policies
to schedule measurements of a continuous-time Markov
jump process. The trade-off between uncertainty and
measurement cost is formalized as an infinite-horizon
average cost minimization. We consider in detail policies
for systems where each costly measurement unambigu-
ously identifies the hidden state. We show that for such
problems, the discrete-time process giving the measure-
ment outcomes is a sufficient statistic for the average
cost. Using this result, the continuous-time measurement
optimization problem is reduced to the selection of a
vector of inter-observation waiting times, for which we
give a gradient-based optimization method. Surprisingly,
there is a finite value of the measurement cost above
which no frequency of measurement is beneficial. This
feature has not been described previously, as previous
investigations in this area have considered discrete-time
problems where one observation must be chosen at each
stage, or have optimized over finite horizons. Formulæ
for the cut-off cost are derived for a number of cases.
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II. Problem Formulation

A. Partially-observable Markov jump processes

We consider a system described by a continuous-time
Markov jump process with state x(t) taking on values in a
finite state space. Let n be the number of different states
(i.e. possible configurations) of the system. These states
may be represented by the unit vectors in R

n, which will
be denoted by {e1, e2, . . . , en}. The notation e′i will be
used to denote the transpose of a vector ei.

Transitions or jumps between states may occur at
arbitrary times, and the duration of the intervals between
jumps are exponential random variables. For a stationary
process, the transitions may be modeled by a number of
Poisson counters Nij with known, time-invariant rates.
The state of the jump process is given by the Itô equation

dx =
∑

i,j
Gij x dNij . (1)

Gij = (ej − ei)e
′

i corresponds to jumps from ei to ej . By
construction, the Gij are infinitesimal generators, and if
the rates of the counters dNij are λijdt, then the total
rate of transitions are given by the infinitesimal generator

A =
∑

i,j
Gijλij . (2)

The entries of the vector p(t) := E(x(t)) give the
conditional probability of the hidden process taking on
each of the values {e1, . . . , en}, given the outcomes of
past observations. Without observations, the conditional
probabilities p(t) obey the Kolmogorov forward equation:

d

dt
p(t) = A p(t), p(0) = E(x(0)). (3)

We think of p(t) as taking values in the standard sim-
plex ∆n−1, which is the convex hull of the vectors
{e1, . . . , en}. The vertices of ∆n−1 represent certain
knowledge of the state x(t). Interior points represent
varying degrees of uncertainty. For a more complete
exposition of this type of model, we recommend [11].

B. Observations

We assume that observations of the system are instan-
taneous but occur only occasionally, at times selected by
a control policy to be designed. Although the framework
we will introduce may be extended to problems with
other kinds of observations, in this paper, we will restrict
our attention to what we term “momentarily completely
observed” processes. This is the case in which each costly
measurement determines the state of the underlying
jump process exactly.

An example system which is subject to momentary
complete observation is the inventory of a warehouse.
If the stock in a warehouse is depleted according to a
stochastic process and replenished periocally, the un-
certainty about the available stocks grows over time.
Performing an inventory immediately eliminates any un-
certainty about the stocks stored in the warehouse.

C. The measurement schedule

We find it convenient to specify the measurement
schedule by a non-decreasing, integer-valued, right-
continuous function S : [0,∞) → Z

+. For any 0 ≤
t1 < t2, S(t2) − S(t1) is the number of times that
a measurement has been performed on (t1, t2]. If the
cost per measurement is c, the total measurement cost
incurred on the time interval (0, T ] is cS(T ). The time
at which the kth measurement is made is given by σk =
min { t : S(t) = k }. The time between observations
(σk+1 − σk) will be called a “wait time.” We also define
the useful function σ−(t) = minτ {S(τ) = S(t)}, which
gives the time of the most recent measurement.

D. Feedback observation policies

A practical policy for determining an observation
schedule may not depend on the outcome of future obser-
vations. If the timing of future observations is permitted
to depend on the current value of the conditional prob-
ability, nothing further is gained by adding dependence
on past observations.

Definition 1. A Markov observation policy depends only
on the current conditional probability p(t) and not on
any past history of observations or past values of p(t).

We will consider only deterministic Markov policies.
It may be shown, as was done for a discrete-time re-
placement problem in [7], that stochastic measurement
policies never outperform the best deterministic ones. A
deterministic Markov observation policy may be given as
a feedback rule by specifying a (possibly empty) subset
of the simplex U ⊂ ∆n−1 as the measurement region. An
observation is made whenever p(t) enters U . An example
measurement region is shown in Figure 1.

Between observations, the conditional probability
obeys the deterministic equation ṗ = Ap. Thus, a policy
given by a measurement region U may be translated into
a function T (p) giving, for each point of the simplex, the
time to wait until the next measurement. The choice of
a measurement region also determines the time of the
first observation for any initial condition p(t0). However,
the precise timing of the first observation (assuming it
does occur) does not affect the infinite-horizon average
cost which we will be considering. For a system with
momentary complete observation, a deterministic policy
is determined by n wait times, {Ti = T (ei), i = 1 . . . n},
where if the underlying system is observed to be in the
state ei, Ti is the time until the next observation.

The two means of specifying a policy–by measurement
region or by wait times–emphasize different aspects of a
policy. Wait times determine the amount of man-power
or expense that will be required to implement a mea-
surement policy. A measurement region more explicitly
reveals what the distribution of outcomes of each test will
be. The calculations in this paper will primarily involve
the determination of optimal values for the wait times.
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Fig. 1. The simplex ∆2, showing a circular measurement region in
grey. The corresponding wait times {T1, T2, T3} are the times re-
quired for the trajectories p(t) starting from the vertices {e1, e2, e3}
to reach U . The steady-state conditional probability that would be
obtained without observation is indicated by p∞.

E. Optimization criterion

In [4] and [12], the running cost function h(p) =
1 − p′p, that is 1 minus the norm squared of p, was
proposed to penalize uncertainty regarding the state of
the hidden system, but both eventually substituted a
piecewise affine approximation to this quadratic cost.
[5] advocated for minimizing the differential entropy
h(p) = −p′ log(p). Both of these functions impose zero
cost when the underlying state is certain and maximum
cost when p(t) is a uniform distribution. We use the
quadratic cost (without approximation) because it enjoys
some advantages in terms of calculation.

In the infinite-horizon average cost optimal measure-
ment problem, the feedback policy for generating the
measurement schedule S is to be chosen so as to minimize
the expected average cost

η = lim
T→∞

E
( 1

T

∫ T

0

(

h
(
p(t)

)
dt + c dS

))

. (4)

The expectation is with respect to the outcome of the
measurements, which depend on the random underlying
jump process.

III. Results

In this section, we state the results for the case of
momentary complete observation, in which a costly ob-
servation identifies the state of the underlying system at
any chosen instant.

A. Computing the measurement outcome probabilities

We now study how the probability distribution of
measurement outcomes depends on the choice of mea-
surement policy. The choice of wait times affects not
only the running cost incurred on the interval following
each observation, but also the relative probabilities of
those observations occuring. This is somewhat counter-
intuitive, as the observed outputs are equal to the state
of the underlying Markov jump process, which evolves
independent of any control. However, consider the sit-
uation where the waiting time Tj after observation of a

particular state ej is very short. Then ej will be observed
many times, even if the underlying system spends an
equal fraction of the time in each state.

Let µ(k) be a vector giving the probabilities of ob-
serving a given output at the kth measurement instant:
µi(k) = Pr

(
x(σk) = ei

)
. We now describe how the

discrete-time stochastic process µ(k) is related to the
choice of measurement policy.

By definition, pi(t) = e′ip(t) gives the probability of
observing x(t) = ei if the system is inspected at time t.
The value of p(t) given that the last observation revealed
x(σk) = ej , is Φ(t, σk) ej = Φ(t−σk, 0) ej . Therefore,
the probability of observing x(σk+1) = ei, given that
x(σk) = ej and that the wait time is Tj = (σk+1−σk), is
e′i Φ(Tj , 0) ej , where Φ(t, 0) is the solution to the matrix
differential equation d

dtΦ = AΦ, Φ(0, 0) = I. The
evolution of the probabilities of subsequent observations
is therefore given by the difference equation





µ1(k+1)
...

µn(k + 1)




 =






Φ11(T1) · · · Φ1n(Tn)
...

. . .
...

Φn1(T1) · · · Φnn(Tn)






︸ ︷︷ ︸






µ1(k)
...

µn(k)




 .

Ψ(T1, . . . , Tn) (5)

That is Ψij = e′i exp(ATj)ej .

Definition 2. A vector µ̄ giving the steady-state prob-
ability that a particular state of the underlying system
will be observed will be called the outcome probabilities.

A measurement policy leads to set of steady-state
outcome probabilities only if the discrete-time imbedded
Markov chain given by µ(k + 1) = Ψ · µ(k) in (5) is
ergodic. We now connect ergodicity of the observation
outcome process µ(k) with ergodicity of the underlying
jump process x(t).

Lemma 1. If the jump process x(t) is irreducible,
Φ(t, 0) = exp(At), the matrix exponential of the infinites-
imal generator for E(x(t)), is strictly positive ∀t > 0.

Proof. By construction, the entries of Φ(t, 0) are proba-
bilities and thus are non-negative. The assumption of ir-
reducibility implies that ∀i, j = 1 . . . n, ∃T > 0 such that
Φij(T, 0) > 0. Suppose there is a time 0 < T0 < T such
that Φij(T0, 0) = 0. Consider a sequence τk ∈ (0, T0). By
the composition rule for matrix solutions, ∀k, Φ(T0, 0) =
Φ(T0, τk) ·Φ(τk, 0). Since the entries of both matrices are
non-negative, the ijth entry of the left hand side can
only be zero if either Φij(T0−τk, 0) or Φij(τ, 0) is also
zero. Taking, if necessary, a subsequence of the τk, we
find that the set of zeros of Φij(·, 0) has an accumulation
point in (0, T0). Then, because the matrix exponential is
analytic, Φij(t, 0) must be identically zero for all t > 0,
contradicting the assumption of irreducibility.

Theorem 1 (Ergodicity of the observation outcome
process). The matrix Ψ(T1, . . . , Tn) defined in (5) is a
stochastic matrix that defines a Markov chain µ(k+1) =
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Ψ(T1, . . . , Tn) · µ(k). If A defines an ergodic Markov
jump process, then in the case of momentary complete
observation, the imbedded process of observed states is
ergodic if the vector (T1, . . . , Tn)′ is strictly positive.

Proof. By construction, each column of Ψ(T1, . . . , Tn)
is a probability vector, so Ψ is a stochastic matrix.
If A defines an ergodic continuous-time Markov jump
process, then by Lemma 1, exp(ATi) ei is strictly positive
for Ti > 0. Consequently, for (T1, . . . , Tn)′ > 0, Ψ is
strictly positive as well. A strictly positive stochastic
matrix defines a Markov chain that trivially satisfies the
requirements for ergodicity.

Corollary 1. For a completely observed system with
ergodic A, there is a unique µ̄ that solves 0 = (Ψ − I)µ̄.

Thus, for momentarily completely observed systems,
the specification of a feedback measurement policy
uniquely determines the steady-state distribution of out-
comes of those measurements.

B. Computing the uncertainty cost

Between succeeding observations the evolution of the
conditional probability p(t) is deterministic, so it is
possible to compute ahead of time what cost will be
incurred due to uncertainty. If h(p), defined above, is the
function used to penalize uncertainty, the integral

Ii(t) =

∫ t

0

h(p(t)) dt, where p(t) = exp(At) ei,

is the uncertainty cost accumulated since the most recent
observation if the underlying system was observed to be
in the state x = ei. Given a measurement schedule S, the
time interval [0, σN+1) may be broken up into the inter-
observation periods [0, σ1) ∪ [σ1, σ2) ∪ · · · ∪ [σN , σN+1).
The cost function in (4) may then be rewritten in a form
that puts these inter-observation wait times in evidence:

η = lim
N→∞

E
(
∫ σ1

0
h(p) dt +

∑N
k=1

(
c + Iik

(σk+1−σk)
)

σ1 +
∑N

k=1(σk+1−σk)

)

.

Here Iik
(σk+1−σk) is the cost due to uncertainty accu-

mulated between the kth and (k+1)st observations. If
S(t) 6≡ 0, we may neglect the finite time-interval before
the first observation, and the cost simplifies to

η = lim
N→∞

E
(
∑N

k=1

(
c + Iik

(σk+1−σk)
)

∑N
k=1(σk+1−σk)

)

. (6)

If we group the subintervals in (6) according to which
state was observed most recently, and let Ni be the
number of times that ei is observed out of a total of
N observations, we obtain

η = lim
N→∞

E
(
∑

i
Ni

N

(
c + Ii(Ti)

)

∑

i
Ni

N

(
Ti

)

)

. (7)

Theorem 2. If the underlying process given by A is
ergodic, the cost in (7) is equal to

η =

∑

i µ̄i

(
c + Ii(Ti)

)

∑

i µ̄i Ti
almost surely, (8)

where µ̄(T1, . . . , Tn) is the vector of observation outcome
probabilities given by the invariant measure of the Markov
chain defined by (5).

Proof. This follows from Birkhoff’s Ergodic Theorem
([14], Thm. 3.55) and Theorem 1.

C. Solving the optimization via gradient descent

By construction, the columns of Ψ, defined in (5),
are probability vectors, so (Ψ− I) is an infinitesimal
generator. From the relation (Ψ−I)µ̄ = 0, we can derive

(
Ψ − I

) ∂µ̄

∂Ti
= − ∂Ψ

∂Ti
µ̄ = −AΨeiµ̄i . (9)

In the completely observed case, if A is irreducible, then
Ψ defines an ergodic Markov chain (Theorem 1), so the
matrix (Ψ − I) has rank n−1. Since µ̄ is constrained to
take on a value in the probability simplex, we may solve
for the n−1 independent entries of µ̄ and ∂µ̄

∂Ti

using the
singular value decomposition of (Ψ − I).

Setting up for convenience the vectors T̄ =
(T1, . . . , Tn), and Ī = (I1(T1), . . . , In(Tn)), we rewrite
the cost function (8) as η = (c +

〈
µ̄, Ī

〉
) /
〈
µ̄, T̄

〉
and

compute the partial derivative with respect to each
waiting time Ti:

∂η

∂Ti
=

µ̄i h(p(Ti)) +
〈

∂µ̄
∂Ti

, Ī
〉

〈
µ̄, T̄

〉 (10)

−
(c+

〈
µ̄, Ī

〉
)(µ̄i+

〈
∂µ̄
∂Ti

, T̄
〉
)

〈
µ̄, T̄

〉2 .

Algorithm 1. Start by selecting a threshold for the
maximum wait time, Tmax, and a stopping condition in
terms of the difference between successive iterates, δ.

1) Set an initial value for the policy: T̄ (0) =
(T1, . . . , Tn) with Ti > 0.

2) Compute ∂µ̄
∂Ti

using (9).
3) Compute ∇η using (10).
4) Let T̄ (k+1) = T̄ (k) − ǫ∇η.

5) Stop if ‖T̄ (k+1)−T̄ (k)‖ < δ or if ∃ i s.t. T
(k+1)
i >

Tmax. Otherwise, repeat steps 2-5.

Improved method: The most computational intensive
part of each iteration is computing the singular value
decomposition of (Ψ−I). Alternatively, µ̄ and ∂µ

∂Ti

may be

computed iteratively, using µ̄k+1 = Ψ·µ̄k and
(

∂µ
∂Ti

)

k+1
=

Ψ ·
(

∂µ
∂Ti

)

k
+
(

∂Ψ
∂Ti

)
· µ̄, respectively. These iterations both

converge to the desired value because each has a unique
solution, and by construction, the eigenvalues of Ψ all
have absolute value less than or equal to one.

D. Systems with symmetric dynamics

The cases with symmetric dynamics are easiest to
analyze. First, we distinguish two types of symmetry.

Definition 3 (Circulant dynamics). The dynamics of an
n-state system are called circulant if A is nonzero and
successive columns are successive cyclic permutations of
one another.
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Lemma 2. If a system with circulant dynamics is er-
godic, e/N is the unique fixed point of ṗ = Ap.

Proof. Because the system is circulant, the rows of A
sum to zero. Thus e is an eigenvector with eigenvalue
zero. By ergodicity, there is only one zero eigenvalue.

Definition 4 (Completely symmetric dynamics). We
call the dynamics of an n-state system completely sym-
metric if all the off-diagonal entries of A are equal:

A =






−(n−1)λ λ · · ·
λ −(n−1)λ · · ·
...

...
. . .




 , λ ∈ R

+ (11)

Lemma 3. The nonzero eigenvalues of a completely
symmetric system are identical and equal nλ.

Proof. Omitted.

Clearly, a completely symmetric system is circulant, but
not vice versa.

Lemma 4. For an ergodic circulant system, the integral
of the cost with respect to the waiting time, I(t) =
∫ t

0
h(p(τ)) dτ , is a strictly concave function of t.

Proof. By Lemma 2, the fixed point of ṗ = Ap is also
the maximum of h(·) and p(t) converges exponentially
to the fixed point. Thus, h(p(t)) is strictly monotonic
increasing on any time interval. Thus the integral I is a
strictly concave function of the waiting time.

Theorem 3. The optimal observation schedule for the
average cost problem for a momentarily completely ob-
served system with circulant dynamics is periodic, that
is, it must have identical waiting times for each state:
∀i, Ti ≡ τ .

Proof. Since the states are identical, the cost (6) can
be simplified to

η = lim
N→∞

E
( c

1
N

∑N
j=1 τ j

+

∑N
j=1 I(τ j)
∑N

j=1 τ j

)

. (12)

Suppose S is an arbitrary, not necessarily periodic, obser-
vation schedule. The same observation cost is maintained
if S is replaced by a periodic schedule with the same
mean time between observations τ̄ = 1

N

∑
τ j . However,

by the concavity of I (Lemma 4), the periodic schedule
has a lower or equal uncertainty cost. Thus, the optimal
schedule is periodic.

A similar approach was used in [8] to prove the optimality
of periodic schedules when screening for disease.

Thus, the optimal feedback observation policy for
systems with circulant dynamics is specified by a sin-
gle parameter, the observation period τ . A first order
necessary condition for optimality of a given observation
period is that

0 =
∂η

∂τ

∣
∣
∣
∣
τ

=
−1

τ2

(
c + I(τ)

)
+

1

τ
h(p(τ)). (13)

There can be at most one τ satisfying this condition:

Theorem 4. For systems with circulant dynamics, de-
pending on the value of c, the cost of observation, the
cost function η(τ) has either one or no critical point on
τ ∈ (0,∞). If τ is a critical point, it minimizes the cost.
Thus in the circulant case, the optimizing policy is unique.

Proof. Rewrite the necessary condition (13) as:

τ · h(p(τ)) − I(τ) = c . (14)

The left-hand side of (14) takes on the value 0 for τ = 0.
Its derivative is

∂

∂τ

(
τ ·h(p(τ)) − I(τ)

)
= τ

〈∂h

∂p
, ṗ
〉

> 0 .

This derivative is always postive for finite τ , but goes
exponentially to zero as p(t) → p∞, for which the
quadratic penalty function is maximized. Thus the left-
hand side of (14) has a horizontal asymptote and is
monotonic increasing, which implies that the necessary
condition (14) has zero or one solutions, as claimed.

Consider the second derivative of the cost

∂2η

∂τ2
=

2

τ3
(c + I(τ)) − 2

τ2
h(p(τ)) +

1

τ

〈∂h

∂p
, ṗ
〉

.

The first two terms cancel at a critical point leaving

∂2η

∂τ2
=

1

τ

〈∂h

∂p
, ṗ
〉

> 0

so that τ is a minimum.

1) Bound on measurement cost for symmetric dy-
namics: If there is no solution to (14), then the best
policy is evidently to permit the system to reach steady
state without ever observing. For completely symmetric
dynamics, we have the following result, which gives a
critical cost per measurement above which the optimal
policy is to never observe the system.

Theorem 5. Optimal policies for completely symmetric
n-state systems with transition probability λ, as given in
(11), include no observations if c ≥ (n−1)/(2n2λ).

Proof. By Lemma 2, the steady-state conditional prob-
ability without observation is p∞ = e/n. By Theorem
3, the optimal observation policy is periodic, and by
symmetry such a policy will observe every state equally
often, so µ = e/n as well.

Now we compute I(T ), the running cost incurred in
the interval between observations. By Lemma 3, all of
the nonzero eigenvalues are equal to nλ. The condi-
tional probability vector evolves according to pi(t) =
exp(At) ei = e/n + exp(−nλt)(ei − e/n) . Then, ∀i, the
running cost in the interval following p(σ) = ei is

I(T ) =

∫ T

0

(

1 −
(
e/n + e−nλt(ei − e/n)

)
′

·
(
e/n + e−nλt(ei − e/n)

))

dt

=
(n − 1

n

)

· T +
1

2nλ

(
e−2nλT − 1

)
·
(n − 1

n

)

.
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By (8), the infinite-horizon average cost is almost surely

η =
c +

〈
µ, Ī

〉

〈
µ, T̄

〉

=
c +

〈
e/n, ((n−1)/n)

(
T̄ + (e−2nλT̄ − 1)/(2λn)

)〉

〈
e/n, T̄

〉

=
n − 1

n
+

c + ((n−1)/n)
(
e−2nλT − 1

)
/(2λn)

T
.

The cost (n−1)/n can be achieved by letting T → ∞,
(i.e. never observing). For observation to be of benefit,
the numerator of the second term must be negative for
some range of T , so it is necessary that c < n−1

2λn2 .

2) Cost bound for circulant dynamics: A similar bound
holds for systems with circulant dynamics. In this case,
the spectrum of A has a much wider range of behaviors.
Nevertheless, we obtain the following necessary condition
for existence of optimal policies with nonzero observation
in terms of the least stable eigenvalue of A.

Theorem 6. If A is circulant and if c ≥ (n−1)/(2nνmin),
where νmin is the smallest real part of a nonzero eigen-
value of −A, an optimal policy makes no observations.

Proof. The proof is similar to that of Theorem 5, and
is given in [15].

3) General dynamics: For systems with general dy-
namics, p∞ may be anywhere in the simplex. The results
for symmetric systems given above depended on compar-
ing the cost of observation policies to the steady-state
cost without observation η = h(e/n) = (n−1)/n. In the
next section, we derive a cost bound for an arbitrary two-
state system using a slightly different approach. Similar
results could, in principle, be obtained for systems with
n ≤ 5, for which closed-form expressions for p∞ exist.

E. Two-state system

In this section, we specialize some of the results derived
previously to the case where the underlying system has
two states. Despite its simplicity, this system exhibits
interesting behavior.

d

dt

(
p1

p2

)

=

(
−λ1 λ2

λ1 −λ2

)(
p1

p2

)

(15)

For the two-state system with unequal transition
rates in (15), the stationary feedback policies may be
parametrized by two wait times, T1 and T2, the dura-
tions of the interval between observations following an
observation in which x = e1 or x = e2. By Theorem 2,
the cost to be minimized (8) equals

η(T1, T2) =
c + µ1 · I1(T1) + µ2 · I2(T2)

µ1 ·T1 + µ2 ·T2
, (16)

where µ1 = E(N1/N) and µ2 = E(N2/N) are the steady-
state outcome probabilities. As noted previously, the
outcome probabilities depend on the choice of the two
wait times T1 and T2. Parametrize the matrix Ψ(T1, T2)

in (5) by
(

1−k1 1−k2

k1 k2

)
. Then the steady-state outcome

probabilities are

µ1 =
1 − k2

(1 − k2) + k1
, µ2 =

k1

(1 − k2) + k1
,

The overall cost to be minimized, is therefore

η(T1, T2) =
c
(
1−k2+k1

)
+ (1 − k2)·I1(T1) + k1 ·I2(T2)

(1−k2) · T1 + k1 · T2
.

(17)
If we parametrize the simplex ∆1 by the second entry
of p, the quadratic running cost h(p) = 1 − p′p may be
written h(p2) = 2p2(1−p2), and the integrals I1(T1) and
I2(T2) can be evaluated explicitly.

The steady-state probability vector for the unequal
transition rate system is

p∞ =

(
λ2

λ1+λ2

λ1

λ1+λ2

)

=:

(
s1

s2

)

. (18)

The solution to ṗ = Ap starting from p(0) = e1 is

p(t) =

(
s2e

−(λ1+λ2)t + s1

−s2e
−(λ1+λ2)t + s2

)

.

The integral of the running cost up to time T1 is

I1(T1) = 2s2(1 − s2)T1 +
s2
2(e

−2(λ1+λ2)T1 − 1)

λ1 + λ2

− 2(2s2
2 − s2)(e

−(λ1+λ2)T1 − 1)

λ1 + λ2
.

The solution starting from p(0) = e2 is

p(t) =

(
−s1e

−(λ1+λ2)t + s1

s1e
−(λ1+λ2)t + s2

)

,

which gives a running cost of

I2(T2) = 2s2(1 − s2) T2 +
s2
1(e

−2(λ1+λ2)T2 − 1)

λ1 + λ2

− 2(s1 − 2s1s2)(e
−(λ1+λ2)T2 − 1)

λ1 + λ2
.

Now, k1 and k2 are in fact the edges of the measurement
region if it is parametrized by p2 and they are related
to the wait times by T1 = 1

λ1+λ2

log
(

s2

s2−k1

)
and T2 =

1
λ1+λ2

log
(

1−s2

k2−s2

)
. Substituting I1(T1) and I2(T2) and

the formulæ for T1 and T2 into (17), we find that the
cost to be minimized is

η = η0 +
k1(1−k2)(k1−k2−1) + c (λ1+λ2)(1−k2+k1)

(1 − k2) log
(

s2

s2−k1

)
+ k1 log

(
1−s2

k2−s2

)

(19)

where η0 = 2s2(1 − s2) is the fixed part of the cost.
Notice from (19) that the cost η0 can be achieved by

letting either threshold k1 or k2 equal the steady-state
s2, in which case the system is never observed (excepting
an initial transient). So, a constant observation policy is
only better than never observing when the second term of
(19) is negative. The denominator is always positive, so
we can restrict attention to the numerator. Observation
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can reduce the cost only if, for the given values of c, λ1,
and λ2, the numerator k1(1−k2)(k1 −k2 −1) + c(λ1 +
λ2)(1−k2+k1) takes on negative values somewhere in the
rectangle (k1, k2) ∈ (0, s2) × (s2, 1).

Let c̃ = (λ1 + λ2)c. The numerator is equal to zero if

k2 =
c̃ + k2

1 ±
√

c̃2 + (k1 − 2)2k2
1 − 2c̃k1(k1 + 2)

2k1
. (20)

The smallest value of c for which the discriminant in
(20) vanishes gives the supremum of the costs for which
observations can reduce the average cost below η0. The
discriminant is non-positive for c̃ ≥ 2s2 − 2

√
2s

3/2
2 + s2

2,
which means we have a necessary condition for any
constant observation policy to be beneficial:

Theorem 7. For the completely observed two-state prob-
lem, if the cost of observation satisfies the inequality

c ≥ 2s2 − 2
√

2s
3/2
2 + s2

2

λ1 + λ2
, (21)

then the optimal constant observation policy is never to
observe. The conditional probability will converge to the
steady-state, p∞ = (s1, s2)

′, so the cost of this policy is
h(p∞) = 1 − s2

1 − s2
2.

The bound given by (21) is maximized for the com-
pletely symmetric system, λ1 = λ2. In that case, (21)
implies optimal policies make no observations if c ≥ 1

8λ ,
which agrees with the bound in Theorem 5.

Example: Let λ1 = 1/5, λ2 = 1/4. Then s2 = λ1

λ1+λ2

=
4
9 . Theorem 7 indicates that an optimizing policy will
include observations only if the cost per observation
satisfies c < 160

729 (11 − 6
√

2) ≈ 0.552. If the cost of
observation exceeds this threshold, then the best policy
is not to observe, and η = r = 2s2

(
1− s2

)
= 40

81 ≈ 0.494.
These results are summarized in Figure 2.
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Fig. 2. The plot shows the dependence of the optimal thresholds
k1 (squares), and k2 (triangles) for when observation of the two-
state system with λ1 = 1/4, λ2 = 1/5 should take place. The
optimal constant policy is: ‘observe if prob(x = s2) ∈ [k1, k2]’.
The thresholds collapse to the steady-state value of p2 when the
observation cost exceeds the critical value (c ≈ 0.552) marked by
the vertical line, indicating that when the cost of observation is
too great, the best policy is to allow the conditional probability to
reach steady state without ever making an observation.

IV. Discussion and Conclusions

Scheduling costly measurements of a Markov jump
process is an optimization problem relevant to real-world
applications in the medical field, in search problems,
and in scheduling communication between parts of a
distributed system. The question of how frequently to
observe a system involves a trade-off between the cost of
measurement and the cost of uncertainty.

In this paper, we considered systems where each costly
observation momentarily observes the full state of the
underlying system. Stationary feedback policies for the
infinite horizon average cost problem were described
completely in terms of the inter-observation wait times,
and a fast gradient descent method for optimizing these
wait times was given. The global convexity of the op-
timization problem was proven for the case of circulant
dynamics. Our numerical investigations suggest the gen-
eral problem also has a unique optimizer.

We demonstrated the existence of a critical cost per
measurement above which no frequency of observation
is beneficial. This critical value depends on the cost of
uncertainty and the dynamics of the underlying system.
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