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Abstract— This paper comments on the complexity of equi-
libria reached by agents that evolve on a nonlinear space by
interacting according to a fixed undirected graph. In particular,
it considers agents on the projective space of R

k, which links
to the algorithmic problem of graph k-coloring. It is thereby
shown that characterizing stable equilibria of repulsive agents
on the projective space can be as difficult as graph coloring,
that is NP-hard for k > 2.

Disclaimer: The author must apologize for failing to

pay a fair tribute to the broad combinatorial literature on

graph coloring and to the large body of work on analog

computation. Both these communities have accumulated an

impressive body of work, in comparison to which the present

comment more than pales. It therefore seemed preferable to

let the interested reader pursue his/her own selection of the

literature on these subjects.

I. INTRODUCTION

There has recently been a surge of interest in dynamical

systems where agents, moving on a continuous state space,

interact with each other according to a graph structure.

For instance, interconnected agents attract each other in the

“consensus” or “synchronization” problem: the goal is to

reach agreement, i.e. agents finally all have the same state;

see e.g. [14], [15], [20] among the literature on consensus

in vector spaces. Repulsive agents can also be considered,

for compact configuration spaces: the goal is to “maximally

distribute” the agents, see e.g. [8], [18], [19]. The dynamics

of interacting agents on nonlinear spaces can be complicated,

both for attractive and for repulsive agents; some points in

their characterization remain open even for fixed undirected

graphs [16], [17]. In contrast, mutually attracting agents on

a linear or convex space always converge to state agreement

under sufficient connectivity assumptions, see e.g. [20]. The

present paper comments on the complexity of stable equi-

libria for repulsive agents on nonlinear spaces, specifically

projective spaces. It therefore exploits a link between this

dynamical system and the algorithmic problem of graph

coloring.

The research field of “analog computation” has long rec-

ognized the potential of relaxing the discrete computational

space C of an algorithmic problem to a continuous manifold

M, and replacing a succession of discrete elementary op-

erations on C (digital computer algorithm) by a continuous
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evolution on M whose final equilibrium would solve the

original problem. Related papers in the systems&control

community include [4], [6], [7]. More than a curiosity, this

viewpoint yields insight into computer algorithm design and

analysis, or even motivates analog implementation for some

problems (see e.g. [1] and references therein). One feature

of the discrete-computation / continuous-dynamics relation is

task formulation as an optimization problem in a search space

with specific nonlinear geometry (Lie group of rotations,

Riemannian metric,... ; see examples in [4], [6]) that reflects

the problem’s structure. Tools for optimization in nonlinear

geometry have been developed and existing algorithms have

been related to this viewpoint, see e.g. [3], [10].

In view of these two developments, it is tempting to

link one of the many computational problems that concern

graph properties, to simple dynamical systems with agents

interacting according to the same graph. This requires to

identify interacting-agents settings whose (e.g.) geometry

reflects the computational problem.

The specific link between graph k-coloring (C-domain)

and the disposition of mutually orthogonal vectors in R
k

(M-domain) has been explored in the combinatorial lit-

erature, see e.g. [9]. This has not led so far to a major

breakthrough for graph coloring, which remains NP-hard for

k > 2. The present paper (obviously) changes nothing to this

point: it just illustrates the complexity of multi-agent systems

on nonlinear spaces. It makes essentially the same link by

matching k-coloring of a graph G with stable equilibria

of agents repulsing each other according to interconnection

structure G on projective space P
k−1

R. Note that a set of

repulsive agents on P
k−1

R has been used in e.g. [8] to solve

the continuous optimization problem of “packing” lines. In

contrast, the present link is with a discrete optimization

problem. The stable equilibria of the agents evolving on

P
k−1

R are then robustly — i.e. for all distance-dependent

repulsion functions satisfying some bound — as difficult to

characterize as graph coloring, i.e. NP-hard for k > 2.

The paper is organized as follows. Section II gives a

motion law for repulsive agents on P
k−1

R, with standard

convergence properties. Section III defines a particular class

of pairwise repulsion functions between the agents, to de-

termine stability of particular equilibria. Section IV treats

the case k = 2. Section V formalizes the link with graph

coloring in general to establish the main result.

II. MOTION OF REPULSIVE AGENTS ON PROJECTIVE

SPACE

Each point p of the (k − 1)-dimensional projective space

P
k−1

R can be viewed as representing a diameter of the
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sphere Sk−1 = {x ∈ R
k : xT x = 1}. Equivalently,

each p ∈ P
k−1

R represents a unit vector modulo overall

sign, p = {vp,−vp} ⊂ Sk−1. P
k−1

R can be embedded in

R
k×k using its projector representation: to p = {vp,−vp},

associate the unique rank-one orthonormal projector Πp =
vpv

T
p . Then P

k−1
R = {X ∈ R

k×k : X = XT , rank(X) =
1, trace(X) = 1}. This representation is used in the

remainder of the paper. The chordal distance (see e.g. [8],

[17]) between two points on P
k−1

R is given by

dc(Π1, Π2) := ‖Π1 − Π2‖F =
√

trace((Π1 − Π2)2) (1)

=
√

2 − 2(vT
1 v2)2 =

√

2 sin2(φ) ,

where ‖ · ‖F is the Frobenius norm, φ is the angle between

the two lines onto which Π1 and Π2 project, and v1, v2

respectively are unit vectors spanning these lines. Maximum

dc =
√

2 requires Π1 and Π2 projecting onto mutually

orthogonal lines, i.e. Π1Π2 = 0 (the zero matrix). Impor-

tantly, d2
c(Π1, Π2) is infinitely continuously differentiable in

its arguments at any point of P
k−1

R, unlike e.g. the geodesic

distance whose derivative features discontinuities.

A. Agent dynamics

Motion of attracting and repulsive agents on manifolds is

formalized in [17]. The following particularizes it for P
k−1

R.

Let G(V, E) a graph, where V is a finite set of nodes denoted

V = {1, 2, ..., N} without loss of generality and E is a set

of undirected edges between nodes, i.e. a set of unordered1

node pairs (a, b) : a, b ∈ V , a 6= b. We denote #E
the number of edges. A set of N agents, labeled 1, 2, ..., N ,

interact according to a graph G(V, E) when each agent is

identified with a node ∈ V and the presence (absence)

of edge (a, b) in E represents the presence (absence) of

interaction between agents a and b. To each agent a ∈ V ,

associate a state Πa ∈ P
k−1

R. The author’s understanding

of repulsion between agents is to maximize their chordal

distance. We therefore take any smooth strictly monotone

increasing function g : R → R that maps [0, 2] → [0, B],
B > 0, and associate to each edge (a, b) ∈ E the value

function w(a,b) = g(dc(Πa, Πb)
2). Repulsion on (a, b) is

modeled to maximize w(a,b) and the sum of repulsions in

the overall network is modeled to maximize

W =
∑

(a,b)∈E g(dc(Πa, Πb)
2) . (2)

There are several rational ways to make agents move.

Physical systems would usually follow second-order dynam-

ics, with W playing the role of a potential. We consider a

simpler first-order dynamics, widely applied in the literature

when studying higher-level commands, e.g. for consensus

[14], [15], [17]. Agent motion is then derived as the gradient

of W . Our model thus writes

d
dtΠa = α

2 gradΠa
W (3)

= α
2

∑

{ b:(a,b)∈E } gradΠa
(w(a,b))

1This makes an abuse of notation customary in graph theory, writing
(a, b) to mean an unordered pair. The context should avoid any confusion.

for all a ∈ V , with α ∈ R>0 a gain and gradΠa
the gradient

with respect to Πa on nonlinear space P
k−1

R embedded in

R
k×k by its projective representation. (We identify tangent

and cotangent spaces using the canonical metric induced by

R
k×k.) Algorithm (3) is a variant of the “anti-consensus”

motion in [17], the latter being restricted to g = Identity.

Explicit computation of gradΠa
, see e.g. [13], [17], yields

d
dtΠa = −α

∑

{ b:(a,b)∈E }

g′(dc(Πa, Πb)
2) (ΠaΠbΠ

⊥
a + Π⊥

a ΠbΠa)

=: α
∑

{ b:(a,b)∈E }

fab Qab . (4)

Here g′(u) ∈ R denotes first derivative of g : R → R

evaluated at u, and Π⊥ = (Identity − Π) is the orthonor-

mal projection onto the kernel of Π. The last line of (4)

decomposes the effect of agent b on the motion of agent a
into a “normalized direction” Qab satisfying ‖Qab‖F = 1,

tangent to P
k−1

R at Πa, and a “magnitude” fab ∈ R>0.

Defining vs to satisfy Πs = vsv
T
s and denoting x =

(vT
a vb)

2, we have fab =
√

2x(1 − x) g′(2− 2x) and Qab =

(2Πa− vavT

b
+vbvT

a

vT
a

vb

) 1√
2/x−2

. Unsurprisingly, the direction is

ill-defined when the magnitude is zero.

B. Equilibrium characterization

The following convergence property of (4) is standard for

gradient systems, see e.g. [2].

Proposition 1: The system of coupled agents following (4)

with α > 0 converges to a set of equilibria, for any initial

condition. The stable equilibrium set consists of all (local)

maxima of W .

Proof: −W is a (non-strict) Lyapunov function as d
dt (−W )

= −∑a 〈gradΠa
(W ), d

dtΠa〉F = −α
∑

a ‖ d
dtΠa‖2

F ≤ 0
(5)

where 〈Q1, Q2〉F = trace(QT
1 Q2) is the scalar product

on tangent spaces to P
k−1

R. LaSalle invariance principle

directly shows that the limit set corresponds to equilibria,

i.e. points at which d
dtΠa = gradΠa

W = 0 for a =
1, 2, ..., N . By (5), −W strictly decreases whenever the state

changes, so local maxima of W must be stable and other

equilibria cannot be stable. �

Definition 1: Given k ∈ N, let

So = {(Π1, Π2, ...,ΠN ) ∈ (Pk−1
R)N : (6)

ΠaΠb = ΠbΠa ∀ a, b } .

In other words the Πa, a = 1, ..., N , project on m directions

of an orthonormal basis of R
k, for some m ≤ k.

Definition 2: Given graph G(V, E) and k ∈ N, let

Sp(G) = {(Π1, Π2, ...,ΠN ) ∈ (Pk−1
R)N : (7)

ΠaΠb = 0 ∀ (a, b) ∈ E } .

A state belongs to So if each agent pair — irrespective of any

interconnection structure — is either aligned or orthogonal.

Sp in contrast is graph-dependent: each agent pair forming
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an edge of G(V, E) must be orthogonal, but agent pairs not

in E are unconstrained. Sp(G) can be empty, depending on k
and G. The relation between Sp(G) and So will be clarified

throughout the paper.

Proposition 2:

(a) All states in So are equilibria of (3) for any G(V, E).
(b) If Sp(G) is nonempty, then it is the set of global maxima

of W defined by (2) with graph G; each term w(a,b) takes

its maximal value such that W = B #E. Therefore Sp(G)
is an (at least locally) asymptotically stable equilibrium set

under (3), for any coupling g(·).
Proof: States in So satisfy (ΠaΠbΠ

⊥
a +Π⊥

a ΠbΠa) = 0 ∀a, b,

thus a fortiori ∀(a, b) ∈ E, in the first line of (3); this

proves (a). The first part of (b) holds by definition, the second

follows from Proposition 1. �

Note that So does not necessarily contain all equilibria

of (3). However, characterizing the stable equilibria of (3)

includes characterizing those belonging to So. The following

section designs g(·) to affect stability of points in So in a

particular way.

III. HOW COUPLING MAKES So \ Sp UNSTABLE

Denote So \ Sp(G) the set of states belonging to So but

not to Sp(G). In particular, (Π1, Π1, ...,Π1) ∈ So \ Sp(G)t
for any G except the trivial graph that contains no edge.

Discarding the latter as obviously uninteresting for agent

motion (3), ensures So \ Sp(G) 6= ∅ in all our formulations.

Given G(V, E), consider (Π∗
1, ...,Π

∗
N ) ∈ So \ Sp(G).

Then by definition there exists a ∈ V for which Π∗
a =

Π∗
c = va vT

a for some (a, c) ∈ E. We examine how

W varies with Πa when all other agents b ∈ V \ {a}
remain fixed at their equilibrium position Π∗

b = vb vT
b . Real

functions on a manifold are best evaluated by considering

a parametrized curve of their argument, in order to obtain

a function from R to R. We therefore define a variation

Πa(s) = v(s) v(s)T with v(s) = cos(s)va + sin(s)v∗ ∈
R

k, for s ∈ (−γ, γ), γ ≪ 1 and some unit vector

v∗ ∈ R
k such that vT

∗ va = 0. Then dc(Πa(s), Π∗
b )

2 =
2 − 2(vT

a vb cos(s) + vT
∗ vb sin(s))2. A second-order Taylor

development of W (s) := W (Πa(s), {Π∗
b : b 6= a}) yields,

after a few computations, W (s) − W (0) ≈
∑

{b:(a,b)∈E}

−4 g′(dc(Π
∗
a, Π∗

b )
2) (vT

a Π∗
b v∗) s

+2 g′′(dc(Π
∗
a, Π∗

b )
2) (vT

a Π∗
b v∗)

2 s2

+2 g′(dc(Π
∗
a, Π∗

b )
2) ( (vT

a vb)
2 − (vT

∗ vb)
2 ) s2 .

Since the equilibrium state is in So, for any b ∈ V either

vT
a Π∗

b = 0 or Π∗
b = Πa, such that vT

a Π∗
b v∗ = vT

a v∗ = 0.

The first two lines of the Taylor expansion therefore vanish.

The absence of first-order term is expected since, for a state

in So, the value function associated to every (potential) edge

(a, b) is at an extremum — minimum if Π∗
a = Π∗

b , maximum

if Π∗
aΠ∗

b = 0. From these developments, the sign of W (s)−

W (0) is equal to the sign of

D :=
∑

{b:(a,b)∈E}

g′(2 − 2(vT
a vb)

2) ( (vT
a vb)

2 − (vT
∗ vb)

2 ) .

Defining A1 = {b ∈ V : Πb = Πa, b 6= a} and A2 =
V \ (A1 ∪ {a}), we have

D =
∑

b∈A1
g′(0) − ∑

b∈A2
g′(2)(vT

∗ vb)
2 . (8)

Note that g′(·) is strictly positive by definition. Expression

(8) allows to give the following proposition.

Proposition 3: If N ≤ k or g′(0)/g′(2) > ⌊N
k ⌋/(⌈N

k ⌉− 1),
then for any graph G(V, E) on N nodes, all equilibria in

So \ Sp(G) are unstable for dynamics (3) on P
k−1

R.

Proof: By Proposition 1 a state is necessarily unstable if it

is not a local maximum of W . We therefore show that the

assumptions ensure, for any G and associated So \ Sp(G),
existence of a v∗ in the above construction for which D > 0
in (8). Then indeed, the constructed variation of Πa(s) allows

to increase W in the neighborhood of the equilibrium state,

so the latter is not a local maximum of W , hence unstable.

Given G and (Π∗
1, ...,Π

∗
N ) ∈ So \ Sp(G), let nG(b)

the number of agents with same state as b. Select a ∈
argmaxb(nG(b) ); then nG(a) > 1, by definition of So \
Sp(G). If m < k in Definition 1 for the chosen state, then

there exists a unit vector x ∈ R
k such that Πbx = 0 ∀b ∈ V

and taking v∗ = x in (8) yields D = (nG(a) − 1)g′(0) > 0
for any g(·). If m = k in Definition 1 for the chosen state,

then select2 ā ∈ argminb(nG(b) ) and set v∗ ∈ {±vā}. Then

D = (nG(a)−1)g′(0)−(nG(ā))g′(2). The condition on g′(·)
ensures D > 0 for this choice as well. Given the previous

paragraph, this concludes the proof. �

Thus choosing g′(0)/g′(2) sufficiently large ensures that

the stable equilibria in So all belong to Sp(G). The con-

dition on g(·) is easy to satisfy independently of N , since

⌊N
k ⌋/(⌈N

k ⌉ − 1) ≤ N/k
N/k−1 which monotonically converges

to 1 as N increases.

IV. SPECIAL CASE k = 2

Projective space P
1
R is diffeomorphic to the unit circle

S1. Indeed, Π = v vT with v = ± ( cos(φ) sin(φ) )T yields

Π =

(

1/2 0
0 1/2

)

+

(

cos(2φ)
2

sin(2φ)
2

sin(2φ)
2 − cos(2φ)

2

)

(9)

and mapping Π → 2φ = θ ∈ S1 establishes an equivalence

with the circle. Geometrically, to p ∈ P
1
R representing a

diameter of S1 (see first paragraph of Section II) that makes

angle φ with (1 0)T ∈ R
2, we associate the unit vector

eθ that makes the angle θ = 2φ with (1 0)T . Orthogonal

diameters become opposite unit vectors on the circle; the

two vectors ±v of Π = v vT are naturally mapped to the

same point of S1 as their π−difference in φ becomes a 2π-

difference on θ. Dynamics (4) thus characterizes interacting

2If N

k
is integer, then we might have nG(b) constant over b. In this case,

it is required to choose a, ā such that ΠaΠā = 0.
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agents on the circle. Using (9) and the distance expressions

(1), it rewrites

d
dtθa = α

∑

{ b:(a,b)∈E}

g′( 2 sin2( θa−θb

2 ) ) sin(θa − θb) (10)

=: α
∑

{ b:(a,b)∈E}

f(θa − θb) .

The Kuramoto coupling [12], that is (10) with g = Identity

i.e. f(·) = sin(·), has been studied under various graph

assumptions, mostly with attractive agents (α < 0). It

highlights rich behavior; see [16] and references therein. For

fixed undirected G, it features “spurious” local equilibria.

For α > 0 and general g(·), (10) can still feature spurious

local equilibria, irrespective of the condition on g′(0)/g′(2).

Proposition 4: There exist G such that Sp(G) 6= ∅ for k = 2
but for which dynamics (10) can have locally asymptotically

stable equilibria where W < B #E , with g(·) satisfying the

conditions of Proposition 3.

Proof: Consider G with even number N > 5 of nodes

and (a, b) ∈ E if and only if |(a − b)modulo(N)| = 1,

that is a ring graph. Then Sp = {(θ1, ..., θN ) : θa =
aπ + c ∀a, c constant ∈ R} is nonempty. Now take a

configuration θa = aθ0 ∀a, with θ0 < π such that Nθ0

is a nonzero integer multiple of 2π. Then |θa − θb| = θ0

for all (a, b) ∈ E. Computing the Hessian of W (θ1, ..., θN )
for this configuration yields the Laplacian matrix of G
multiplied by −r f ′(θ0), with r a positive constant. The

Laplacian of an undirected connected graph has all positive

eigenvalues, except one zero eigenvalue corresponding to

invariance direction (θ1, ..., θN ) → (θ1 + β, ..., θN + β),
for β ∈ R. Then taking f ′(θ0) < 0 suffices to make the

spurious configuration a local maximum of W , thus stable

under (10). This is indeed possible: e.g. g = Identity makes

f ′(θ0) < 0 for θ0 < π/2. The local conditions, on f ′(·) at

θ0 and on g′(·) at 0 and 2 in Proposition 3, do not interfere

(although Proposition 3 does not allow g = Identity). �

Proposition 4 shows that a non-empty Sp(G) does not

necessarily cover the whole stable equilibrium set. Deter-

mining the latter is in fact currently an open question even

for g = Identity and k = 2, see [16]. In contrast, Sp(G) and

its relation with So are easy to characterize for k = 2.

Proposition 5: For k = 2,

(a) Sp(G) 6= ∅ if and only if G is bipartite.

(b) Sp(G) ∩ So 6= ∅ if and only if G is bipartite.

(c) If G is bipartite and connected, then Sp(G) ⊂ So.

Proof: Satisfying (7) requires (θa − θb)modulo(2π) = π
whenever (a, b) ∈ E. For G connected, this partitions V
into two subsets: one A1 whose agents all have state (say)

θ∗ and the other A2 whose agents all have state θ∗ + π;

this joint state belongs to So. Moreover, to be in Sp(G) no

two agents belonging to the same subset may be connected

in G(V, E). The existence of a partition satisfying this last

property is the definition of a bipartite graph. This proves

(c) and (a),(b) for connected graphs. An adaptation for G

disconnected is straightforward, as G is bipartite if and only

if all its connected components are bipartite. �

A bipartite graph is the same as a 2-colorable graph. The

following completes the link between repulsive agents on

P
k−1

R, the sets So, Sp(G), and graph coloring, for k > 2.

V. FROM PROJECTIVE GEOMETRY TO GRAPH COLORING

A. Graph k-coloring

Definition 3: Given a graph G(V, E) and k colors C =
{c1, c2, ..., ck}, k ∈ N, a graph k-coloring is a mapping Φ :
V → C such that Φ(a) 6= Φ(b) for all (a, b) ∈ E.

Problems equivalent to graph coloring include assigning

different colors to neighboring countries on a map (hence the

name) and the game of Sudoku. k-coloring is not feasible for

any k and any G. The reader will easily find basic properties

like the following.

Property 1:

(a) If G contains a subgraph consisting of m nodes that are

all-to-all connected (that is an m-clique), then k-coloring is

infeasible for k < m;

(b) If k-coloring is feasible for G, then j-coloring is feasible

with any j ≥ k for any subgraph of G.

(c) If k-coloring is feasible for G, then it is feasible for

any graph obtained from G by sequentially adding nodes

(N + 1), (N + 2), ..., (N + M) and edges such that, for all

m > 0, node (N + m) is connected to the set of nodes

{1, 2, ..., (N + m − 1)} by no more than (k − 1) edges.

Explicit expressions of the chromatic number — that is the

minimal k for which G is k-colorable — are known for

particular types of graphs. However, obtaining exact or tight

decisions about k-colorability for general graphs is NP-hard

in the number of nodes.

Property 2: Determining if a graph G is k-colorable for

a given k > 2 is NP-complete. Determining the chromatic

number of G is NP-hard. Determining the chromatic number

within N1−ε is NP-hard for any ε > 0.

B. Link with repulsive agents on P
k−1

R

“Vector coloring” a graph, as studied e.g. in [9], in fact

corresponds to constructing states in Sp. The link between

vector coloring and traditional graph coloring therefore

shows that graph coloring naturally links to the projective

space geometry P
k−1

R (and not e.g. the sphere of R
k). The

following makes this point explicit.

Definition 4: Given G(V, E) and k ∈ N, let

Sc(G) = { (Π1, Π2, ...,ΠN ) ∈ (Pk−1
R)N : (11)

Πa ∈ {Γ1, ...,Γm} ⊂ P
k−1

R ∀ a ∈ V

with ΓcΓd = 0 ∀c 6= d ∈ {1, ..., m}
Πa 6= Πb ∀ (a, b) ∈ E }

i.e. in Sc, each Πa takes one of m ≤ k values that project on

m directions of an orthonormal basis of R
k, and connected

nodes have different projectors.
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Property 3: Given G(V, E) and k ∈ N, the set Sc(G) is

non-empty if and only if G is k-colorable.

Proof: Assume Sc(G) 6= ∅. Select a joint state in Sc(G)
and denote Ψ the map associating to a ∈ V its state Πa ∈
{Γ1, ...,Γm}, according to line 2 of (11). Let Ξ any injective

map from {Γ1, ...,Γm} to {c1, ..., ck}. Then Φ = Ξ ◦ Ψ
solves the k-coloring of G. (It actually solves m-coloring,

which implies j-coloring for all j ≥ m, see Property 1(b).)

Conversely, assume G is k-colorable and denote Φ : V →
{c1, ..., ck} a solution map. Let (e1, ..., ek) any orthonormal

basis of R
k and Γj = ej e

T
j for j = 1, 2, ..., k. Let Ξ∗

any bijective map from {c1, ..., ck} to {Γ1, ...,Γk}. Then by

construction the joint state of the agents defined by Πa =
Ξ∗ ◦ Φ(a) for a = 1, ..., N belongs to Sc(G). �

Thus k-colorability of G is in direct correspondence with

the set Sc(G) for agents on P
k−1

R. It remains to link Sc(G)
to the sets considered in the previous sections.

Proposition 6: Sc(G) = So ∩ Sp(G) for any G.

Proof: By definition. �

C. Complexity of multi-agent stable equilibria

It is now possible to state the main observation of the

paper. Consider the following decision problem about the

motion of N repulsive agents on P
k−1

R with dynamics (3).

Q.1: Given an interconnection graph G(V, E), is any point

in So a stable equilibrium of the multi-agent system ?

Theorem (main result): Answering Q.1 is at least as

difficult as deciding k-colorability of the graph G(V, E), at

least if N ≤ k or g′(0)/g′(2) > ⌊N
k ⌋/(⌈N

k ⌉ − 1).

Proof: If So contains no stable equilibrium, then So ∩
Sp(G) = ∅ since by Proposition 2(b) all points of Sp(G)
are stable equilibria. Then by Property 3 and Proposition

6, G is not k-colorable. Conversely, if So contains a stable

equilibrium, then by Proposition 3 this equilibrium must also

belong to Sp(G). Hence So ∩ Sp(G) 6= ∅ and by Property 3

and Proposition 6, G is k-colorable. A classical complexity

argument concludes: deciding k-colorability cannot be more

difficult than answering Q.1, since the above shows that an

answer to Q.1 automatically answers k-colorability. �

The theorem thus essentially says that deciding if a given

set (i.e. So) contains any stable equilibrium point for G is

as difficult as deciding if G is k-colorable. This complexity

holds for characterizing the stable equilibria corresponding

to global maxima of W only. Depending on g(·) there can

be additional locally stable equilibria, see Proposition 4.

However, adding those can only increase the complexity of

stable equilibrium characterization. The full characterization

of stable equilibria for (3) therefore inherits the complexity

of graph k-coloring, that is NP-hard for k > 2.

Note that the whole argument still holds, with a slightly

adapted bound condition, if the coupling function ( g(·)
above) differs from edge to edge.

D. An incomplete tool for the graph coloring problem

Given the above developments, one may be tempted to

use multi-agent behavior for solving the difficult graph k-

coloring problem, by maximizing W under pairwise repul-

sions of the agents on P
k−1

R. Indeed, if G is k-colorable,

then there is no “competition” between repulsions on differ-

ent edges and all pairwise distances can take their maximal

value. Formally, if G is k-colorable, then Sc(G) 6= ∅
(Property 3), hence Sp(G) 6= ∅ (Proposition 6).

A first problem in this regard is to avoid spurious stable

local maxima where W < B #E for k-colorable G. A

tailored g(·), as proposed in [16] to avoid spurious stable

equilibria for synchronization (α < 0), can be adapted to

repulsive agents for this purpose. Although, the presence of

many saddle points then still complicates a global conver-

gence analysis for the dynamics.

Assuming this point solved, the multi-agent system for k-

colorable G will converge to Sp(G) — but not necessarily

to Sc(G), see e.g. the following simulations. To deduce

colorability from a final state, it therefore remains to answer

the converse of our motivating observation: Does G not k-

colorable imply Sp(G) = ∅? It is known that unfortunately,

this is not true in general, except for the algorithmically

uninteresting case k = 2. See e.g. [9].

Proposition 7: For k > 2, there exist G with chromatic

number >k but for which Sp(G) ⊂ (Pk−1
R)N is nonempty.

For k = 2, Sp(G) 6= ∅ if and only if G is 2-colorable.

Proof: The second part is a rewording of Proposition 5(a).

The proof for the first part comes from the Bell-Kochen-

Specker Theorem in the context of quantum systems [5],

[11], see [9] and references therein; [9] also gives a simple

counterexample with k = 4 and N = 17. �

Even with this negative answer, it might still be possible

to distinguish k-colorability from the structure of Sp, in a

way that makes repulsive agents useful. Exploring related

algorithmic strategies however goes beyond the purpose and

argumentation of the present paper.

E. Illustrative simulations

Figure 1 shows simulation results for repulsive agent

evolution on P
k−1

R with k = 3. Each agent state Πa ∈ P
2
R

represents a diameter of the sphere of R
3. We consider two

representative graphs: the Petersen graph G1 on the top is

3-colorable, the Grötzsch graph G2 on the bottom is not.

In both graphs, each node has at least 3 neighbors; nodes

with less than 3 neighbors could be discarded for 3-coloring

by Property 1(c). For both graphs, we run (4) with g(x) =
arctan(x/2), for which g′(0)/g′(2) > ⌊N

3 ⌋/(⌈N
3 ⌉−1) when

N > 6. Top left panels show the evolution of W/(B #E).
The final configurations are depicted on the right, each state

Πa as a diameter of the unit sphere in R
3. For G1, an initial

state of the agents close to Sc(G1) ⊃ So seems to converge

towards Sc(G1) ⊃ So; indeed W/(B #E) tends to 1 and

final diameters are nearly on the axes of an orthonormal basis

of R
3. For G2, starting close to a high-W state of So, the
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Fig. 1. Simulations illustrating (4) with k = 3 and g(x) = arctan(x/2)
for (A) the Petersen graph, G1 in the text, and (B) the Grötzsch graph, G2

in the text. For each case we show the graph (bottom left), evolution of
W

B #E
(top left) and the final configuration (right).

agents move away from So while W increases (but not up to

B #E): final diameters indeed take many different directions

in R
3. This supports that equilibria in So are unstable. These

two agent evolutions illustrate our Theorem.

The situation is however not as simple as it appears. The

reported simulation for G1 does in fact not completely reach

Sc(G1) asymptotically. Analysis quickly shows that starting

from a configuration in Sc(G1), one agent can in fact freely

move on a curve while maintaining W/(B #E) = 1. Due to

this invariance direction, the configuration in Sc(G1) is stable

but not asymptotically stable. Starting from an arbitrary

initial state, the system with G1 converges to an arbitrary

state in Sp(G1) that can generally be far from Sc(G1), such

that the position of diameters may be indistinguishable at

first sight from the final state reached with G2. The fact that

Sp(G1) is reached while Sp(G2) is not can of course be

checked on the value of W . However, as states in Sp(G)
may exist even if G is not 3-colorable (see Proposition 7),

computing W is of little help to assess existence of points

in Sc(G). This illustrates that the link with graph coloring

ensures complexity of multi-agent stable equilibria, but con-

versely the multi-agent system cannot be used (directly at

least) to decide graph coloring.

VI. CONCLUSION

This paper considers a link between repulsive agents

evolving on projective space P
k−1

R and the computational

task of graph k-coloring. The geometric link implies that

characterizing the stable equilibria of a repulsive multi-agent

system on this nonlinear space is at least NP-hard for any

k > 2 and for a large class of repulsive coupling functions.

Known results imply that the considered link is incomplete

to, conversely, solve k-coloring by letting repulsive agents

evolve on P
k−1

R. There are certainly other possibilities

to link multi-agent equilibria to graph-coloring or other

NP-hard algorithmic tasks, but the present one appears to

be robust and rather natural. The stability criterion appears

to be an important aspect to retain in the complexity

argumentation. The result does not explain difficulties that

can appear to characterize all locally stable equilibria for

interacting agents on the circle (k = 2), see [16]. The

complexity of such characterization for general distance-

dependent coupling thus remains open.
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