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Abstract— An optimal control problem with a nonlinear
control system embedded is considered. Using the endpoint map
of the control system, such problems can be written as nonlinear
programs on the set of admissible controls. Though necessary
optimality conditions exist for such problems, they are often
nonconvex and such conditions are not sufficient. A relaxation
procedure is outlined which generates a convex program whose
solution value is a guaranteed lower bound on the solution value
of the original problem. This result is a crucial step towards
developing deterministic global optimization techniques for op-
timal control problems using a branch-and-bound framework.
The major contribution is that, unlike other developments along
these lines, the convex underestimating program derived here
is valid on the original function space; i.e. there is no need to
discretize the control.

I. INTRODUCTION

We consider the open-loop optimal control problem infor-

mally stated as

inf
u∈U

φ(u(tf ),x(tf ,u)) (1)

s.t. g(u(tf ),x(tf ,u)) ≤ 0

q(t,u(t),x(t,u)) ≤ 0, a.e. t ∈ [t0, tf ],

where U is a subset of (L1([t0, tf ]))nu and, for each u ∈ U ,

x(·,u) is an absolutely continuous solution of

ẋ(t,u) = f(t,u(t),x(t,u)), a.e. t ∈ [t0, tf ], (2)

x(t0,u) = x0,

which is assumed unique. This problem is of general interest

and has been the subject of intense research for decades

[1]. Nonetheless, there is no general purpose algorithm for

solving (1) to global optimality. In this article, we begin

to address this problem using ideas which originated in

the context of branch-and-bound algorithms for the global

solution of nonlinear programs on Euclidean spaces.

In order to apply branch-and-bound global optimization

to a given problem, there must be procedures available for

computing guaranteed upper and lower bounds on the solu-

tion value of the original problem when restricted to a given

subset of the search space. Upper bounding is typically done

by simply evaluating the objective function at any feasible

point. Obtaining a lower bound is much more difficult and is

typically the key development required to extend branch-and-

bound techniques to a new class of problems. In this article,

we present a lower bounding procedure for (1). However, at
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this time we cannot present a complete branch-and-bound

global optimization algorithm for (1) due to difficulties that

arise in defining an exhaustive search procedure in an infinite

dimensional search space.

To compute a guaranteed lower bound on (1), a procedure

is presented for constructing an auxiliary optimal control

problem, called a relaxation of (1), with the properties (a)

the optimal objective value is guaranteed to underestimate

the infimum in (1), and (b) it is convex in the sense that

the feasible set is a convex subset of U and the mapping

taking u to the objective value is convex on this set. Because

it is convex, this relaxed problem is in principle solvable

to global optimality. For example, necessary and sufficient

optimality conditions for such programs are derived in [2],

and gradient based solution methods are proposed. Suppos-

ing that such a solution can be obtained, this procedure

generates a guaranteed lower bound on the solution of (1).

In [2], conditions were also studied under which (1) can be

guaranteed to be convex, based on arguments similar to those

presented in §IV. In contrast, the method presented here is

not used to verify convexity, but rather to construct a convex

optimization problem which underestimates a given instance

of (1), even when (1) is nonconvex.

Several approaches for computing lower bounds for (1)

have been proposed when the controls u are approximated

by some finite representation [3], [4], [5]. Under a uniqueness

assumption on the embedded ODEs, this approximation re-

sults in a nonlinear program on a Euclidean space [6]. Thus,

the development of lower bounding methods enabled the use

of branch-and-bound to solve the approximate optimal con-

trol problem to global optimality. However, approximating

u is not only unsatisfying, but potentially requires a large

number of variables in order to approximate a single control

accurately, which can make global optimization impractical.

It is shown here that the relaxation procedure used in [5] can

actually provide relaxations of (1) on the original, infinite-

dimensional space, which eliminates the need for control

parametrization, at least in the lower bounding calculation.

A. Basic approach

Let I = [t0, tf ] ⊂ R, Ū ⊂ R
nu compact, and suppose

that U maps I into compact, convex subsets of Ū , U(t). In

the remainder of the article, the set of admissible controls is

defined by

U ≡ {u ∈ (L1(I))nu : u(t) ∈ U(t) a.e. in I} (3)

and is assumed nonempty. It is trivial to verify that U is

a convex subset of the vector space (L1(I))nu . Finally, let

D ⊂ R
nx be open and suppose that the mappings in (1) have
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the form φ : Ū × D → R, g : Ū × D → R
ng , and q : I ×

Ū × D → R
nq . Assumptions regarding the control systems

(2) are discussed in §IV. We note here that the solution has

the form x : I × U → D.

In order to construct a convex underestimating program

for (1), convex underestimating functions are derived for the

mappings

U ∋ u 7−→ Fφ(u) ≡ φ(u(tf ),x(tf ,u)),

U ∋ u 7−→ Fg(u) ≡ g(u(tf ),x(tf ,u)),

and the family of mappings

U ∋ u 7−→ Fq,t(u) ≡ q(t,u(t),x(t,u)),

for a.e. t ∈ I . Defining the relaxed program with these

convex underestimators in place of the mappings above, both

convexity and the desired underestimation property follow

from standard arguments [7], [2].

The development of convex underestimators for the map-

pings above is based on McCormick’s relaxation technique

[8]. In §II, McCormick’s technique is introduced and it is

shown that the desired relaxations of Fφ, Fg and Fq,t can

be constructed provided that relaxations of the end-point map

of (2) are available. In §III and IV, McCormick’s technique

is combined with some basic results concerning integrals

and control systems to yield procedures for relaxing integral

functionals and the end-point maps of control systems.

II. MCCORMICK’S RELAXATIONS

McCormick’s relaxation technique is widely used for

constructing convex underestimators for nonlinear functions

on R
n. The technique is briefly described here. The novelty

of this presentation is that some of the key results are

shown to hold on an arbitrary vector space. Certainly, the

standard definition of convexity (concavity) makes sense in

this setting. Relaxations in this context are defined as follows.

Definition 1: Let Q denote an arbitrary vector space, U ⊂
Q convex, and h, hc, hC : U → R. The function hc is called

a convex relaxation of h on U if hc is convex on U and

hc(u) ≤ h(u), ∀u ∈ U . Similarly, hC is called a concave

relaxation of h on U if hC is concave on U and hC(u) ≥
h(u), ∀u ∈ U . The terms convex and concave relaxation will

also be used for vector functions when these conditions hold

elementwise.

We first develop McCormick’s relaxations for the case

Q ≡ R
nu . McCormick’s relaxation technique applies to

factorable functions. Roughly speaking, a function is fac-

torable if it can be defined by the finite recursive application

of binary additions, binary multiplications and composition

with a pre-defined library of univariate functions, typically

including exponential and logarithmic functions, square root,

odd and even integer powers, trigonometric functions, etc.

Letting E denote this collection of univariate functions, we

have the following definition.

Definition 2: Let Q ≡ R
nu , U ⊂ Q convex. A function

h : U → R is factorable if it can be expressed in terms

of a finite number of factors v1, . . . , vm such that, given

u ∈ U , vi = ui for i = 1, . . . , nu, and vk is defined for each

nu < k ≤ m as either

(a) vk = vi + vj , with i, j < k, or

(b) vk = vivj , with i, j < k, or

(c) vk = wk(vi), with i < k and wk ∈ E ,

and h(u) = vm(u). A vector function is called factorable if

each element is factorable.

Supposing that U is an nu-dimensional, closed, bounded

interval, [uL
1 , uU

1 ] × . . . × [uL
nu

, uU
nu

], and h is factorable,

a standard application of McCormick’s relaxation technique

generates relaxations of h on U by associating with each fac-

tor vk the quantities (vL
k , vU

k , vc
k, vC

k ), which are, respectively,

lower and upper bounds for vk and convex and concave

relaxations of vk on U . The computation is initialized by

letting (vL
k , vU

k , vc
k, vC

k ) = (uL
k , uU

k , uk, uk), for all k ≤
nu, and computing these values for the remaining factors

recursively based on rules for each basic operation: +, ×
and composition with an element of E . These propagation

steps are based on the following lemma. The lemma is well

known for Q = R
nu . Here, it is shown to hold in the case

of a general vector space.

Lemma 1: Let Q be a vector space and U ⊂ Q convex.

Let vL
i , vU

i , vL
j , vU

j ∈ R, vi, vj , v
c
i , v

c
j , v

C
i , vC

j : U → R and

suppose that vi(u) ∈ [vL
i , vU

i ], ∀u ∈ U , vc
i and vC

i are,

respectively, convex and concave relaxations of vi on U , and

that the analogous conditions hold for vj . Further, let w, wc :
[vL

i , vU
i ] → R and suppose that wc is a convex relaxation of

w on [vL
i , vU

i ]. Finally, let zmin be a minimum of wc on

[vL
i , vU

i ] and define

vc
+(u) = vc

i (u) + vc
j(u),

vc
×(u) = max(αi(u) + αj(u) − vL

j vL
i ,

βi(u) + βj(u) − vU
j vU

i ),

vc
w(u) = wc(mid(vc

i (u), vC
i (u), zmin)).

where mid returns the middle value of its arguments and

αi(u) = min(vL
j vc

i (u), vL
j vC

i (u)),

αj(u) = min(vL
i vc

j(u), vL
i vC

j (u)),

βi(u) = min(vU
j vc

i (u), vU
j vC

i (u)),

βj(u) = min(vU
i vc

j(u), vU
i vC

j (u)).

Then vc
+, vc

× and vc
w are convex relaxation of vi +vj , vi×vj

and w ◦ vi, respectively, on U
Proof: The case of addition is trivial. Since vc

i (u) ≤
vC

i (u) and vc
j(u) ≤ vC

j (u), ∀u ∈ U , it follows from sign

arguments that αi, αj , βi and βi are convex on U . Because

the sum of two convex functions is convex and the maximum

of two convex functions is convex, it follows that v× is

convex on U . It is well known [8] that

vi(u)vj(u) ≥ max(vL
j vi(u) + vL

i vj(u) − vL
j vL

i ,

vU
j vi(u) + vU

i vj(u) − vU
j vU

i ),

∀u ∈ U . It follows that v×(u) ≤ vi(u)vj(u), ∀u ∈ U .

Since wc is convex, it can be decomposed [8] into a

constant part, A ≡ wc(zmin), a convex, non-increasing
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part, wc
D(z) = wc(min(z, zmin)) − A, and a convex, non-

decreasing part, wc
I(z) = wc(max(z, zmin)) − A, such that

wc(vi(u)) = wc
I(vi(u)) + wc

D(vi(u)) + A, ∀u ∈ U . By

monotonicity arguments,

wc
I(vi(u)) + wc

D(vi(u)) + A

≥ wc
I(max(vc

i (u), vL
i )) + wc

D(min(vC
i (u), vU

i )) + A

= wc(max(vc
i (u), vL

i , zmin))+

wc(min(vC
i (u), vU

i , zmin)) − A

= wc(max(vc
i (u), zmin)) + wc(min(vC

i (u), zmin)) − A

= wc(mid(vc
i (u), vC

i (u), zmin)), ∀u ∈ U .

Then,

w(vi(u)) ≥ wc(vi(u)) ≥ wc(mid(vc
i (u), vC

i (u), zmin)),

for all u ∈ U . Convexity of the last term follows from

the first equality above, since the composition of a convex

non-increasing function with a concave functions is convex,

the composition of a convex non-decreasing function with

a convex function is convex, the maximum of two convex

functions is convex, and the minimum of two concave

functions is concave [2].

Remark 1: The previous lemma enables the computation

of vc
k from knowledge of (vL

i , vU
i , vc

i , v
C
i ) for all i < k. An

analogous set of rules are available for vC
k [8], and vL

k and

vU
k can be computed using standard interval arithmetic [9].

According to this procedure, the requirement for functions

in E is that interval extensions, as well as convex and

concave relaxations are available. These are provided for

many common univariate functions in [10].

In the case where Q = R
nu , U is an nu-dimensional,

closed, bounded interval, and h is factorable, convex and

concave relaxations of h on U can now be obtained directly

by recursive application of the rules in Lemma 1 and Remark

1 to the factors of h. It should be noted that the recursive

nature of McCormick’s relaxations facilitate an automatic

computer implementation, e.g. [11], [12].

A. Relaxations of composite functions

In [10], it was observed that Lemma 1 and Remark 1 can

also be used to construct relaxations of composite functions.

Since the arguments in [10] are based on application of

Lemma 1, the method can easily be extended to composite

functions on an arbitrary vector space. To present these

results, let Ū , U(t), U be defined as in §I-A. Relaxations

of the mapping Fq,t are derived for fixed t ∈ I , under the

assumption that convex and concave relaxations of x(t, ·) are

available (see §IV). The following assumption is required.

Assumption 1: Functions xL,xU : I → R
nx are available

such that x(t,u) ∈ X(t) ≡ [xL(t),xU (t)], ∀(t,u) ∈ I × U ,

and X(t) ⊂ D, ∀t ∈ I .

Remark 2: Sufficient conditions for functions xL and xU

to bound x in the sense of Assumption 1, as well as efficient

methods for computing them, can be found in [13].

Now suppose that, for each fixed t ∈ I , U(t) =
[uL(t),uU (t)] is a closed, bounded nu-dimensional interval

and q(t, ·, ·) is factorable on U(t) × X(t). The method

presented in [10] provides functions

qc
t ,q

C
t : U(t) × R

nx × R
nx → R

nq

with the following property: If ψc
t ,ψ

C
t : U → R

nx are,

respectively, convex and concave relaxations of x(t, ·) on U ,

then the composite mappings

U(t) × U ∋ (p,u) 7−→ qc
t(p,ψc

t(u),ψC
t (u)),

U(t) × U ∋ (p,u) 7−→ qC
t (p,ψc

t(u),ψC
t (u)),

are, respectively, convex and concave relaxations of

U(t) × U ∋ (p,u) 7−→ q(t,p,x(t,u))

on U(t)×U . Using these properties, it is easily verified that

the mapping

U ∋ u 7−→ Fc
q,t(u) ≡ qc

t(u(t),ψc
t(u),ψC

t (u))

is a convex relaxation of Fq,t on U .

The construction of the functions qc
t and qC

t is dis-

cussed in detail in [10]. Informally, these functions

are simply the results of recursively applying Lemma

1 (and Remark 1) to the factors of q(t, ·, ·), not-

ing that bounds and relaxations on the first and sec-

ond arguments are given by (uL(t),uU (t),u(t),u(t)) and

(xL(t),xU (t),ψc
t(u),ψC

t (u)), respectively.

It is not difficult to see that relaxations of Fφ and Fg

can also be constructed by analogous procedures. Thus, the

task of deriving a convex underestimating program for (1)

has been reduced to that of deriving convex and concave

relaxations for the end-point map of the control system (2).

That development occupies the remainder of the article.

III. RELAXING INTEGRAL FUNCTIONALS

Let Ū , U(t) and U be defined as in §I-A. In this section,

relaxations of the functional

U ∋ u 7−→ H(u) ≡

∫ t

t0

h(s,u(s))ds, (4)

are considered, where h : I × Ū → R
n. Though no integral

functionals appear in (1), the development in this section is

required for relaxing the end-point maps of control systems

in §IV. Indeed, integral functionals have not been included

in (1) because they can be treated by augmenting quadrature

variables to the control system (2). For the benefit of §IV,

the following lemma is stated for a more general functionals

than above.

Lemma 2: Let h : I × Ū ×U → R
n and suppose that the

mapping t 7−→ h(t,u(t),u) is in (L1(I))n for every u ∈ U .

If, for a.e. t ∈ I , the mapping

U(t) × U ∋ (p,u) 7−→ h(t,p,u)

is convex on U(t) × U , then the mapping

U ∋ u 7−→ H(u) ≡

∫ t

t0

h(s,u(s),u)ds

is convex on U , for every t ∈ I .
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Proof: Choose any u1,u2 ∈ U and any λ ∈ (0, 1).
For a.e. s ∈ I , the hypothesis on h and the fact that

u1(s),u2(s) ∈ U(s) imply that

h(s, λu1(s) + (1 − λ)u2(s), λu1 + (1 − λ)u2)

≤ λh(s,u1(s),u1) + (1 − λ)h(s,u2(s),u2).

Since this holds for any s ∈ I , linearity and monotonicity of

the integral imply that, for any t ∈ I ,∫ t

t0

h(s, λu1(s) + (1 − λ)u2(s), λu1 + (1 − λ)u2)ds

≤ λ

∫ t

t0

h(s,u1(s),u1)ds + (1 − λ)

∫ t

t0

h(s,u2(s),u2)ds.

The result follows since u1,u2 ∈ U and λ ∈ (0, 1) are

arbitrary.

Lemma 2 will be used in its full generality in §IV. For

the moment, consider the functional H as defined in (4),

with h : I × Ū → R
n. If, for each t ∈ I , U(t) is

interval-valued and h(t, ·) is nonconvex but factorable on

U(t), then McCormick’s technique can be used to compute

a convex relaxation of h(t, ·) on U(t), hc
t : U(t) → R

n.

Let hc(t,p) = hc
t(p) for all (t,p) such that t ∈ I and

p ∈ U(t) and define Hc(u) =
∫ t

t0
hc(s,u(s))ds. Then

Lemma 2 shows that Hc is a convex relaxation of H on

U , provided that the integral exists. We do not elaborate on

this technical detail here, but note that in the case where the

map t 7−→ U(t) is continuous, continuity of hc follows from

the analysis in [10].

IV. RELAXING END-POINT MAPS OF CONTROL

SYSTEMS

Let Ū , U(t), U and D be defined as in §I-A, and consider

the control system (2), where f : I × Ū × D → R
nx .

Assumption 2: f is continuous on I×Ū×D and, for every

compact K ⊂ D, ∃LK ∈ R+ such that

‖f(t,p, z) − f(t,p, ẑ)‖1 ≤ LK‖z− ẑ‖1,

for every (t,p, z, ẑ) ∈ I × Ū × K × K .

Under Assumption 2, it can be shown by standard methods

that there exists a closed interval I ′ ⊂ I such that, corre-

sponding to each u ∈ U there exists a unique, absolutely

continuous solution of (2) on I ′. It is assumed that such

a solution exists on all of I; that is, there exists a unique

mapping x : I × U → D satisfying (2) a.e. in I for every

u ∈ U . The objective of this section is to derive relaxations

for the family of mappings Xt(u) ≡ x(t,u) on U , for each

t ∈ I . It will be shown that these relaxations are given by the

solutions of a suitable auxiliary control system which can be

generated using McCormick’s relaxation technique.

Let fc, fC : I × Ū ×R
nx ×R

nx → R
nx and consider the

auxiliary control system

ċ(t,u) = fc(t,u(t), c(t,u),C(t,u)), a.e. t ∈ I, (5)

Ċ(t,u) = fC(t,u(t), c(t,u),C(t,u)), a.e. t ∈ I,

c(t0,u) = x0,

C(t0,u) = x0,

for every u ∈ U .

Assumption 3: fc and fC are continuous on I×Ū×R
nx×

R
nx , and ∃L ∈ R+ such that

‖fc(t,p, z,y) − fc(t,p, ẑ, ŷ)‖1

+ ‖fC(t,p, z,y) − fC(t,p, ẑ, ŷ)‖1

≤ L(‖z− ẑ‖1 + ‖y − ŷ‖1)

for all (t,p, z,y, ẑ, ŷ) ∈ I × Ū ×R
nx ×R

nx ×R
nx ×R

nx .

The following definition gives sufficient conditions for the

solutions of (5) to describe convex and concave relaxations

of x (see Theorem 1).

Definition 3: The auxiliary system of ODEs (5) is called a

C-system of (2) on U if, in addition to satisfying Assumption

3, the following condition holds: For any mappings ψc,ψC :
I × U → R

nx and a.e. t ∈ I , the functions

U(t) × U ∋ (p,u) 7−→ fc(t,p,ψc(t,u),ψC(t,u))

U(t) × U ∋ (p,u) 7−→ fC(t,p,ψc(t,u),ψC(t,u))

are, respectively, convex and concave relaxations of

U(t) × U ∋ (p,u) 7−→ f(t,p,x(t,u))

on U(t)×U , provided that ψc(t, ·) and ψC(t, ·) are, respec-

tively, convex and concave relaxations of x(t, ·) on U .

If, for each fixed t ∈ I , U(t) is a closed, bounded nu-

dimensional interval and f(t, ·, ·) is factorable on U(t) ×
X(t), then functions fc and fC satisfying Definition 3 can

be readily derived by applying the methods of §II-A. In that

case, Assumption 3 follows from the analysis in [10].

The following theorem shows that if (5) is a C-system of

(2) on U , then the unique solution of (5) provides relaxations

of x(t, ·) on U , for each t ∈ I . The proof uses a standard

construction in ODE theory known as successive approxi-

mations (or Picard iterates) [14]. In particular, Theorem 2 in

the Appendix is required.

Theorem 1: Suppose that the auxiliary system of ODEs

(5) is a C-system of (2) on U . Then c(t, ·) and C(t, ·) are,

respectively, convex and concave relaxations of x(t, ·) on U ,

for each fixed t ∈ I .

Proof: Choose any vectors xL,xU ∈ R
nx , such that

xL ≤ x(t,u) ≤ xU , ∀(t,u) ∈ I × U . Under Assumption

1, such vectors certainly exist. Let c0(t,u) = xL and

C0(t,u) = xU , ∀(t,u) ∈ I×U , and consider the successive

approximations defined recursively by

ck+1(t,u) = x0 (6)

+

∫ t

t0

fc(s,u(s), ck(s,u),Ck(s,u))ds,

Ck+1(t,u) = x0

+

∫ t

t0

fC(s,u(s), ck(s,u),Ck(s,u))ds.

Note that fc and fC are defined on I × Ū × R
nx × R

nx

and Lipschitz on all of R
nx × R

nx uniformly on I × Ū by

Assumption 3. Thus, Theorem 2 may be applied to (5), which

shows that the successive approximations ck and Ck in (6)
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exist and, for each fixed u ∈ U , converge uniformly on I to

the unique solutions of (5), c(·,u) and C(·,u).
Next, note that c0(t, ·) and C0(t, ·) are trivially convex and

concave relaxations of x(t, ·) on U , respectively, for each

fixed t ∈ I . Suppose that the same is true of ck and Ck.

Then, by Definition 3,

U(t) × U ∋ (p,u) 7−→ fc(t,p, ck(t,u),Ck(t,u))

U(t) × U ∋ (p,u) 7−→ fC(t,p, ck(t,u),Ck(t,u))

are, respectively, convex and concave relaxations of

U(t) × U ∋ (p,u) 7−→ f(t,p,x(t,u))

on U(t) × U , for a.e. t ∈ I . Lemma 2 shows that

U ∋ u 7−→

∫ t

t0

fc(s,u(s), ck(s,u),Ck(s,u))ds

U ∋ u 7−→

∫ t

t0

fC(s,u(s), ck(s,u),Ck(s,u))ds

are, respectively, convex and concave on U , for every fixed

t ∈ I . Then, (6) shows that ck+1(t, ·) and Ck+1(t, ·) are,

respectively, convex and concave on U for every fixed t ∈ I .

Now, considering the under and overestimating properties

of the functions fc and fC described above, for any u ∈ U
and a.e. s ∈ I , we have

fc(s,u(s), ck(s,u),Ck(s,u))

≤ f(s,u(s),x(s,u)),

≤ fC(s,u(s), ck(s,u),Ck(s,u)).

Combining this with integral monotonicity,∫ t

t0

fc(s,u(s), ck(s,u),Ck(s,u))ds

≤

∫ t

t0

f(s,u(s),x(s,u))ds,

≤

∫ t

t0

fC(s,u(s), ck(s,u),Ck(s,u))ds,

for all (t,u) ∈ I × U . Then, (6) shows that

ck+1(t,u) ≤ x0 +

∫ t

t0

f(s,u(s),x(s,u))ds

≤ Ck+1(t,u), ∀(t,u) ∈ I × U ,

which, by the integral form of (2), gives

ck+1(t,u) ≤ x(t,u) ≤ Ck+1(t,u), ∀(t,u) ∈ I × U .

Therefore, by induction, ck(t, ·) and Ck(t, ·) are, respec-

tively, convex and concave relaxations of x(t, ·) on U , for

each fixed t ∈ I and every k ∈ N.

It was shown above that, as k → ∞, ck and Ck

converge pointwise to the unique solutions of (5) on I ×U .

Then, taking limits, it is clear that c(t, ·) and C(t, ·) are,

respectively, convex and concave relaxations of x(t, ·) on U ,

for each fixed t ∈ I .

According to the previous theorem, the desired relaxations

of the endpoint map Xt are given by X c
t (u) ≡ c(t,u)

and XC
t (u) ≡ C(t,u), ∀(t,u) ∈ I × U . Combining these

relaxations with the analysis in §I-A and II-A, the desired

relaxation of (1) can be derived.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

A method has been presented for computing a rigorous

lower bound for the nonconvex optimal control problem

(1). In particular, a constructive procedure was described,

based on McCormick’s relaxation technique, which produces

a convex optimization problem whose solution is guaranteed

to underestimate the infimum in (1). Supposing that this

convex program can be solved to global optimality, using

for example the methods described in [2], a guaranteed

lower bound on the infimum in (1) is obtained. Computing

guaranteed lower bounds is a crucial step required by branch-

and-bound global optimization algorithms. Thus, the method

developed here provides a key ingredient required for branch-

and-bound global optimization of nonconvex optimal control

problems. Finally, the proposed lower bounding technique is

distinguished from previous work in that it does not require

control parametrization. The derived relaxations are valid in

the original space of admissible control functions.

B. Future work

Future work aims to incorporate the relaxations developed

here into a general purpose global optimization algorithm for

nonconvex optimal control problems.

APPENDIX

Theorem 2: Consider the ODEs (2) and suppose that f is

continuous on I × Ū × R
nx and ∃L ∈ R+ such that

‖f(t,p, z) − f(t,p, ẑ)‖1 ≤ L‖z− ẑ‖1,

for every (t,p, z, ẑ) ∈ I × Ū × R
nx × R

nx . Given any x0 :
I ×U → R

nx such that x0(·,u) is absolutely continuous on

I for any u ∈ U , the sequence of successive approximations

defined recursively by

xk+1(t,u) = x0 +

∫ t

t0

f(s,u(s),xk(s,u))ds (7)

satisfies the following conditions:

1) For each u ∈ U , each xk exists and is absolutely

continuous on I ,

2) For each u ∈ U , the sequence {xk(·,u)} converges

uniformly on I to an absolutely continuous limit func-

tion x(·,u) satisfying (2) uniquely.

Proof: Fix any u ∈ U . By hypothesis, x0(·,u) is

absolutely continuous on I . Suppose this is true of xk.

Continuity of f and measurability of u and xk(·,u) imply

that f(·,u(·),xk(·,u)) is measurable (see [15]). Since this

function is also bounded a.e. on I , it is integrable and hence

(7) defines xk+1(·,u) as an absolutely continuous function

on I . Induction shows that this property holds for all k ∈ N.

Define

γ(t) ≡ ‖f(t,u(t),x1(t,u)) − f(t,u(t),x0(t,u))‖1
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and let γ̄ = ess supt∈Iγ(t). The assumption that U(t) ⊂ Ū

for all t ∈ I , with Ū compact, along with the continuity of

f , x1 and x0, ensures that γ̄ is finite. It will be shown that

‖xk+1(t,u) − xk(t,u)‖1 ≤
γ̄Lk(t − t0)

k

Lk!
, (8)

for all t ∈ I and every k ∈ N. For k = 1, (7) directly gives

‖x2(t,u) − x1(t,u)‖1

≤

∫ t

t0

‖f(s,u(s),x1(s,u)) − f(s,u(s),x0(s,u))‖1ds

≤ γ̄(t − t0), ∀t ∈ I.

Supposing that (8) holds for some arbitrary k, the Lipschitz

condition on f gives

‖xk+2(t,u) − xk+1(t,u)‖1

≤ L

∫ t

t0

‖xk+1(s,u) − xk(s,u)‖1ds,

≤
γ̄Lk+1

Lk!

∫ t

t0

(s − t0)
kds,

≤
γ̄Lk+1(t − t0)

k+1

L(k + 1)!
, ∀t ∈ I.

Thus, induction proves (8). Now, for any n, m ∈ N with

m > n, expansion by the triangle inequality and application

of Equation (8) gives

‖xm(t,u) − xn(t,u)‖1 ≤

m−1∑
k=n

γ̄Lk(tf − t0)
k

Lk!
, (9)

for all t ∈ I . But
∞∑

k=0

γ̄Lk(tf − t0)
k

Lk!
=

γ̄

L
eL(tf−t0) < +∞,

and hence limn→∞

∑∞

k=n

γ̄Lk(tf−t0)
k

Lk! = 0, which implies

by (9) that the sequence {xk(·,u)} is uniformly Cauchy on

I . Continuity implies that this sequence converges uniformly

to a continuous limit function x(·,u) on I .

Next, it is shown that x is a solution of (2) on I ×U . For

any u ∈ U , the Lipschitz condition on f gives,

‖

∫ t

t0

f(s,u(s),xk(s,u))ds −

∫ t

t0

f(s,u(s),x(s,u))ds‖1

≤ L

∫ t

t0

‖xk(s,u) − x(s,u)‖1ds, ∀t ∈ I,

so uniform convergence of {xk(·,u)} to x(·,u) on

I implies that limk→∞

∫ t

t0
f(s,u(s),xk(s,u))ds =∫ t

t0
f(s,u(s),x(s,u))ds, ∀t ∈ I . Then, taking limits on

both sides of (7) gives

x(t,u) = x0 +

∫ t

t0

f(s,u(s),x(s,u))ds, ∀t ∈ I,

which implies that x(·,u) is absolutely continuous and solves

(2). Uniqueness of x now follows (for each fixed u ∈ U) by

a standard application of Gronwall’s inequality (Proposition

1, Ch. 2, Sec. 4, [16]).
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