
  

  

Abstract—Most real processes are high order and hence, an 
approximate model is usually used in practice. Considering the 
mismatching of model-process order, in this paper, a robust 
self-tuning PID-like controller is proposed by combining a pole 
assignment self-tuning PID controller with a filter. To design the 
PID-like controller, a reduced order model is introduced, whose 
linear parameters are identified by a normalized project 
algorithm with deadzone. The gains of the PID-like controller 
are obtained by pole assignment, which together with other 
parameters are tuned on-line according to the certainty 
equivalent principle. By resorting to time varying operation, the 
bounded input bounded output (BIBO) stability conditions and 
convergence conditions of the closed-loop system are presented.  

I. INTRODUCTION 
proportional-integral-derivative (PID) controller  has 
the advantages of structure simpleness and implemen- 
tation easiness. Since 1920, PID control has received 

widespread use in industry processes. Today, more than 
90% of various practical control systems employ PID 
control, even though lots of new control techniques have 
been proposed. The widely usage of PID control attracts 
more and more control engineers and theorists to design PID 
controllers in reverse.  

As we know, the key of designing a PID controller is the 
determination of its proportional, integral and derivative 
gains. Conventional PID controllers with fix gains might be 
difficult to maintain the desired control performance and 
stability during operation. Therefore, a great deal of attention 
has been focused on adaptive or self-tuning of PID controller 
gains. For example, in [1], the gains of the PID controller are 
tuned via pole assignment. In [2, 3], the generalized minimum 
variance control is utilized to tune the PID controller gains. 
There are also other adaptive or self-tuning schemes which 
can be found in literature [4-6]. However, the above adaptive 
or self-tuning PID control approaches are designed according 
to reduced order models, which might degrade or even 
become unstable when the underlying process dynamics are 
high order in nature.  

 
This work is partially supported by the Natural Science Foundation of 

china (61004091), the Research Funds for the Central Universities 
(N100408002), the “985 project” Technology Innovation Platform of 
Integrated Automation of Process industry, the National Fundamental 
Research Program of China (No. 2009CB320601), the Funds for Creative 
Research Groups of China (60821063), and the 111 Project (B08015). 

Y. Fu and T. Chai are with the State Key Laboratory of Synthetical 
Automation for Process Industries, Northeastern University, Shenyang, 
110819, People’s Public of China. Corresponding author: Y. Fu, Email: 
fuyue@mail.neu.edu.cn 

Most stability results in adaptive or self-tuning control 
systems are based on the assumption that the model used in 
the control structure is an accurate representation of the 
process[7-9]. However, the orders of most real processes are 
high and difficult to be accurately obtained. Hence, an 
approximate reduced order model is usually used in practice. 
Due to this model-process order mismatch, straightforward 
application of the stable algorithms found in literature may 
lead to instability problems when unmodeled dynamics are 
present. In [10], for a discrete-time linear system with 
unmodeled dynamics, based on a reduced order linear model, 
a stable adaptive control scheme is proposed using a 
normalized parameter estimation scheme.  

Inspired by the above idea, in this paper, for a class of 
discrete time system, by combining the pole assignment 
self-tuning PID controller with a filter, a robust self-tuning 
PID-like controller is proposed. In consideration of the mism- 
atching of model-process order, a reduced order model for the 
design of the controller is introduced. The linear parameters 
of the reduced order model are identified by a normalized 
project algorithm with deadzone. The high part is viewed as 
the unmodeled dynamics. The gains of the PID-like controller 
are obtained by pole assignment, which together with other 
parameters are tuned on-line according to the certainty 
equivalent principle. Bounded-input-bounded-output (BIBO) 
stability conditions and convergence conditions of the 
closed-loop system are presented by resorting to time varying 
operation. 

The rest of the paper is organized as follows. The system 
under consideration and the control objective are repres- 
ented in Section II. In Section III, the PID-like controller for 
the known system is provided. Section IV develops the 
proposed robust self-tuning PID-like controller. Section V 
provides the conditions of BIBO stability and convergence of 
the closed-loop system. Finally some conclusions are drawn 
in Section VI. 

II. PROBLEM DESCRIPTIONS 
Let a single-input single-output discrete time dynamical 

system be described by the following NARMA model: 
( 1) [ ( ), , ( 1), ( ), , ( )]a by t f y t y t n u t u t n+ = − + −" "     (2.1) 

where ( )u t and ( )y t are the system input and output, respecti- 
vely; [ ]f ⋅  is a smooth nonlinear function; 2,an ≥  1bn ≥  are 
the system orders. 

Without loss of generality, the origin ( , ) (0,0)u y =  is ass- 
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umed to be an equilibrium point of the above system (2.1). 
Expanding (2.1) around the origin ( , ) (0,0)u y =  by using 
Taylor series, we can obtain the following equivalent model: 
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0

( 1) ( ) ( 1)

( ) ( )
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a

b
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n b
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+ = − − − − +

+ + + −

+ − + −
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  (2.2) 

where 0
0

( 1) [ ] ( 1) , 1, ,ui a
y

a f y t i i n=
=

= − ⋅∂ ⋅ ∂ − + = " ; jb =  

0
0

[ ] ( ) ,  0, ,u b
y

f u t j j n=
=

∂ ⋅ ∂ − = " ; [ ]v ⋅ is the high order nonlin- 

ear term. To simplify the description, we define 
1 1

1( ) 1 a

a

n
nA z a z a z−− −= + + +"                     (2.3) 

1 1
0 1( ) b

b

n
nB z b b z b z−− −= + + +"                   (2.4) 

( ) { ( ), , ( 1), ( 1), , ( )}a bx t y t y t n u t u t n= − + − −" "     (2.5) 
Then (2.2) can be rewritten as 

1 1( ) ( 1) ( ) ( ) [ ( ), ( )]A z y t B z u t v x t u t− −+ = +          (2.6) 
In the following, the system described by (2.6) will be 

taken into account directly and the results obtained are global. 
Since (2.6) is equivalent to (2.1) in a neighborhood of the 
origin, the obtained results are also local with respects to (2.1). 
Although (2.6) looks like a linear system, it is actually the real 
description of the nonlinear system (2.1) around the origin. 

To design the required PID-like controller, the following 
equivalent reduced order model is introduced: 

1 1( ) ( 1) ( ) ( ) [ ( ), ( )]A z y t B z u t v x t u t− −+ = +            (2.7) 

where 1 1 2
1 2( ) 1A z a z a z− − −= + + , 1 1

0 1( )B z b b z− −= + are resp- 

ectively the reduced order parts of 1 1( ), ( )A z B z− − ; [ ]v ⋅ =  
1 1( ) ( 1) ( ) ( ) [ ( ), ( )]A z y t B z u t v x t u t− −− + + +  w i t h 1 1( ) ( )A z A z− −=  
1( )A z−− , 1 1 1( ) ( ) ( )B z B z B z− − −= − represents the unmodeled 

dynamics.  
Assumption 1.  
(1) The system orders an , bn or their upper bounds are 

known and the system parameters ia , ,   1, ,j ab i n= " , 

0, , bj n= "  lie in a compact region; 

(2) The root of the polynomial 1( )B z− lies in the unit 

circle such that 1( )B z−  is stable; 
(3) There exist unknown constants 0 1,α α such that the 

unmodeled dynamics [ ( ), ( )]v x t u t  satisfies 

0 10
max [ ( ), ( )] || ( 1) ||

t
v x u X t

τ
τ τ α α

≤ ≤
≤ − +             (2.8) 

where 00 α α< < with α being defined in the sequel, 

10 α< < ∞ , [ ]T( ) ( ), , ( 1), ( ), , ( )a bX t y t y t n u t u t n= − + −" " . 
The control objective is, for the unknown system (2.6) or 

(2,7), to determine a self-tuning PID-like controller so that all 
the signals in the closed-loop system remain bounded, while 
the output y(t) tracks reference input w(t), and the influence of 
the unmodeled dynamics is suppressed to the lowest possible 
level.  

III. PID-LIKE CONTROLLER 
To effectively control the system (2.7), by combining the 

conventional PID controller with a filter, the PID-like 
controller is proposed, whose structure is shown in the 
following figure.  
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Figure 1. Structure of the PID-like controller 

 
From Figure 1, the PID-like controller can be formulated as 

1( ) ( ) ( ) ( )
[ ( ) ( 1)]

P I

D

H z u t K t K t
K t t

ε ε
ε ε

− ∆ = ∆ +
+ ∆ − ∆ −

               (3.1) 

where 11 z−∆ = − with 1z− being the unit back shift operator is 
defined as the differential term; ( ) ( ) ( )t w t y tε = − with ( )w t  
being the reference signal is defined as the system tracking 
error; , ,P I DK K K  are respectively the proportional, integral 

and derivative gains; 1 1( ) 1H z hz− −= +  is viewed as a filter.  
To select the parameters of the PID-like controller (3.1), let 

us substituting (3.1) into the system (2.7), then we have 
1 1 1 1 1

1 1 1

[ ( ) ( ) ( ) ( )] ( 1)
( ) ( ) ( ) ( ) [ ( ), ( )]

H z A z z B z G z y t
B z G z w t H z v x t u t

− − − − −

− − −

∆ + +

= + ∆
          (3.2) 

where 1 1 2
0 1 2( )G z g g z g z− − −= + + , 0 P I Dg K K K= + + , 

1 2P Dg K K=− − , 2 Dg K= . Therefore, the gains of the 
PID-like controller can be calculated respectively by 

1 22PK g g=− − , 0 1 2IK g g g= + + , 2DK g= . 

The characteristic polynomial 1( )T z− of the closed-loop 
system is 

1 1 1 1 1 1( ) ( ) ( ) ( ) ( )T z H z A z B z G z z− − − − − −= ∆ +        (3.3) 
To guarantee the stability of the closed-loop system, the zero 
should be assigned in the unit circle, i.e., the polynomials 

1( )G z− and 1( )H z− should be chosen such that the following 
formula is satisfied: 

1 1 1

1 1 1

det{ ( )} det{ ( ) ( )
( ) ( )} 0, | | 1

T z H z A z
z B z G z z

− − −

− − −

= ∆

+ ≠ >
      (3.4) 

IV. ROBUST SELF-TUNING PID-LIKE CONTROLLER 
Since the purpose of this paper is to design a self-tuning 

PID-like controller for the unknown system (2.7), some 
parameter identification algorithm for the reduced order 
linear part of the system is needed.  

To identify the reduced order linear parameters of the 
system (2.7), we first define ( ) [ ( ), ( 1), ( ),rX t y t y t u t= −  

T( 1)]u t − , T
1 2 0 1[ , , , ]r a a b bθ = − − , ( ) [ ( 2), ,mX t y t= − "  
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T( 1), ( 2), , ( )]a by t n u t u t n− + − −" , 3[ , , ,
am na aθ = − −"  

T
2 , , ]

bnb b" , then, the system (2.7) can be rewritten as 
T T( 1) ( ) ( ) [ ( ), ( )]r r m my t X t X t v x t u tθ θ+ = + +       (4.1)  

Since T[ ( ), ( )] ( ) [ ( ), ( )]m mv x t u t X t v x t u tθ= + could be unbou- 
nded, to identify the reduced order linear parameters using the 
project algorithm with deadzone, it should be normalized. 
Now we define the normalization factor as 

1
( ) max{max | ( 1) |, }

X
ii n

N t X t c
≤ ≤

= −                  (4.2) 

where ( )iX t is the ith element of T T T( ) [ ( ) , ( ) ]r mX t X t X t= ; 
1X a bn n n= + + is the element number of ( )X t ; c is a given 

positive constant. Then the identification model of the 
reduced order linear parameters is obtained as 

T
,( 1) ( ) [ ( ), ( )]N r r N Ny t X t v x t u tθ+ = +            (4.3) 

where ( 1) ( 1) ( )Ny t y t N t+ = + , , ( ) ( ) ( )r N rX t X t N t= ,  

[ ( ), ( )] [ ( ), ( )] ( )Nv x t u t v x t u t N t= . 
It is easy to know, in the identification model (4.3), 
[ ( ), ( )]Nv x t u t  is bounded.  
Assumption 2. The bound of [ ( ), ( )]Nv x t u t  is N∆  and is 

known.  
Based on Assumption 2, the following project algorithm 

with deadzone is adopted: 

               ,
T

, ,

( ) ( 1) ( )ˆ ˆ( ) ( 1)
1 ( 1) ( 1)

r N N
r r

r N r N

t X t e t
t t

X t X t
η

θ θ
−

= − +
+ − −

     (4.4) 

1
( )

0
tη


= 


  

| ( ) | 4N Ne t > ∆If 

Otherwise
              (4.5) 

T
,

ˆ( ) ( ) ( 1) ( 1)N N r r Ne t y t t X tθ= − − −                     (4.6) 

where
T

1 2 0 1
ˆ ˆˆ ˆ ˆ( ) ( ), ( ), ( ), ( )r t a t a t b t b tθ  = − −  .  

The model error is obtained as 
ˆ( ) ( ) ( 1) ( 1)r re t y t t X tθ Τ= − − −                   (4.7) 

    Based on the above identification algorithm, the robust 
self- tuning PID-like controller is obtained as 

1ˆ ˆ ˆ( , ) ( ) ( ) ( ) ( ) ( )
ˆ ( )[ ( ) ( 1)]
P I

D

H t z u t K t t K t t

K t t t

ε ε

ε ε

− ∆ = ∆ +

+ ∆ − ∆ −
         (4.8) 

where 1 2
ˆ ˆ ˆ( ) ( ) 2 ( )PK t g t g t=− − , 0 1 2

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )IK t g t g t g t= + + , 

2
ˆ ˆ( ) ( )DK t g t= ; 1

0
ˆ ˆ( , ) : ( )G t z g t− = 1 2

1 2ˆ ˆ( ) ( )g t z g t z− −+ + and 
1ˆ ( , )H t z− are computed such that 

1 1 1

1 1 1

ˆˆdet{ ( )} det{ ( , ) ( , )
ˆ ˆ( , ) ( , )} 0, | | 1

T z H t z A t z

z B t z G t z z

− − −

− − −

= ∆

+ ≠ >
      (4.9) 

where 1 1 2
1 2

ˆ ˆ ˆ( , ) 1 ( ) ( )A t z a t z a t z− − −= + + , 1
0

ˆ ˆ( , ) ( )B t z b t− =  
1

1̂ ( )b t z−+ .                             

V. STABILITY ANALYSIS 
Since the proposed self-tuning PID-like algorithm deals 

with time-varying operation, the following symbols are 
introduced to simplify the operation before proceeding with 
stability analysis. For the given time-varying polynomials: 

1

1

2

2

1 1
0 1

1 1
0 1

( , ) ( ) ( ) ( )

( , ) ( ) ( ) ( )

n
n

n
n

L t z l t l t z l t z

M t z m t m t z m t z

−− −

−− −

= + + +

= + + +

"

"
 

We define 
1 1: ( , ), : ( , )L L t z M M t z− −= =  

1 1( , ) ( , ) : ( ) ( ) i j
i j

i j
L t z M t z l t m t z− − − −= ∑∑  

1 1( , ) ( , ) : ( ) ( ) .i j
i j

i j
L t z M t z l t m t i z− − − −= −∑∑i  

Lemma 1.  The identification algorithm (4.3)-(4.6) have 
the following properties: 

(1) ˆ ˆ|| ( ) || || (0) ||r r r rtθ θ θ θ− ≤ − , where ˆ (0)rθ  is the initial 

vector of ˆ ( )r tθ ; 

(2) 
2 2

, ,

( )( ( ) 16 )
lim 0

4(1 ( 1) ( 1))
N N

t
r N r N

t e t
X t X t

η
Τ→∞

− ∆
=

+ − −
; 

(3) ˆ ˆlim || ( ) ( ) || 0r rt
t t kθ θ

→∞
− − = , for any finite positive 

integer k. 
Proof. Define ˆ( ) ( )r r rt tθ θ θ= −� , then from (4.3) and (4.6) 

we have 
T

,

T
,

ˆ( ) ( ) ( 1) ( 1)

( 1) ( 1) [ ( 1), ( 1)]
N N r r N

r r N N

e t y t t X t

t X t v x t u t

θ

θ

= − − −

= − − − + − −�
   (5.1) 

Consequently, from (4.4) and (5.1), we have, 

,2 2
2

,

2 2 2
,

2 2
,

2 ( ) ( ) ( 1) ( 1)
|| ( ) || || ( 1) ||

1 || ( 1) ||

( ) ( ) || ( 1) ||
[1 || ( 1) || ]

N r r N
r r

r N

N r N

r N

t e t t X t
t t

X t

t e t X t
X t

η θ
θ θ

η

Τ− −
≤ − +

+ −

−
+

+ −

�
� �

 

2 2 2
,2

2 2
,

2
,

( ) ( ) || ( 1) ||
|| ( 1) ||

[1 || ( 1) || ]
2 ( ) ( )[ [ ( 1), ( 1)] ( )]

1 || ( 1) ||

N r N
r

r N

N N N

r N

t e t X t
t

X t
t e t v x t u t e t

X t

η
θ

η

−
= − +

+ −

− − −
+

+ −

�

 

2
2

,

22
,

2 2
, ,

2 ( ) ( ) [ ( 1), ( 1)]
|| ( 1) ||

1 || ( 1) ||

( ) || ( 1) ||( ) ( )
[2 ]

1 || ( 1) || 1 || ( 1) ||

N N
r

r N

r NN

r N r N

t e t v x t u t
t

X t

t X tt e t
X t X t

η
θ

ηη

− −
= − +

+ −

−
− −

+ − + −

�

 

2
2

,

2

2
,

2 ( ) ( ) [ ( 1), ( 1)]
|| ( 1) ||

1 || ( 1) ||

( ) ( )
1 || ( 1) ||

N N
r

r N

N

r N

t e t v x t u t
t

X t

t e t
X t

η
θ

η

− −
≤ − +

+ −

−
+ −

�

 

          

2 2
2

2
,

2

2
,

( )[ ( ) 16 [ ( 1), ( 1)]
|| ( 1) ||

4(1 || ( 1) || )

( ) ( )
2(1 || ( 1) || )

N N
r

r N

N

r N

t e t v x t u t
t

X t

t e t
X t

η
θ

η

− − −
≤ − −

+ −

−
+ −

�
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2 2 2
2

2 2
, ,

( )[ ( ) 16 ] ( ) ( )
|| ( 1) ||

4(1 || ( 1) || ) 2(1 || ( 1) || )
N N N

r
r N r N

t e t t e t
t

X t X t
η η

θ
− ∆

≤ − − −
+ − + −

�       

        (5.2) 
From (4.5), since ( ) 0tη = for | ( ) | 4N Ne t < ∆ and is 1 other- 

wise, 2{|| ( ) || }r tθ� is a nonincreasing sequence. Hence 
2|| ( ) ||r tθ� 2 2|| ( 1) || || (0) ||r rtθ θ≤ − ≤ ≤� �" and ˆ ( )r tθ is bounded. 

Moreover, 
2 2

2
1 ,

( )[ ( ) 16 ]
lim || (0) || || ( ) ||

4(1 || ( 1) || )

M
N N

r rM t r N

t e t
N

X t
η

θ θ
→∞

=

− ∆
≤ − < ∞

+ −∑ � �   (5.3) 

Therefore (1) and (2) in Lemma 1 can be easily obtained. 
From (5.2), we also have 

2

2
1 ,

( ) ( )
lim || (0) || || ( ) ||

2(1 || ( 1) || )

M
N

r rM t r N

t e t
N

X t
η

θ θ
→∞

=

≤ − < ∞
+ −∑ � �  (5.4) 

therefore 
2

2
,

( ) ( )
lim 0

2(1 || ( 1) || )
N

t
r N

t e t
X t

η
→∞

=
+ −

                       (5.5) 

Since for any finite positive integer k,  
2

2

1

2

1

2 2
, ,

2
1 ,

2

2
1 ,

ˆ ˆ|| ( ) ( ) ||

|| ( ) ( 1) ||

|| ( ) ( 1) ||

( ) ( ) ( 1) ( 1)
(1 || ( 1) || )

( ) ( )
1 || ( 1) ||

r r
t

r r
j t k

t

r r
j t k

t
N r N r N

j t k r N

t
N

j t k r N

t t k

j j

k j j

t e t X t X t
k

X t

t e t
k

X t

θ θ

θ θ

θ θ

η

η

= − +

= − +

Τ

= − +

= − +

− −

= − −

≤ − −

− −
≤

+ −

≤
+ −

∑

∑

∑

∑

� �

� �        (5.6) 

then from (5.5), Lemma 1 (3) is obtained.     □ 
 

Lemma 2. For any positive constant δ , there exist time 
instantT , such that when t T> , the identification algorithm 
(4.3)-(4.7) have the following properties: 

(1) | ( ) | 4N Ne t δ< ∆ + ; 
(2) 

0
max | ( ) | (4 ) max{|| ( ) ||, }Nt

e X t d c
τ

τ ε
≤ ≤

< ∆ + ⋅ − . 

Proof. Since ,{ ( )} { ( ) ( )}r N rX t X t N t= is a bounded sequ- 
ence, from (1) in Lemma 1, we can obtain  

lim
t→∞

2 2( )[| ( ) | 16 ] 0N Nt e tη − ∆ → . 

Consequently (1) in Lemma 2 is obtained. From (4.6) and 
(4.7), we have ( ) ( ) ( )Ne t N t e t= ⋅ , therefore from Lemma 2 
(1), Lemma 2 (2) can be obtained.     □ 

Theorem 1. For the system (2.7) with the self-tuning 
PID-like control algorithm (4.3)-(4.7), if Assumptions 1-2 are 
satisfied and if there exists a region Π  and a constant α ∈ Π  
such that 4 Nα δ≥ ∆ + , then the closed-loop system is BIBO 
stable, i.e. the sequence {|| ( ) ||}X t  is bounded. Moreover, at 
steady state, the tracking error ( )tε  tends to zero for the step 
input. 

 Proof. To simplify the description, in the following, we 

first note 1ˆ ˆ( , ) ,A t z A− = 1ˆ ˆ( , ) ,B t z B− = 1ˆ ˆ( , ) ,H t z H− = 1ˆ ( , )G t z−  

Ĝ= . From (4.7), we have 
ˆ( 1) ( 1) ( ) ( )

ˆ ˆ( 1) ( )

r re t y t t X t

Ay t Bu t

θ Τ+ = + −

= + −
                         (5.7) 

The self-tuning PID-like controller (4.8) can be rewritten as 
ˆ ˆˆ ( ) ( ) ( )H u t Gw t Gy t∆ = −                            (5.8) 

The polynomials ˆˆ ,H G are chosen such that the following 
polynomial 1( )T z− is stable: 

1 1ˆ ˆ ˆˆ( )T z H A BGz− −= ∆ +                             (5.9) 

Multiplying both sides of (5.7) by Ĥ ∆ , and using (5.8) and 
(5.9), we have 

1

1

ˆ ˆˆ ˆ ˆ( 1) ( 1) ( )
ˆ ˆ ˆˆˆ ˆ ˆ ˆ( 1) ( ) [ ] ( 1)

ˆ ˆˆ ˆ( ) ( 1) ( ) ( )
ˆ ˆˆ ˆ[ ] ( 1)

ˆ ˆˆ ˆ( ) ( 1) ( ) ( )
ˆ ˆˆ ˆˆ ˆ ˆ ˆ[ ] ( ) [ ] (

H e t H Ay t H Bu t

H Ay t H Bu t H A H A y t

T z y t BGy t H Bu t

H A H A y t

T z y t B Gy t B H u t

B G BG y t H A H A y t

−

−

∆ + = ∆ + − ∆

= ∆ + − ∆ + ∆ − ∆ +

= + − − ∆

+ ∆ − ∆ +

= + − − ∆

+ − + ∆ − ∆

i i

i i

i

i

i i

i i

1

1)
ˆ ˆˆ ˆ[ ] ( )

ˆ ˆ ˆˆ ˆ ˆ( ) ( 1) ( ) [ ] ( )
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ[ ] ( 1) [ ] ( )

H B B H u t

T z y t B Gw t B G BG y t

H A H A y t H B B H u t

−

+

− ∆ − ∆

= + − + −

+ ∆ − ∆ + − ∆ − ∆

i i

i i

i i i
          (5.10) 

From Lemma 1 (3), when t →∞ , the elements in the square 
brackets of (5.10) tend to zero. Then from the boundedness of 
ˆ ( )r tθ ,w(t), the fact that 1( )T z− is stable, there exist positive 

constants 1c , 2c  such that 

1 2 0
| ( 1) | max | ( 1) |

t
y t c c e

τ
τ

≤ ≤
+ ≤ + +                     (5.11) 

Combining (5.10) with the system (2.7), when t → ∞ , we 
have 

1 1 1

1 1

ˆ( ) ( 1) ( ) ( ) ( )
ˆ ˆ( ) [ ] ( ) ( )

A z H e t T z B z u t

T z v A z B Gw t

− − −

− −

∆ + =

+ ⋅ − i
           (5.12) 

Since 1 1( ) ( )T z B z− − is stable, and ˆ ( )r tθ and w(t) are bounded, 
there exist positive constants 3c , 4c such that 

3 4 40 0
| ( ) | max | ( 1) | max | [ ( ), ( )] |

t t
u t c c e c v x u

τ τ
τ τ τ

≤ ≤ ≤ ≤
≤ + + +  (5.13) 

Since T( ) [ ( ), , ( ), ]X t y t u t= " " , there exist positive consta- 
nts 5 6,c c such that 

5 6 60 0
|| ( ) || max | ( 1) | max | [ ( ), ( )] |

t t
X t c c e c v x u

τ τ
τ τ τ

≤ ≤ ≤ ≤
≤ + + + (5.14) 

From the assumption (2.8), there exists positive constant 7c  
such that 

7 6 6 00 0
|| ( 1) || max | ( ) | 2 max || ( 1) ||

t t
X t c c e c X

τ τ
τ α τ

≤ ≤ ≤ ≤
− ≤ + + − (5.15) 
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Therefore if we note 61 (2 )cα = , then for any 0 [0, )α α∈ , 
there exist positive 8 9,c c  such that 

8 9 0
|| ( 1) || max | ( ) |

t
X t c c e

τ
τ

≤ ≤
− ≤ +                     (5.16) 

If {|| ( ) ||}X t  is unbounded, there exists a subsequence 
{ }st , such that lim || ( ) ||

s
st

X t
→∞

= ∞ . Therefore from (5.16), 

when t → ∞ , we have  

9 08
max | ( ) |

1
|| ( 1) || || ( 1) ||

st

s s

c ec
X t X t

τ
τ

≤ ≤≤ +
− −

                    (5.17) 

Define the region 9(0,1 ]cΠ = , then if there exist a constant 
α ∈ Π such that 4 Nα δ≥ ∆ + , (5.17) will contradict to 
Lemma 1 (2). Therefore {|| ( ) ||}X t is bounded and the 
closed-loop system is BIBO stable. 

From (5.10), we have 
1 1 ˆ ˆˆ ( 1) ( ){ ( 1) ( 1)} [ ( ) ] ( )

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ[ ] ( ) [ ] ( )
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ[ ] ( 1) [ ] ( )

H e t T z y t w t zT z BG w t

BG B G w t B G BG y t

H A H A y t H B B H u t

− −∆ + = + − + + −

+ − + −

+ ∆ − ∆ + − ∆ − ∆

i i

i i i
    (5.18) 

From (5.8), we have 
1 ˆˆ ˆ( 1) ( ){ ( 1) ( 1)} ( 1)

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ[ ] ( ) [ ] ( )
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ[ ] ( 1) [ ] ( )

H e t T z y t w t H Aw t

BG B G w t B G BG y t

H A H A y t H B B H u t

−∆ + = + − + + ∆ +

+ − + −

+ ∆ − ∆ + − ∆ − ∆

i i

i i i
   (5.19) 

Since when t →∞ , the elements in the square brackets of 
(5.19) tend to zero, the tracking error ( )tε  satisfies 

1 ˆˆ ˆ( ) ( ) ( ) ( )T z t H e t H Aw tε− = ∆ + ∆                 (5.20) 
Therefore, at steady state, i.e. when 1z = , ( )tε  tends to zero 
for the step input.     □ 

VI. CONCLUSION 
This paper proposes a robust self-tuning PID-like control- 

ler by combining a pole assignment self-tuning PID contro- 
ller with a filter. Considering the mismatching of model- 
process order, a reduced order model for the design of the 
controller is introduced. The linear parameters of the reduced 
order model are identified by a normalized project algorithm 
with deadzone. The high part is viewed as the unmodeled 
dynamics. The gains of the PID-like controller are obtained 
by pole assignment, which together with other parameters are 
tuned on-line according to the certainty equivalent principle. 
BIBO stability condition and convergence condition of the 
closed-loop system are presented by resorting to time varying 
operation.  
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