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Abstract—Traditionally, one typical way to deal with the sign 

function constrained non-smooth system is to divide the state 

space into two or more subspaces based on the direction of sign 

function. The resulting piecewise model is with complicated 

structure, leading to the difficulty in controller design as well as 

stability analysis. In this paper, an innovative concept of 

approximated scalar sign function is introduced. Through the 

proposed methodology, the non-smooth dynamical system model 

can be transformed into a universal and smooth model. Thus, 

the following optimal linearization can be applied to obtain the 

local linear model at any operating point. Finally, two 

illustrative examples, representing hysteresis and friction, 

respectively, are given to demonstrate the effectiveness of the 

proposed method. 

I. INTRODUCTION 

particular non-smooth dynamical model is with sign 

function constrained nonlinearity, which is widely 

existing in models of hysteresis, friction, backlash, etc. 

Traditionally, one typical way to deal with such a non-

smooth nonlinear system is to divide the state space into two 

or more subspaces based on the direction of sign function, 

and then make the controller design for each subspace [1] 

[2]. This approach has several disadvantages: (i) The 

piecewise functions are with complicated structure, leading 

to the difficulty in controller design as well as stability 

analysis; (ii) Since there exist several subspaces, the local 

controllers need to be triggered at the boundary crossing. 

This requires a high sampling rate, leading to a heavy or 

even impractical computational burden in real-time; (iii) If 

the non-smooth nonlinear system is crossing coupled, of high 

order, with state constraint, etc, the problem solving with the 

traditional piecewise approach will be very challenging. 

 In this paper, an innovative idea is introduced to utilize an 

approximated scalar sign function to transform the non-

smooth nonlinear model into a universal and smooth model. 

This method stems from previous research works on the 

matrix sign function and the matrix sector function [3] [4]. 

The proposed scalar sign function is the counterpart of the 
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matrix sign function. In the development of sign function, a 

continued fraction expansion form was established. It was 

shown that a certain order of truncation of the expansion can 

effectively approximate the sign function. Through the 

proposed approximated scalar sign function, the non-smooth 

dynamical model can be transformed into a smooth function. 

Then the following optimal linearization can be conveniently 

applied.  

The rest of this paper is organized as follows. Section II 

describes the development of approximated scalar sign 

function. Section III introduces the optimal linearization 

method for the resulting smooth system model. In Section 

IV, two illustrative examples, representing coulomb friction 

and Bouc-Wen hysteresis, respectively, are given to 

demonstrate the effectiveness of the proposed modeling 

method. Section V concludes this paper.  

II. APPROXIMATED SCALAR SIGN FUNCTION 

The scalar sign function is defined in [3] as  

 
 

 

1 Re 0

1 Re 0

if z
sign z

if z


 

 

                   (1) 

where z C C   , C and C
denotes the open right-half 

complex plane and the open left-half complex plane, 

respectively. It is noted that ( )sign z  is undefined for 

 Re 0z  .  

An alternative form of the scalar sign function is presented 

in [5] as 

  2/sign z z z ,                                      (2) 

where z C C   and 
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                       (3a) 

which can be expressed by the continued fraction expansion 

form as  
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The j-th truncation of (3b) can be expressed as 

     
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j j
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, for j=1, 2, …     (3c) 

Linearization Modeling for Non-smooth Dynamical Systems          

with Approximated Scalar Sign Function 

Jian Zhang, Yongpeng Zhang, Member, IEEE, Warsame Ali, Leang-san Shieh, Senior Member, IEEE 

A 

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

U.S. Government work not protected by U.S.
copyright

5205



  

It can be shown that 

 2 2lim
j j

z z


 ,                                          (4) 

where j is known as the approximation order. 

Substituting (3c) into (2) yields the approximated scalar 

sign function 

 
   

   

1 1

1 1

j j

j j j

z z
sign z

z z

  
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  
.                         (5) 

And 

   lim j
j

sign z sign z


     for z C C   .     (6) 

Additionally,  lim 0j
j

sign z


  for  Re 0z  . Therefore, the 

definition of scalar sign function (1) can be extended to the 

whole complex plane z C  as 
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    (7) 

Thus, the scalar sign function for a real number can be 

specified as 

   
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lim 0 if 0

1 if 0.
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sign sign
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          (8) 

where R  , and j-th order truncated approximation for (8) 

can be given as  
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Differentiating (9) with respect to σ yields 
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. (10) 

Fig. 1(a) shows the value of  jsign   defined in (9) for 

 0.5,0.5   with the step size of 0.01 and Fig. 1(b) is for 

 10,10    with the step size of 1. The derivative value 

given by (10) for  0.5,0.5   is shown in Fig. 2. It can be 

seen from Fig. 1 that the higher the approximation order j, 

the closer the approximated scalar sign function (9) to 

approach the  original sign function (8). From Fig. 2, it is 

shown that the approximated scalar sign function (9) is 

differentiable everywhere with the largest derivative value at 

σ=0, which equals the approximation order j. 

For a non-smooth dynamical system with sign function 

constraint, a universal and smooth model can be obtained by 

replacing (8) with the proposed approximated scalar sign 

function (9). Thus a universal linearization can be conducted, 

so that traditional piecewise models can be avoided. .  

 Remark1: Absolute value function can also be represented 

by the proposed approximated scalar sign function as 

   jx x sign x x sign x    .  

III. OPTIMAL LINEARIZATION 

With a smooth nonlinear model available, the next step is 

to conduct optimal linearization to obtain the local linear 

model at any operating point of interest. Consider a general 

class of smooth nonlinear system in the form  

         x t f x t G x t u t                     (11a) 

  
   y t Cx t                                             (11b) 

where   nx t   is the state vector,   mu t 
 
is the input 

vector,   py t 
 
is the output vector,   : n nf   

 
with 

 0 0f   and   : m nG   
 
are both smooth nonlinear 

functions, p nC   is a constant matrix. Local linearization 

is to find a local linear model at an operating point  kx t , 

which is not the k-th component of  x t , in the form 

     k kx t A x t B u t                                   (12) 

where Ak and Bk are constant matrices of appropriate 

dimensions. If this linear model have the similar dynamics as  

the nonlinear system around the operating point of interest, 

then mature control theory and numerous design techniques 

for linear systems can be taken advantage to yield a 

functional controller for the nonlinear system. 
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Fig. 1.  Proposed approximated scalar sign function (9) with different 

approximation order. 
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Fig. 2.  Differentiation (10) of approximated scalar sign function with 

different approximation order. 

 

5206



  

Based on Taylor expansion, Jacobian linearization [6] is a 

commonly used method to make local linearization. 

However, as commented in [7] and [8], truncated Taylor 

expansion often results in an affine rather than linear model 

in x and u, even if the operating point is an equilibrium. The 

only exception is the trivial case that the operating point is 

just at the equilibrium of the origin. These comments can be 

confirmed with an autonomous nonlinear system   

    x t f x t                                         (13) 

where   f x t  is a scalar nonlinear function. At an 

arbitrary operating point xk, the resulting linear model of (13) 

from truncated Taylor expansion is  

     
k k k

k k k k

x x x x x x

df df df
x f x x x x f x x

dx dx dx  

        (14) 

which describes a tangent line T to the curve  f x  through 

the operating point in Fig. 3. Since the line T is not crossing  

the origin, the intercept on x  will lead to an affine model. 

The desired linear model (12) for the system (13) is a 

straight line crossing both the origin and the operating point, 

shown as the line L in Fig. 3. The only exception for the 

tangent line T to go through the origin is the operating point 

xk=0 with  0 0f  . 

To overcome the weakness of Jacobian linearization, 

Teixeira and Zak proposed an optimal linearization method 

in [7]. According to this method, an optimal linear model 

(12) can be obtained at any operating point, which has the 

exact dynamics of the nonlinear system (11a) at the 

operating point and minimum approximation error (in the 

least square sense) in the vicinity of the operating point. The 

reasoning process is briefed below.  

In order to well approximate the dynamics of (11a) in the 

vicinity of the operating point xk, Ak and Bk in (12) should 

satisfy that in a neighborhood of xk,  

    k kf x G x u A x B u      for any u        (15a) 

and 

   k k k k kf x G x u A x B u     for any u.   (15b) 

Since the control input u can be arbitrary, it is necessary that 

 k kG x B .                                                 (16) 

Then (15) becomes 

  kf x A x                                                  (17a) 

and 

 k k kf x A x ,                                          (17b) 

namely,  

  i

i kf x a x                                               (18a) 

and 

  i

i k k kf x a x ,                                          (18b) 

where   : n

if   
 
is the i-th component of f, i

ka  is the i-th 

row of Ak,  i=1, 2,…, n. Then applying truncated Taylor 

expansion about xk  to  if x  in (18a) produces 

     i

i k i k k kf x f x x x a x                       (19) 

where   : n n

i kf x  
 

is the gradient vector of 
if  

evaluated at xk. Substituting (18b) into (19), it is obtained 

    i

i k k k kf x x x a x x    .                      (20) 

Then the problem of (15) is reduced to find i

ka  such that it is 

„as close as possible‟ to  i kf x  with  i

k k i ka x f x . For this 

purpose, a constrained minimization problem is formulated 

as 

  
2

2

1
min :

2

i

i k kE f x a    subject to  i

k k i ka x f x .  (21) 

As a convex constrained optimization problem, (21) has the 

solution  

   0i i
k k

i

k k i ka a
E a x f x                      (22a)  

 i

k k i ka x f x                                             (22b) 

where i
ka

  indicates that the gradient is taken with respect to 

i

ka  and λ is the Lagrange multiplier. By taking 

differentiations, (22a) is solved as 

  0i T

k i k ka f x x                                  (23)  

where xk
T 

is the transpose of xk. When 0kx  , right- 

multiplying two sides of (23) by xk and using (22b) can solve 

λ as 

   
2

2

i k k i k

k

f x x f x

x


 
                              (24)  

where 
2kx
 
is the Euclidean norm of xk. Substituting (24) 

into (23) gives 

 
   

2

2

i k i k ki T

k i k k

k

f x f x x
a f x x

x


   .    (25a) 

When xk=0, i

ka  can be solved directly from (23) as 

 i

k i ka f x  .                                           (25b)  

Collecting (16) and (25) gives Ak and Bk
 
in (12) as 

 
   

 

2
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  (26) 
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Fig. 3.  Comparison of an affine model and a linear model. 
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where  kf x
 
is the Jacobian matrix of  f x

 
evaluated at 

the operating point xk. It is noted that the case for xk=0 in 

(26) agrees with the exception case mentioned before, that 

the operating point happens to be the equilibrium of the 

origin. 

Remark2: When  f x  in (11a) is a scalar nonlinear 

function, (26) is reduced to a scalar number as 

 

 

0

0 0.

k k k

k

k

f x x for x
A

f for x


 

 

 

IV. ILLUSTRATIVE EXAMPLES 

A. Coulomb Friction in DC Motor 

Widely existing in mechanical systems, friction can 

potentially cause steady-state error, limit cycle, or stick-slip 

phenomenon especially at a low speed in the conventional 

linear control of positioning systems [9]. This example 

focuses on a simple case of coulomb friction occurring in 

DC motor. Coulomb friction is usually ignored in the 

formulation of DC motor‟s state-space model and regarded 

as a disturbance in conventional control designs. It is a good 

example to illustrate the effectiveness of the proposed 

method and presents an innovative way to include the 

friction in system modeling.   

Considering coulomb friction, DC motor system is given 

as  

m a a mV R i L i K                               (28a) 

t L fK i T T J B                           (28b) 

where i is the motor current, ω is the motor speed, Vm is the 

motor voltage, TL and Tf are the load torque and coulomb 

friction, respectively; other physical parameters are 

explained in Table I. The commonly used DC motor model 

in the state-space form is  

/ / 1/

/ / 0

a a m a a

m

t

R L K Li i L
V

K J B J 

        
              

    (29) 

where the load torque TL and the coulomb friction Tf  in (28b) 

are ignored. 

Not like the load torque TL which is an external variable, 

the coulomb friction Tf is an intrinsic element which can be 

identified through characterization experiment. Depending 

on the direction of rotation, the coulomb friction Tf can be 

modeled as 

 fT sign                                         (30) 

where µ is the coulomb friction constant given in Table I and 

 sign   is the sign of speed, denoting the rotation direction. 

Obviously, substituting (30) into (28) will give a non-smooth 

DC motor model.  

By replacing  sign   with the proposed approximated 

scalar sign function (9), the non-smooth coulomb friction 

(30) becomes a smooth rational function 

 f jT sign                                       (31) 

where  jsign   is given by (9). This smooth function is a 

scalar nonlinear function of ω, and then optimal linearization 

can be given by Remark2 as  

f fT K                                                 (32) 

where  
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in which ωk is the motor speed at the operating point and 

  

0k

jd sign

d







is the differentiation (10) evaluated at 

ω=0, which equals the approximation order j.  

 Substituting (32) into (28) and ignoring external load 

torque TL yields the linear DC motor model in the state-space 

form as 

 

/ / 1/

/ / 0

a a m a a

m

t f

R L K Li i L
V

K J B K J 

       
       

         

  (33) 

where Kf accounts for the coulomb friction Tf . In order to 

reflect the dynamic properties at different operating point, 

this model needs to be updated periodically. Fig. 4 shows the 

simulation results of open loop control of three models: the 

non-smooth DC motor model (28) with coulomb friction 

(30), the conventional linear DC motor model (29) which 

TABLE I 

DC MOTOR PARAMETER 

Symbol Description Value Unit 

Ra Motor armature resistance  0.764 Ω  

La Motor inductance 0.0026 H 

Kt Motor torque constant 0.0805 N·m 

Km Motor back-electromotive force 

constant 

0.0805 V/(rad/s) 

B Viscous damping constant 0 N·m·s 

J Equivalent moment of inertia  0.0022 kg·m2 

µ Coulomb friction constant 0.033 N·m 
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Fig. 4.  Comparison of open loop controls of (28) and (33). 
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does not include coulomb friction, and the proposed linear 

DC motor model (33) which is updated periodically to 

account for the coulomb friction. Setting the motor voltage 

Vm as 2V for the first 3s, and then changed to -2V, the load 

torque TL = 0, and the proposed model (33) with the 

approximation order j = 50 is updated at the sampling period 

of 0.2s. It can be seen that except for the first beginning, the 

speed curve of proposed model (33) quickly converge to the 

original non-smooth model (28), while the curve made of 

conventional model (29) which does not include friction 

departs from the actual system performance.  

B. Bouc-Wen Hysteresis 

Hysteresis refers to the input-output dynamic relations 

having memory effects, which is encountered in many 

physical systems, like electronics, magnetism, mechanics, 

and structures, etc. Introduced by Bouc in [10] and extended 

by Wen in [11], Bouc-Wen model was originally used to 

describe the hysteretic relation between the restoring force 

and the displacement. Over the past decades, this analytic 

model has been extensively used in modeling a variety of 

hysteretic patterns. A comprehensive survey on Bouc-Wen 

model and its applications can be found in [12] [13].  

This example considers a single-degree-of-freedom system  

   ms cs R t e t                                  (34) 

where s is the displacement, R(t) is the restoring force, e(t) is 

an excitation force, m is the mass and c is the viscous 

damping constant. According to the Bouc-Wen model in 

[11], the restoring force R(t) is described by 

       1R t ks t Dkh t                       (35) 

where α, k, D are physical parameters related to stiffness, 

elasticity etc; h is a hysteretic variable, usually called the 

hysteretic displacement, that follows the following non-

smooth differential equation  

 11 n n
h D s s h h s h  

             (36) 

where λ, β, γ and n are dimensionless quantities shaping the 

hysteretic behavior. Equation (36) can be also expressed as 

 
 

1

1 1

for is odd

for is even.

nn

n n

D s s h s h n
h

D s s h h s h n

  

  



 

    
  

    


  (37) 

Taking  , ,
T

s s h  as the state x, the hysteretic single-

degree-of-freedom system (34)-(36) can be reformulated as 

   x f x Be t                                         (38) 

where 

 
 

 11

1

,
n n

s

Dkk c
f x s s h

m m m

D s s h h s h



  


 

 

   

    


     

0

1

0

B
m

 
 
 
 
 
 

. 

For a local linear model, since B is constant, only state 

matrix Ak of (38) is needed at any operating point. However, 

this hysteretic system (38) is a non-smooth system due to the 

absolute value functions in  f x , so the optimal linearization 

method cannot be applied directly.  

By Remark1, the absolute function in  f x  can be 

transformed into the form of sign function. Then following 

the proposed method, the sign functions are replaced with 

the approximated scalar sign function (9), thus resulting in an 

approximate smooth function  jf x . For space saving 

purpose, only the case that n is even in (37) is discussed in 

this paper. The case that n is odd can be treated in the same 

way. When n is even, the approximate smooth function 

 jf x  is obtained as 

 
 

    1

1
j

n n

j j

s

Dkk c
f x s s h

m m m

D s s sign s h sign h s h



  

 



   


           

(39) 

where  jsign   is given by (9). The Jacobian matrix of 

 jf x is 

 
 

32 33

0 1 0

1

0

j

Dkk c
f x

m m m

D D



 
 

     
 
 
  

           (40) 

where  

   1
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n
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in which 
  

 
jd sign

d




 is shown in (10). At the equilibrium 

point x=0, (40) is reduced to 

 
 

0 1 0

1
0

0 0

j

Dkk c
f

m m m

D





 
 
 

     
 
 
 
 

.           (41) 

Evaluating (39) and (40) at the operating point 

 , , 0
T

k k k kx s s h   and substituting the results into (26) 

yields the state matrix of optimal linear model as 

 
   

2

2

j k j k k T

k j k k

k

f x f x x
A f x x

x


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 

32 33

0 1 0

1

k k
k k k k k kx x x x

Dkk c

m m m

s D s D h
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              (42) 

where 
32

kx x
D


and 

33
kx x

D


are 
32D  and 

33D  evaluated at the 

operating point xk, respectively; 

    1 n n

k k k j k k j k k kD s s sign s h sign h s h                

  2 2 2

32 33 /
k k

k k k k kx x x x
D s D h s s h

 
     . 

By utilizing the approximated scalar sign function (9) and 

optimal linearization (26), the optimal linear model of 

hysteretic single-degree-of-freedom system (38) can be 

found in the state-space form as 

     kx t A x t Be t                                  (43) 

where Ak is given by (41) at the equilibrium point or by (42) 

at off-equilibrium points, and B=(0, 1/m, 0)
T
.  

Fig. 5 compares the hysteresis loops (s, R) of the non-

smooth model (38) and the proposed linear model (43), 

where e(t)=sin(t), m=1, c=1, α=0.5, k=1, D=1, λ=1, β=1, γ = 

-1.5, n=2, and the proposed model (43) with the 

approximation order j=50 is updated at a period of 0.2s. The 

temporal behaviors of displacement and restoring force are 

shown in Fig. 6. The loops and temporal curves from the 

proposed linear model (43) agree well with those from the 

non-smooth model (38), which verifies the effectiveness of 

the proposed method. 

V. CONCLUSION 

This paper proposes an innovative methodology to 

linearize a sign-function-constrained non-smooth model with 

the approximated scalar sign function. Through the proposed 

method, the non-smooth model can be transformed into a 

universal and smooth model. Thus, the following optimal 

linearization can be applied to obtain the local linear model 

at each operating point. Since traditional piecewise models 

are avoided, the resulting controller can be synthesized in a 

unified framework. The effectiveness of proposed method is 

demonstrated through two examples, representing typical 

non-smooth nonlinearities of friction and hysteresis, 

respectively.  
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Fig. 6.  Temporal behavior of hysteresis loops of (38) and (43). 
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Fig. 5.  Hysteresis loops of (38) and (43). 
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