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Abstract— In this paper we study the control mechanism that
regulates water and the concentration of sodium in human
body. For this reverse engineering problem, a control system
model is developed using a modification of the standard LQR
theory. The control law derived in this paper reflects the
realistic situation in which the body is in a supine position or
a standing position, and also takes into account feedback time
lag. The theoretical model is validated by experimental data
fitting. Both computer simulations and experimental data fitting
show that the proposed model can capture the main trends of
water and salt outputs, and achieve tight control of the plasma
concentration of salt as recorded in the experiment[7].

I. INTRODUCTION

Feedback is an essential characteristic of all physiological

systems [2]. All organisms, at many levels, rely on not only

sensory but also feedback inputs in order to sustain life and

procreate. The processes by which the body regulates its

internal environment are collectively referred to as home-

ostasis, which in a general sense refers to regulation of an

operating point or, stability of an equilibrium. Maintaining

a stable internal environment requires constant monitoring

and adjustments as conditions change. This adjusting of

physiological systems within the body is called homeostatic

regulation.

One major example of such a regulation mechanism is the

tight control of the concentrations of various constituents of

the extracellular fluid in the human body. Extensive research

has been done in modeling various components in renal

physiology in order to better understand the functioning of

the kidney in mammals and the transport of ionic solutes in

it (see, for example, [2], [6], [10], [11]).

The purpose of this paper is to study an optimal control

mechanism involving the human kidney, and to validate

the proposed control system model via experimental data.

Having said that, the goal of our research is not to develop

the most advanced feedback control laws, but to identify

the best possible model that leads to good matching with

physiological data. Based on the open-loop model developed

in [3] and [8], we model regulation of the sodium ion using

a state-space model for the human body wherein the states

of extracellular volume (ECV) and sodium concentration
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are used to determine the control inputs that correspond to

the actions of antidiuretic hormone (ADH) and aldosterone

that control the water and salt permeability of the distal

nephron. As a result of evolution after millions of years, it

is reasonable to believe the control mechanism has achieved

optimality properties with respect to some cost function.

To address this reverse engineering problem, we attempt to

adopt linear control models with a linear quadratic regulator

which optimizes both an integral quadratic function and a

badness function. This is done by a two-loop optimization.

For given weight matrices, a feedback control law which

minimizes the performance index is calculated in the inner

loop, while in the outer loop, the weight matrices are

optimized so as to reduce the data fitting error.

During the formulation of the control law, two special

considerations have been made concerning the human body.

The first consideration is to use a low-pass filter to model the

delay-like dynamics of the process by which the human body

senses the ECV and the sodium concentration, then secretes

hormones. Another consideration is that of autoinfusion,

which is defined as the gravity-governed phenomenon of

sensing the extracellular fluid when a human subject lies

down. Simulation results show that our model, to some

extent, can capture the main trends of the outputs of urine and

Na+ during the experiment, as well as predict the sodium

concentration in the ECV.

In Section 2, we review the mathematical model proposed

in [3]. In Section 3, the LQR controller for the kidney flow

regulation is developed which minimizes a cost function.

Simulation results and experimental data fitting are given in

Section 4. Finally, conclusions and discussions are provided

in Section 5.

II. THE MODEL

In this section, we review the mathematical model in-

troduced in [3] and [8]. We will show the formulation of

the single nephron model, solve the model under boundary

conditions and a few assumptions. Then, we relate the

nephron model to the water and sodium concentration in the

whole organism.

A. The nephron model

As the basic structural and functional unit of the kidney,

a nephron’s main function is to regulate water and soluble

substances by filtering the blood, reabsorbing what is needed

and excreting the rest as urine. Fig. 1 shows the schematic of

a nephron, which is composed of four parts: the descending

limb, the ascending limb, the distal tubule, and the collecting

duct. The loop composed of the descending limb and the
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Fig. 1. The nephron model

ascending limb is called the loop of Henle. The proximal

tubule, which precedes the loop of Henle, is not shown

because the concentration of Na+ does not change there.

Here each part is modeled separately, and all the parame-

ters used in the nephron model are given in Table I.

1) The descending limb: Free permeability of water be-

tween the tubular fluid of the descending limb and the

surrounding interstitium is assumed. This osmotically causes

the concentrations of solutes in the two compartments to be

equal at each level ξ. Impermeability to Na+ is also assumed,

thus

c(ξ) = c1(ξ), (1)

dQ1(ξ)

dξ
= −fH2O

1 (ξ), (2)

dQ1(ξ)c1(ξ)

dξ
= 0. (3)

2) The ascending limb: The ascending limb is imperme-

able to water, and we assume that the solute in the ascending

limb is pumped out at a constant rate fNa
+

2 , therefore

dQ2(ξ)

dξ
= 0, (4)

dQ2(ξ)c2(ξ)

dξ
= −fNa

+

2 . (5)

3) The distal tubule: For the distal nephron, both water

and solute can leave and enter the tubule. We assume that

the transmural flow rate per unit length is proportional to

the osmotic pressure difference between the interstitial fluid

and the tubular fluid. It is also assumed that the rate of

reabsorption of sodium is proportional to the flux of sodium

ions through the tubule, thus

dQ3(η)

dη
= βRT (c(0)− c3(η)), (6)

dQ3(η)c3(η)

dη
= −αc3(η)Q3(η). (7)

4) The collecting duct: In the collecting duct, the same

equations as in the distal convoluted tubule apply, but the rel-

evant concentration difference is between the concentration

in the collecting duct and in the interstitium.

dQ4(ξ)

dξ
= βRT (c(ξ)− c4(ξ)), (8)

dQ4(ξ)c4(ξ)

dξ
= −αc4(ξ)Q4(ξ). (9)

TABLE I

PARAMETERS IN THE NEPHRON MODEL

Name Description Value Dimension

c0 Concentration of Na+ in
the extracellular fluid

mM

c(ξ) Concentration of Na+ in
interstitium

mM

Q1(ξ) Flow in descending limb L/s

c1(ξ) Concentration of Na+ in
descending limb

mM

Q2(ξ) Flow in ascending limb L/s

c2(ξ) Concentration of Na+ in
ascending limb

mM

Q3(η) Flow in distal tubule L/s

c3(η) Concentration of Na+ in
distal tubule

mM

Q4(ξ) Flow in collecting duct L/s

c4(ξ) Concentration of Na+ in
collecting duct

mM

Qin Rate of water ingestion L/s

Q∗

in
Standard value of Qin 2.89× 10−5 L/s

Qout Rate of renal water excre-
tion

L/s

α Control function for regulat-
ing Na+ excretion

1/m

α∗ Standard value of α 82.6 1/m

β Control function for regulat-
ing water excretion

103L2

m·s·J·mole

β∗ Standard value of β 1.07×10−14 103L2

m·s·J·mole
T Body temperature 310 K

R Ideal gas law constant 8.32 J

mole·K
L Length of Henle’s loop 0.015 m

L3 Length of distal tubule 0.01 m·mole

s·m

fNa+

2
Pumping constant 2.5× 10−6 m

fH2O

1
(ξ) Rate of water leaving the

descending limb

L

m·s

KT Tubuloglomerular feedback
constant

7.35× 107 s

m·mole

B. Solving the equations

In order to study the influence of aldosterone and ADH

on the ECV and sodium concentration, we need to solve the

model (1)-(9), so that the flow and sodium concentration at

the end of the nephron can be completely determined by α
and β. This can be done by using the boundary conditions,

assumptions for the interstitum[3], and by introducing a

simple model of tubuloglomerular feedback (TGF).
1) The boundary conditions: By continuity, for flows and

concentrations at each part of the nephron, we have the

following boundary conditions

c(0) = c1(0) = c2(0), c(L) = c1(L) = c2(L), (10)

c2(0) = c3(0), c3(L3) = c4(0), (11)

Q1(L)=−Q2(L), Q2(0)=−Q3(0), Q3(L3)=Q4(0). (12)
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An equation for Q1(0) will be given below.

2) The interstitium: The concentration in the interstitium

is the ratio of the active flux of sodium out of the ascending

limb and the flux of water out of the descending limb, thus

c(ξ) =
fNa

+

2

fH2O
1 (ξ)

. (13)

The above equation is derived based on three crucial assump-

tions. First, it is assumed that the peritubular capillaries pick

up all the solute and solvent locally. Second, it is assumed

that the local rate of Na+ picked up by the peritubular cap-

illaries is proportional to the local interstitial concentration

of Na+ , c(ξ). Finally, steady-state is assumed, i.e., rate at

which solute is pumped out of the ascending limb is equal

to the rate at which solute is picked up by the peritubular

capillaries.

3) The tubuloglomerular feedback: TGF is the mechanis-

m whereby the individual nephron regulates the glomerular

filtration rate, based on the sodium concentration at the

beginning of the distal tubule, and our function for the

tubuloglomerular feedback is

Q1(0) =
1

KTc2(0)
, (14)

where KT is a constant that determines the overall gain of

this feedback law.

From (1)-(5), (10), (13), and (14), we can solve for c3(0)
and Q3(0). The standard values are c3(0) = 44.7mM and

Q3(0) = 1.28 × 10−10L/s, and these values vary slightly

depending on the current value of c0. Therefore, given α
and β, the flow Q4(L) and concentration c4(L) at the end

of the nephron can be numerically solved, by approximating

(6)-(9) using difference equations, where c4(L) is the Na+

concentration of the tubular fluid as it exits the nephron, and

Q4(L) is the rate of excretion of water by the nephron.

C. The whole-organism model

The rates of changes of V and c0 with respect to time are

given by the following differential equations

dV

dt
= Qin −Qout, (15)

dV c0
dt

= Fin − Fout, (16)

where V and c0 denote the ECV and plasma sodium

concentration, whose standard values are V ∗ = 15L and

c∗0 = 142mM , respectively. Fin and Fout are the rates of

ingestion and excretion of Na+, and where Qin and Qout

are the rates of ingestion and excretion of water. We regard

Fin and Qin as given functions of time, but Fout and Qout

are determined by the nephron model described above, in the

following manner

Fout = nc4(L)Q4(L), (17)

Qout = nQ4(L), (18)

where n is the total number of nephrons (counting those in

both kidneys), which we take to be n = 2× 106[2].

III. THE MODIFIED LQR DESIGN

Based on the model developed in the previous section,

we are ready to formulate the control mechanism for the

problem of salt and water balance in the human body, using

the LQR design technique. The LQR design comes from

linear optimal control theory that aims to provide analytical

designs of a special type: The closed-loop system resulting

from the LQR design is not only stable, but also the best

possible system of a particular type.

In this section, we will first give a state-space represen-

tation of the model, linearized at nominal values. Next we

give two considerations concerning the human body, and then

formulate the LQR control law.

A. State space model

The state-space model describing the water and salt bal-

ance in the human body can be written as

ẋ = f(x, u, d), (19)

where

x =

[

V
c0

]

, u =

[

α/α∗

β/β∗

]

, d =

[

Qin

Fin

]

,

x is the state vector describing the state of the extracellular

fluid using extracellular volume V and plasma sodium con-

centration c0. u is the control input in the form of variables

actuating sodium and water reabsorption α and β in the distal

tubule of the nephron. The starred values α∗ and β∗ are the

corresponding normal values of α and β respectively for a

healthy human. These values are those inputs that give rise

to the nominal state of V ∗ and c∗0. d is the vector of water

intake Qin and salt intake Fin. The disturbances proposed in

the model are the disturbances in d, i.e., differences between

actual values of intake and standard values Q∗

in and F ∗

in of

intake for humans. Finally f is a nonlinear function whose

values can be numerically determined as outlined in the

previous section.

The linearized version of the system around its nominal

values takes the following form

˙̃x = Ax̃+Bũ+ Ed̃, (20)

where

x̃ =

[

V −V ∗

c0−c∗0

]

, ũ =

[

α/α∗−1
β/β∗−1

]

, d̃ =

[

Qin−Q∗

in

Fin−F ∗

in

]

,

and by making small changes to ξ and η, matrices A and B
are numerically obtained as follows

A =

[

0 0.0289
0 −0.2737

]

× 10−4,

B =

[

0.3145 1.9083
−0.9864 −18.0743

]

× 10−4.
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B. The low-pass filter

The first consideration before formulating the control law

is that of introducing “delay-like” dynamics transforming the

system error state vector x̃ into error sensed output vector

x̃s. This is done by passing the states through a first order

low-pass filter and then using the outputs of the filters as the

sensed signal for the control law formulation, thus

˙̃xs = S(x̃− x̃s), (21)

where S =

[

1

τV
0

0 1

τc0

]

, and τV , τc0 are two positive time

constants of the filter, and also will be determined in the next

section. The controller we consider takes the following form

ũ = g(Ṽs, c̃0s), (22)

where Ṽs and c̃0s denote the sensed deviations of volume V
and concentration c0.

C. Autoinfusion

Another consideration is that of autoinfusion, which is

defined as the gravity-governed phenomenon of sensing an

increased extracellular fluid volume (which can be viewed

as the subject receiving a fictitious “infusion” to the “self”

and hence the name) when a human subject lies down. This

effect of autoinfusion is taken into account as a fixed step-like

increase in the sensed extracellular volume for every subject.

In this paper, this effect is assumed to be instantaneous for

simplicity. Therefore, during the actuation, at the instant in

which the subject lies down, an additional parameter Vaf

is introduced into the control law such that the apparent

increase in V is accounted for, thus

ũ =

{

g(Ṽs + Vaf , c̃0s), in supine position,

g(Ṽs, c̃0s), in standing position.
(23)

where the constant parameter Vaf will also be fit with the

experimental data in the next section.

D. The LQR controller

In formulating the LQR controller, we assume there is no

autoinfusion, and d̃ = 0, i.e., water and salt are ingested at

the standard rate. The overall system of (20) and (21) can

be described as follows

Ẋ =

[

A 0
S −S

]

X +

[

B
0

]

ũ, (24)

x̃s = HX, (25)

where H = [0 I] with I denoting the 2× 2 identity matrix.

X =
[

x̃T , x̃T
s

]T
is the state, and x̃s is the measurement

output.

The objective of our problem is to find a static output

feedback (SOF) controller in the form of

ũ = −Kx̃s, (26)

such that the following performance index

J =
1

2

∫

∞

0

[

x̃TQx̃+ ũTRũ
]

dt, (27)

where Q ≥ 0 and R > 0 are two symmetric matrices, is

minimized. The problem can be solved from the following

algebraic equations, via iteration algorithms (see [9] for

example)

0 =

[

Q 0
0 KTRK

]

+ PAc +AT
c P, (28)

0 = I +AcM +MAT
c , (29)

K = R−1BTPMHT (HMHT )−1, (30)

where Ac =

[

A −BK
S −S

]

is the closed-loop system

matrix, P and M are symmetric positive definite solutions

of (28) and (29), respectively. The choice of the matrices Q

and R will be explained in the next section.

IV. DATA FITTING AND NUMERICAL SIMULATIONS

In this section we will validate the proposed LQR method-

ology and fit the parameters in our model, using experimental

data from [7]. After briefly summarizing this experiment, we

will define a “badness function”, which is the scaled sum of

squares of the differences between the experimental data and

the corresponding theoretical prediction. The purpose of the

data fitting is to minimize this badness function.

A. A brief summary of the experiment

An experiment was conducted [7], in which the hemodi-

lution, central blood volume and renal responses in humans

were measured after infusing isotonic saline in one group

while using another group as controls (i.e. no infusion).

The experiment specifies the intakes Qin and Fin for the

two groups, where the saline group underwent an infusion

of 1500ml of isotonic saline over a period of 21 minutes

starting from the 4-th hour of the experiment but the controls

group did not undergo the infusion. However, subjects in

both groups lay down when the infusion for the saline group

started, and continued to lie down for the duration of the

experiment.

TABLE II

EXPERIMENTAL URINE OUTPUTS

Saline (infusion) group
Time(h) 1 2 3 4 5 6 7 8 9

qio 2.9 3.5 4.1 6.0 5.5 6.0 5.0 5.2 5.4
f i
o 85 95 120 205 280 380 360 350 365

Control group
Time(h) 1 2 3 4 5 6 7 8 9

qco 2.5 3.1 5.6 4.8 4.5 4.0 3.6 4.7 3.2
fc
o 70 80 180 190 200 205 200 220 190

TABLE III

EXPERIMENTAL Na+ CONCENTRATION IN THE BLOOD PLASMA

Saline (infusion) group
Time(h) 2 3 3.5 4 5 6 7 9

ci
0

140.0 140.6 140.4 140.6 140.8 140.8 141.1 140.7

Control group
Time(h) 2 3 3.5 4 5 6 7 9

cc
0

141.0 140.9 141.1 140.6 140.8 140.9 140.9 141.0
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The experimental values are listed in Table II and III, in

which qio and f i
o are the output water (mL/min) and sodium

(mmole/min) for the saline group, respectively, recorded at

hourly intervals for nine hours. ci0 is the sodium concentra-

tion (mole/L) for the saline group, recorded over the stretch

of the experiment at eight unequally spaced but specified

times. The quantities qco, f c
o , cc0 are their counterparts in the

control group, respectively. (Note that “o” for output should

not be confused with “0” used previously.)

B. The badness function

For the purpose of data fitting, we define the badness

function as the scaled mean square difference between exper-

imental and predicted data of the renal outflows of sodium

and water along with the measurements of the extracellular

sodium concentration in the blood plasma at various instants

in time. The badness function is defined as follows

B =
1

2

9
∑

j=1

[

(

qio(j)− q̂io(j)
)2

(q̄io)
2

+
(f i

o(j)− f̂ i
o(j))

2

(f̄ i
o)

2

+
(qco(j)− q̂co(j))

2

(q̄co)
2

+
(f c

o(j)− f̂ c
o(j))

2

(f̄ c
o)

2

]

(31)

+
1

2

8
∑

k=1

[

(ci0(k)− ĉi0(k))
2

(c̄i0)
2

+
(cc0(k)− ĉc0(k))

2

(c̄c0)
2

]

,

where qio(j), q
c
o(j), f

i
o(j) and f c

o(j) are from the j-th column

of Table II, ci0(k) and cc0(k) are from the k-th column of

Table III. q̂io(j) and f̂ i
o(j) are the average values of the

computational results Qout and Fout on the interval from the

(j − 1)-th hour to the j-th hour, and ĉi0(k) is the predicted

sodium concentration at the same time in the experiment

when cio is recorded. q̂co(j), f̂ c
o(j) and ĉc0(k) are similarly

defined for the control group. Finally, q̄io, q̄co, f̄ i
o, f̄ c

o , c̄i0, and

c̄c0 are the average values of the last three numbers in the

experimental data qio, qco, f i
o, f c

o , ci0, and cc0, respectively.

C. Experimental data fitting

For simplicity, assume both Q and R in (27) are diagonal

matrices, hence

Q =

[

q1 0
0 q2

]

, R =

[

r1 0
0 r2

]

,

where q1 ≥ 0, q2 ≥ 0, r1 > 0, and r2 > 0 are parameters to

be fit. Besides, as mentioned in the previous section, we need

to fit the autoinfusion constant Vaf > 0, and two constants

τV > 0 and τc0 > 0 for the low pass filters in (21). Also, we

will fit the initial value of the ECV at the beginning of the

experiment, denoted by Vinitial. However, since the sodium

concentration is nearly constant, assume the initial value c0
is its standard value.

This constrained nonlinear optimization problem is numer-

ically solved using a MATLAB routine called fminsearchbnd

which uses the Nelder-Mead algorithm to find a minimum

without the need for numerical or analytic gradients while

making sure that the parameters with respect to which we

are optimizing are within a valid range. The optimized values

are shown as follows:

B = 0.4088, Vaf = 0.4485L, Vinitial = 15.1452L,
q1 = 0.3501, q2 = 0.7132, r1 = 66.5249,
r2 = 13.7602, τV = 1722s, τc0 = 4213s.

(32)

The optimal feedback gain matrix is

K =

[

0.2404 −0.1457
−0.0104 −0.0351

]

. (33)

D. Numerical simulation

Based on the above controller, we simulate the experiment

by plotting the predicted water and Na+ outputs, as well as

the sodium concentration in continuous-time. The resulting

curves are shown in Fig. 2-4. It can be observed that the renal

responses of both groups were the same until the infusion

happened. The jumps of Na+ output in both groups after

t = 3h were caused by autoinfusion. Meanwhile, in both

groups, sodium concentrations were tightly controlled.
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E. Comparison with experimental data

The data fitting results are shown in Figs. 5-10, in which

the solid dots represent experimental data and the circles

represent their corresponding theoretical predictions. We can

clearly notice that our closed-loop model has successfully

achieved tight regulation of plasma sodium concentration,

and, to some extent, captures the main trends of the water

and sodium outputs in both groups.
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V. CONCLUSIONS AND FUTURE WORK

In this paper, linearized systems with LQR regulator are

developed to model the mechanism that regulates water and

sodium concentration in human body. Simulation results

show that our model is able to capture the main trends of

water and Na+ outputs, while simultaneously achieve tight

control of the sodium concentration.

Because of the complexity of physiological systems, the

actual regulation mechanism in the human body may involve

strong nonlinearities. Therefore, one way to improve the

accuracy of our model is to consider nonlinear controllers.

Unfortunately, we are unable to find a nonlinear control

system model which yields better experimental results than

the proposed linear LQR-based model. Also, the data that

we fit are from a single experiment and the model should be

tested on other experiments as well. One such experiment

has been done by Heer et al. and is described in detail

in [4]. Simulating this and other experiments may help us

better understand the physiological meaning of optimality in

control of sodium and water in the human body.
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Fig. 8. Urine output of the control group
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