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Abstract— A static gain observer for linear continuous plants
with intrinsic pulse-modulated feedback is analyzed. The pur-
pose of the observer is to drive the state estimation error
to zero and asymptotically synchronize the sequence of pulse
modulation instants estimated by the observer with that of the
plant. Conditions on the observer gain matrix locally stabilizing
the observer error along an arbitrary periodic plant solution are
derived and illustrated by simulation for the case of pulsatile
testosterone regulation.

I. INTRODUCTION

Continuous dynamics with instant modulated impulses
give rise to a broad class of hybrid systems with important
applications in electronics and telecommunications. Mathe-
matical tools of impulsive control theory are covered in [1],
[2]. Since impulse-modulated signals are typically introduced
in technical systems for control or communication, the gen-
erated modulated impulse sequence is known there exactly.

In biological systems, the mechanism of impulse modula-
tion constitutes e.g. the basis of pulsatile endocrine feedback
regulation and underlies the secretion of important hormones
such as testosterone, insulin, cortisol, etc. [3]. In a mathemat-
ical model for pulsatile feedback introduced and analyzed
in [4], the impulses mark the release instants of certain
hormones and communicate the secreted quantities.

The impulse control of the endocrine systems is or-
chestrated by the brain and cumbersome or impossible to
observe in the human due to ethical reasons. This poses an
observation problem where the inaccessible for measurement
hormone concentrations are reconstructed from the available
in blood stream hormone measurements. In endocrinology,
this is routinely done by means of deconvolution techniques,
[5]. Only recently, an observer structure solving this problem
has been suggested and analyzed in [6]. There, for the case of
one impulse in the least period of the plant, the conditions
under which the observer state estimation error converges
to zero and the sequence of pulse modulation instances
estimated by the observer asymptotically synchronizes with
that of the plant are proved.

The present paper takes further the analysis of [6] by
considering a general solution to the plant equations with
an arbitrary number of the fired impulses in the least period,
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i.e. the m-cycle. Specializations to 1-cycles and 2-cycles for
an important testosterone regulation case are provided and
worked out in detail.

The paper is organized as follows. First the equations
for the plant with a pulse-modulated feedback and the
static feedback observer are summarized. Then a mapping
describing the propagation of the observer state vector from
one firing time to another is introduced and its properties
are studied. The notion of a synchronous mode is defined
describing a situation when the firing instances of the ob-
server coincide with those of the plant. Local stability of syn-
chronous modes is studied and the conditions under which
the observer feedback gain guarantees local stability of a m-
cycle are derived and illustrated by numerical simulations.

II. SYSTEM EQUATIONS

Consider a plant governed by the equations

dx

dt
= Ax+Bξ(t), z = Cx, y = Lx. (1)

where A, B, C, L are real constant matrices of sizes p× p,
p × 1, 1 × p, q × p, respectively, z is the scalar controlled
output, y is the vector measurable output, and x is the state
vector. The following matrix relationships apply to (1) and
are essential for further analysis:

CB = 0, LB = 0.

The matrix A is Hurwitz stable and the matrix pair (A,L)
is observable. The signal ξ is an intrinsic (non-measurable)
pulse-modulated feedback of the controlled output z to the
state vector x

ξ(t) =
∞∑

n=0

λnδ(t− tn), (2)

tn+1 = tn + Tn, Tn = Φ(z(tn)), λn = F (z(tn)). (3)

Here δ(·) is a Dirac delta function, the time instant tn is the
firing time of a delta function (frequency modulation) and λn

represents the corresponding weight (amplitude modulation)
[7]. The functions Φ(·) and F (·) are continuous, strictly
monotonous and bounded with strictly positive lower bounds.

Notice that system (1)–(3) is hybrid [8], [9] since it
possesses both continuous and discrete dynamics.

The plant is subject to unknown initial conditions x(0)
and the first firing instant of the pulsatile feedback occurs
after the initial time instant, t0 > 0.

As demonstrated in [4], the above assumptions imply that
all the solutions of system (1)–(3) are bounded and there are
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no equilibria. This corresponds to the self-sustained oscilla-
tions arising in endocrine systems with pulsatile feedback,
[3].

In order to estimate the state vector of (1), an observer
mimicking the dynamics of the plant is introduced as:

dx̂

dt
= Ax̂+Bξ̂(t) +K(y − ŷ), ŷ = Lx̂, ẑ = Cx̂, (4)

where

ξ̂(t) =
∞∑

n=0

λ̂nδ(t− t̂n), (5)

t̂n+1 = t̂n + T̂n, T̂n = Φ(ẑ(t̂n)), λ̂n = F (ẑ(t̂n)) (6)

and K is a static feedback gain chosen so that the matrix
D = A − KL is Hurwitz. Without loss of generality, it is
assumed that t̂0 > t0.

Summing up, the overall system comprising the plant and
the observer is governed by (1)–(3), (4)–(6).

III. POINTWISE MAPPING AND ITS PROPERTIES

In a previous study of the plant dynamics under limit
cycles [4], the following pointwise mapping has been treated:

x(t−n ) 7→ x(t−n+1).

For the dynamics of observer (4), a mapping of the form

x̂(t̂−n ) 7→ x̂(t̂−n+1)

cannot be obtained since x̂(t̂−n+1) not only depends on x̂(t̂−n )
but as well on t̂n, which yields a more complicated functional
dependence.

Pick some solution x(t) of plant equations (1)–(3) with
the parameters ti, λi, i = 0, 1, 2, . . . . Consider the pointwise
mapping:

(x̂(t̂−n ), t̂n) 7→ (x̂(t̂−n+1), t̂n+1). (7)

For some t and x, select integer numbers k and s, k 6 s,
such that

tk 6 t < tk+1, ts 6 t+ Φ(Cx) < ts+1.

Define P (x, t) = Pk,s(x, t) with

Pk,s(x, t) = eA(t+Φ(Cx)−ts)x(t+s )

− eDΦ(Cx)
[
eA(t−tk)x(t+k )−x− F (Cx)B

]
−

s∑
j=k+1

λje
D(t+Φ(Cx)−tj)B.

For brevity sake, denote xk = x(t−k ) and x̂n = x̂(t−n ).
Theorem 1: Pointwise mapping (7) is given by the equa-

tions

x̂n+1 = P (x̂n, t̂n), t̂n+1 = t̂n + Φ(Cx̂n). (8)
Proof: See Appendix 1.

Introduce additional notation referring to mapping (7).
Define a function

Qk,s(q) =
[
Pk,s(x, t)
t+ Φ(Cx)

]
, where q =

[
x
t

]
.

Set Q(q) = Qk,s(q) for tk 6 t < tk+1, ts 6 t + Φ(Cx) <
ts+1. Then

q̂n+1 = Q(q̂n) where q̂n =
[
x̂n

t̂n

]
, Q(q) =

[
P (x, t)

t+ Φ(Cx)

]
.

Iterations of the operator Q will be also considered further
on

Q(m)(q) = Q(Q(. . . (Q(︸ ︷︷ ︸
m

q)) . . .)).

Theorem 2: The mapping P (x, t) is continuous. If the
scalar functions F (·), Φ(·) have continuous derivatives then
the partial derivatives

P ′x = ∂P
∂x , P ′t = ∂P

∂t

are continuous everywhere.
Proof: See Appendix 2.

According to the definition, P ′x is a p× p-matrix, and P ′t
is a p-dimensional column. Then the Jacobian of Q(q) is

Q′(q) =
[
P ′x(x, t) P ′t (x, t)

Φ′(Cx)C 1

]
.

By the chain rule, the Jacobian of the m-th iteration of the
mapping is(

Q(m)
)′

(q) = Q′
(
Q(m−1)(q)

)
Q′
(
Q(m−2)(q)

)
× . . .

×Q′ (Q(q))Q′(q).

IV. SYNCHRONOUS MODE

Let x(t) be some solution of plant equations (1)–(3) with
the parameters tk, λk, Tk and xk = x(t−k ). Suppose that the
plant is already running at the moment when the observer is
initiated, i.e. ta 6 t̂0 < ta+1 for some a > 1.

Considering the solution x̂(t) of observer equations (4)–
(6) subject to the initial conditions

t̂0 = ta, x̂(t̂−0 ) = x(t−a ),

yields

x̂n = xn+a, t̂n = tn+a, λ̂n = λn+a, n = 0, 1, 2, . . . ,

and x̂(t) = x(t) for t > ta. Such a solution x̂(t) will be
called a synchronous mode with respect to x(t).

Recall the mapping P (x, t). Since t̂n = tn+a and t̂n+1 =
tn+a+1 for a synchronous mode, it follows that

x̂n+1 = Pn+a,n+a+1(x̂n, t̂n)

for all n > 0. For brevity, denote na = n+a, Φ′k = Φ′(Cxk),
F ′k = F ′(Cxk). The synchronous mode with respect to x(t)
is characterized by the vector sequence

q̂0
n =

[
xna

tna

]
. (9)

Then Q(q̂0
n) = Qna,na+1(q̂0

n).
Theorem 3: The Jacobian of Q(·) at q̂0

n is

Jna

def
= Q′(q̂0

n) (10)
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where the matrix Jk has the following matrix blocks

(Jk)11 = Φ′kAxk+1C + eDTk (Ip + F ′kBC) ,

(Jk)12 = Axk+1 − eDTkA(xk + λkB),
(Jk)21 = Φ′kC, (Jk)22 = 1.

Proof: See Appendix 3.

V. LOCAL STABILITY OF A SYNCHRONOUS
MODE WITH RESPECT TO A 1-CYCLE

Let x(t) be a 1-cycle. Then xn ≡ x0, λn ≡ λ0, Tn ≡ T0.
Consider a synchronous mode with respect to x(t) and let
q̂0
n be corresponding vector sequence (9) such that q̂0

n+1 =
Q(q̂0

n) is satisfied.
Jacobian (10) does not depend on n, i.e. Jna

≡ J0, and
comprises the following matrix blocks

(J0)11 = Φ′0Ax0C + eDT0 (Ip + F ′0BC) ,

(J0)12 = Ax0 − eDT0A(x0 + λ0B),
(J0)21 = Φ′0C, (J0)22 = 1.

(11)

Let q̂n be a perturbed value of q̂0
n: q̂n+1 = Q(q̂n) and

‖q̂n − q̂0
n‖ be small. Then

q̂n+1 − q̂0
n+1 = J0(q̂n − q̂0

n) + o(‖q̂n − q̂0
n‖).

The linear operator J0 is a contraction mapping iff it is Schur
stable, i.e. all its eigenvalues lie inside the unit circle. This
is consistent with the previously reported results. In [6] it is
shown that Schur stability of J0 implies orbital stability of
the synchronous mode.

VI. LOCAL STABILITY OF A SYNCHRONOUS
MODE WITH RESPECT TO A 2-CYCLE

Let x(t) be a 2-cycle. Then xn+2 = xn and

xn =

{
x0, if n is even,
x1, if n is odd.

Let q̂0
n be vector sequence (9) corresponding to a syn-

chronous mode with respect to x(t). From (10), it follows
that Jn+2 = Jn for all n and J0, J1 have the following
matrix blocks

(J0)11 = Φ′0Ax1C + eDT0 (Ip + F ′0BC) ,

(J0)12 = Ax1 − eDT0A(x0 + λ0B),
(J0)21 = Φ′0C, (J0)22 = 1,

(12)

(J1)11 = Φ′1Ax0C + eDT1 (Ip + F ′1BC) ,

(J1)12 = Ax0 − eDT1A(x1 + λ1B),
(J1)21 = Φ′1C, (J1)22 = 1.

(13)

For the sequence q̂0
n characterizing a synchronous mode

of the observer with respect to x(t), it applies

q̂0
n+2 = Q(Q(q̂0

n)) = Q(2)(q̂0
n).

A perturbation of q̂0
n obeys

q̂n+2 − q̂0
n+2 = Jna+1Jna

(q̂n − q̂0
n) + o(‖q̂n − q̂0

n‖). (14)

Thus, in (14) , either Jna+1Jna = J0J1 or Jna+1Jna =
J1J0 can occur. It can be easily shown that the products

J0J1 and J1J0 are Schur stable or unstable simultaneously,
see Appendix 4. Hence the matrix Jna+1Jna is a contraction
iff J1J0 is Schur stable. Arguing similarly to [6], it can
be verified that such a contraction property implies orbital
stability of the synchronous mode.

VII. ON THE EXISTENCE OF THE MATRIX K

Since the pair (A,L) is observable, the matrix K can be
chosen in such a way that the matrix D = A − KL has
arbitrary pre-defined eigenvalues. The following theorems
demonstrate that a proper choice of K can ensure stability
of a linearized observer system.

Theorem 4: Let x(t) be a 1-cycle and the notation of
Section V apply. Suppose

−1 < Φ′0CAx0 + 1 < 1. (15)

Then there is always a matrix K such that D = A−KL is
Hurwitz and the Jacobi matrix J0 with the blocks given by
(11) is Schur stable.

Theorem 5: Let x(t) be a 2-cycle and notation of Sec-
tion VI apply. Suppose

−1 < (Φ′0CAx0 + 1)(Φ′1CAx1 + 1) < 1. (16)

Then there is always a matrix K such that D = A − KL
is Hurwitz and the product matrix J0J1, where J0, J1 are
comprised of the blocks given by (12), (13), is Schur stable.

The proofs of Theorems 4, 5 are given in Appendix 5.
Schur stability conditions can be easily generalized to the

statement on stability of m-cycle:

−1 <
m−1∏
k=0

(Φ′kCAxk+2 + 1) < 1.

VIII. NUMERICAL EXAMPLE

Assume the following values in model (1)–(3)

A =

−0.08 0 0
2 −0.15 0
0 0.5 −0.2

 , B =

1
0
0

 , L =
[
0 1 0
0 0 1

]
,

C =
[
0 0 1

]
, h = 2.7,

Φ(z) = 60 + 40
(z/h)2

1 + (z/h)2
, F (z) = 3 +

2
1 + (z/h)2

.

The existence and stability conditions of 1-cycles and 2-
cycles in system (1), (2) are provided in [4]. From Theorem 3
there, one can deduce the existence of a 2-cycle with the
following parameters

xT
0 =

[
0.0028 0.0799 0.3321

]T
,

xT
1 =

[
0.0390 1.0989 4.4896

]T
,

where T denotes transpose. The rest of the parameters for
the 2-cycle are evaluated as: T0 = 60.5960, λ0 = 4.9702,
T1 = 89.3757, λ1 = 3.5312.

In this case (Φ′0CAx0 + 1)(Φ′1CAx1 + 1) = −0.1915, so
condition (16) is satisfied and the existence of a stabilizing
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Fig. 1. Initial conditions transients in the firing times and weights of ξ̂(t)
relative to ξ(t): Blue lines mark the firing times of the observer t̂n with
hight equal to λ̂n. Red lines correspond to the pulse modulation of the plant
in 2-cycle with the firing times tn and the weights −λn.

observer gain K is guaranteed. Choose the observer feedback
gain as

K =

 0 0
1.2 0
0 1.2

 .
Then A−KL is Hurwitz stable and the eigenvalues of J1J0

amount to {−0.1844, −0.0000, −0.0000, 0.0000}, proving
J1J0 to be Schur stable. Therefore, a stable synchronous
mode is imposed on the observer under the 2-cycle by the
choice of the observer gain.

Fig. 1 illustrates the transients in the sequence ξ̂(t) relative
to ξ(t), caused by a mismatch between the initial conditions
of the plant and those of the observer. The initial values of
the observer states are selected so that t̂0 − t0 = T0/2 and
x̂(t̂−0 )− x(t̂0) = [1 1 1]T. Since pulse modulation generates
unbounded Dirac δ-functions, the sequences ξ(t), ξ̂(t) are
depicted in terms of the firing times tn, t̂n and the weights
λn, λ̂n.

The blue vertical lines of hight λ̂n positioned at t̂n
correspond to the observer firing sequence ξ̂(t). The pulse
modulation of the plant is shown by red lines of hight −λn

positioned at tn (with t0 = 0). It can be seen that the firing
instants of ξ̂(t) become synchronized with those of ξ(t) and
the impulse weights λ̂n asymptotically converge to λn.

The convergence of the observer residual is illustrated in
Fig. 2. Notice that the signals in question are continuous and
measurable at the system output.

IX. CONCLUSIONS

Analytical tools for state estimation in linear continuous
time-invariant systems under inaccessible for measurement
pulse-modulated feedback are developed in this paper. The
states of the considered system undergo jumps at certain
times modulated by other states. Such a pulsatile feedback
occurs in neural as well as in endocrine systems and gives
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Fig. 2. Transients in the continuous (2nd and 3rd) components of the
observer residual r(t) = x(t)− x̂(t).

rise to homeostatic biological regulation. By local stability
analysis of the observer, it is shown that with a proper choice
of the observer gain, one can obtain an asymptotically con-
verging estimate of the system states and a synchronization
between of the periodic impulse sequences of the plant and
that of the observer.
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APPENDIX 1. PROOF OF THEOREM 1
The state estimation error of the observer r(t) = x(t) −

x̂(t) obeys

dr

dt
= Dr +B(ξ(t)− ξ̂(t)), ẑ = z − Cr. (17)

Pick an arbitrary integer n > 0 and suppose that

tk 6 t̂n < tk+1, ts 6 t̂n + Φ(Cx̂n) < ts+1
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for some k and s. Introduce a number m > 0 such that
s = k +m. Now the following steps have to be considered
to arrive to the result of the Theorem.

(i) Since tk 6 t̂n < tk+1, one has x(t̂+n ) =
eA(t̂n−tk)x(t+k ). Hence

r(t̂+n ) = x(t̂+n )− x̂(t̂+n ) = eA(t̂n−tk)x(t+k )− x̂(t̂−n )− λ̂nB.

(ii) If t̂n < t < tk+1 and m > 1 then r(t) =
eD(t−t̂n)r(t̂+n ), hence

r(t+k+1) = eD(tk+1−t̂n)r(t̂+n ) + λk+1B.

(iii) If tk+1 < t < tk+2 and m > 2 then r(t) =
eD(t−t̂k+1)r(t̂+k+1), hence

r(t+k+2) = eD(tk+2−t̂n)r(t̂+n )+λk+1eD(tk+2−tk+1)B+λk+2B.

(iv) If tk+2 < t < tk+3 and m > 3 then

r(t+k+3) = eD(tk+3−t̂n)r(t̂+n ) + λk+1eD(tk+3−tk+1)B

+ λk+2eD(tk+3−tk+2)B + λk+3B.

(v) In general,

r(t+k+m) = eD(tk+m−t̂n)r(t̂+n )

+ λk+1eD(tk+m−tk+1)B

+ λk+2eD(tk+m−tk+2)B

...

+ λk+m−1eD(tk+m−tk+m−1)B

+ λk+mB.

Recalling that k +m = s, one can write

r(t+s ) = eD(ts−t̂n)r(t̂+n ) +
s∑

j=k+1

λjeD(ts−tj)B.

(vi) Finally,

x̂(t̂−n+1) = x(t̂−n+1)− r(t̂−n+1)

= eA(t̂n+1−tk+m)x(t+k+m)

− eD(t̂n+1−tk+m)r(t+k+m)

and t̂n+1 = t̂n + Φ(Cx̂n). This can be rewritten as

x̂n+1 = eA(t̂n+Φ(Cx̂n)−ts)x(t+s )− eD(t̂n+Φ(Cx̂n)−ts)r(t+s ).

Then the statement of Theorem 1 is obtained by substituting
formulas (i) into (v) and (v) into (vi).

APPENDIX 2. PROOF OF THEOREM 2
Lemma 1: The function Pk,s(x, t) can be represented as

Pk,s(x, t) = uk(x, t) + vs(x, t) + w(x, t),

where

uk(x, t) = eDΦ(Cx)

−eA(t−tk)x(t+k ) +
k∑

j=1

λjeD(t−tj)B

 ,
vs(x, t) = eA(t+Φ(Cx)−ts)x(t+s )−

s∑
j=1

λjeD(t+Φ(Cx)−tj)B,

w(x, t) = eDΦ(Cx) [x+ F (Cx)B] .

Moreover, the following recursions hold

uk(x, t)− uk−1(x, t) =

− λkeDΦ(Cx)
[
eA(t−tk) − eD(t−tk)

]
B

(18)

and

vs(x, t)− vs−1(x, t) =

λs

[
eA(Φ(Cx)+t−ts) − eD(Φ(Cx)+t−ts)

]
B.

(19)

Proof of Lemma. Recursion (18) follows from the relation-
ships

eA(t−tk)x(t+k ) = eA(t−tk)
[
eA(tk−tk−1)x(t+k−1) + λkB

]
= eA(t−tk−1)x(t+k−1) + λkeA(t−tk)B.

Substituting in the above formula k instead for s, one obtains
(19).

Proof of Theorem 2. It is demonstrated below that The-
orem 2 is a direct consequence of Lemma 1. The function
P (x, t) can have gaps either on the surfaces Mk = {(x, t) :
t = tk} or on the surfaces Ns = {(x, t) : t+ Φ(x) = ts}.

Let (x, t) ∈Mk for some k. From (18)

uk(x, tk) = uk−1(x, tk),

Hence P (x, t) has no gaps on this surface. This statement
remains true for partial derivatives of P (x, t), because (A−
D)B = 0.

Let (x, t) ∈ Ns for some s. From (19)

vs(x, ts − Φ(Cx)) = vs−1(x, ts − Φ(Cx)),

so neither P (x, t) has gaps on this surface. The same is true
for its partial derivatives.

Clearly, if (x, t) ∈ Mk ∩ Ns, for some s and k, then
t = tk = ts − Φ(Cx) and from (18), (19), it follows that

Pk,s(x, tk) = Pk−1,s−1(x, tk).

Combined with the previous two conclusions, this means that
P (x, t) has no gaps on Mk ∩ Ns. The same is true for its
partial derivatives.

APPENDIX 3. PROOF OF THEOREM 3

Two lemmas are needed in order to prove the result of the
theorem.

Lemma 2: The following relationship holds:

Pk,k+1(x, t) =
[
eAΦ(Cx) − eDΦ(Cx)

]
eA(t−tk)x(t+k )

+ λk+1

[
eA(t+Φ(Cx)−tk+1) − eD(t+Φ(Cx)−tk+1)

]
B

+ eDΦ(Cx) [x+ F (Cx)B] .
Proof: The lemma follows from Theorem 1 and the

evident formula

x(t+k+1) = eA(tk+1−tk)x(t+k ) + λk+1B.

Further, the following facts are needed to carry on with
the proof.
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Lemma 3: The partial derivatives of P (xk, tk) with re-
spect to its arguments can be calculated as follows:

P ′x(xk, tk) = Φ′kAxk+1C + eDTk [Ip + F ′kBC] ,

P ′t (xk, tk) = Axk+1 − eDTkA(xk + λkB).
Proof: Obviously P (xk, tk) = Pk,k+1(xk, tk). As it was

stipulated by Theorem 2, the partial derivatives of P (x, t) are
continuous, so that

∂
∂xP (xk, tk) = ∂

∂xPk,k+1(xk, tk),
∂
∂tP (xk, tk) = ∂

∂tPk,k+1(xk, tk).

By direct calculation
∂
∂xPk,k+1(x, t) = Φ′(Cx)

[
AeAΦ(Cx) −DeDΦ(Cx)

]
× eA(t−tk)x(t+k )C + λk+1Φ′(Cx)

×
[
AeA(t+Φ(Cx)−tk+1) −DeD(t+Φ(Cx)−tk+1)

]
BC

+ Φ′(Cx)DeDΦ(Cx)
[
x+ F (Cx)B

]
C

+ eDΦ(Cx)
[
Ip + F ′(Cx)BC

]
,

∂
∂tPk,k+1(x, t) =

[
eAΦ(Cx) − eDΦ(Cx)

]
AeA(t−tk)x(t+k )

+ λk+1

[
AeA(t+Φ(Cx)−tk+1) −DeD(t+Φ(Cx)−tk+1)

]
B.

Since tk + Φ(Cxk) − tk+1 = 0 and (A − D)B = 0, one
obtains

∂
∂xPk,k+1(xk, tk) = Φ′(Cxk)

[
AeAΦ(Cxk) −DeDΦ(Cxk)

]
× x(t+k )C + Φ′(Cxk)DeDΦ(Cxk) [xk + λkB]C

+ eDΦ(Cxk)
[
Ip + F ′(Cxk)BC

]
,

∂
∂tPk,k+1(xk, tk) =

[
eAΦ(Cxk) − eDΦ(Cxk)

]
Ax(t+k ).

Now the statement of Lemma 3 can be derived by taking into
account x(t+k ) = xk + λkB and eAΦ(Cxk)x(t+k ) = xk+1.

Theorem 3 follows directly from Lemma 3.

APPENDIX 4. A REMARK ON SCHUR STABILITY

Here, a proof of a statement utilized in Section VI is
provided.

Lemma 4: Let J0, J1 be square matrices of the same sizes.
Then the products J0J1 and J1J0 are Schur stable or unstable
simultaneously.

Proof. It is known that a square matrix J is Schur stable iff
all the solutions of the discrete-time equation xk+1 = Jxk

vanish as k increases. For definiteness, let the product J0J1

be Schur stable. Then all the solutions of the system

xk+1 = J0J1xk (20)

approach zero as k tends to infinity.
Consider the system

yk+1 = J1J0yk. (21)

To verify that all the solutions of (21) vanish as time goes
to infinity, denote zk = J0yk. Then zk satisfies the equation

zk+1 = J0J1zk (22)

of type (20), and hence zk → 0 as k →∞ for any solution
of (22). It means that J0yk → 0 as k →∞ for any solution
of (21). Then J1J0yk → 0 and so (21) implies yk+1 → 0 as
k →∞, whence yk → 0 as k →∞. Consequently, J1J0 is
Schur stable. The lemma is proved.

Remark. The proposition can be easily generalized: if
J0J1 . . . Jm−1 is Schur stable this property preserves for any
cyclic permutation of the multipliers.

APPENDIX 5. PROOFS OF THEOREM 4 AND THEOREM 5

Proof of Theorem 4. The matrix J0 can be decomposed as
J0 = J̃0 +W (D), where

J̃0 =
[
Φ′0Ax0C Ax0

Φ′0C 1

]
=
[
Ax0

1

] [
Φ′0C 1

]
and

W (D) =
[
eDT0 (Ip + F ′0BC) −eDT0A(x0 + λ0B)

0 0

]
.

The elements of the matrix eDT0 , and hence those of W (D),
can be made arbitrarily small by choice of K. As for the
matrix J̃0, it is evident that

rank J̃0 = 1, tr J̃0 = Φ′0CAx0 + 1.

Thus the matrix J̃0 has only one eigenvalue that may be
nonzero, it is equal to Φ′0CAx0 + 1. So, if (15) is satisfied,
then J̃0 is Schur stable.

Proof of Theorem 5.
Similarly, decompose

J0 = J̃0 +W0(D), J1 = J̃1 +W1(D),

where W0(D), W1(D) contain eDT0 , eDT1 as multipliers.
The matrices eDT0 , eDT1 can simultaneously be made arbi-
trarily small by the choice of K. At the same time,

J̃0 =
[
Ax1

1

] [
Φ′0C 1

]
, J̃1 =

[
Ax0

1

] [
Φ′1C 1

]
.

Hence

J̃1J̃0 = (Φ′1CAx1 + 1)
[
Ax0

1

] [
Φ′0C 1

]
Thus the matrix rank J̃1J̃0 = 1 and the matrix product has
only one eigenvalue that may be non-zero, that is the one
equal to

(Φ′0CAx0 + 1)(Φ′1CAx1 + 1).

If (16) is satisfied, the matrix J̃1J̃0 is Schur stable.
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