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Abstract— In this paper, stability of distributed 3-D systems

implemented in sensor networks using the Givone-Roesser and
the Fornasini-Marchesini state space models under floating
point arithmetic is studied. Nonlinearities caused by floating
point number representation schemes used for in node compu-
tations and inter node communication are modeled. Stability of
the system is analyzed with special consideration given to the
influence of internode communication on system dynamics. A
necessary and sufficient condition for global asymptotic stability
under floating point arithmetic is established. Simulation results
are presented to illustrate the theoretical results.

I. INTRODUCTION

Wireless sensor networks consisting of a large number

of resource-constrained embedded sensor nodes has recently

become an emerging candidate for many distributed appli-

cations. Some of these applications require nodes regularly

placed in a spatial grid. The research in [1] and [2] discuss

contaminant propagation detection and structural health mon-

itoring using grid sensor networks. Other application areas

that often prefer grid or mesh topology include agriculture

and environmental monitoring. Grid sensor networks are

discussed in detail in [3], [4], [5], [6], [7], [8] highlighting

sensor deployment strategies, robustness against deployment

errors, reliability, routing schemes and network capacity

limits. Coverage and connectivity of grid sensor networks

in the presence of node failure has been studied in [9].

Distributed information processing methods are natural

candidates for networks with regularly placed nodes, yielding

significant benefits in terms of scalability, lower commu-

nication costs, and improved energy savings. Furthermore,

applications requiring local actuation in response to a local

detection [10] are best supported by such distributed algo-

rithms, yielding minimum response delays as compared to

centralized schemes.

Using the Givone-Roesser [11] and the Fornasini-

Marchesini [12] local state space models, a method for

distributed information processing in grid sensor networks

has been presented in [13], [14]. The method can be used

to implement linear systems in grid sensor networks. The

system to be implemented is realized in either Givone-

Roesser(Roesser) or Fornasini-Marchesini(FM-II) state space

models and the state space model is implemented on the

sensor network. Implementation of either state space model

requires communication only between the adjacent sensor

nodes. Therefore the scheme is scalable and lends itself

readily for distributed signal processing.

A. Motivation and Goals

Using shorter word lengths for the representation of

numbers during communication can result in significant

energy and bandwidth savings. Furthermore limited pro-

cessing power of sensor nodes may demand shorter word

length number representation schemes. Therefore shorter

word lengths are preferred for the representation of numbers

in sensor networks.

Global asymptotic stability of 3-D systems implemented

on grid sensor networks using the method presented in

[13], [14] is studied in [15] for the case where numbers

are represented using fixed point schemes. Though most

of the commercially available sensor nodes use fixed point

processors for computations, sensor nodes capable of floating

point computations have also appeared. Sun SPOT is an

example for a sensor node capable of floating point com-

putations [16]. As computational capabilities of embedded

processors improve, floating point processors can be ex-

pected to be used widely in sensor nodes in the future.

Global asymptotic stability of systems implemented in grid

sensor networks, using the method presented in [13], [14], in

the presence of floating point arithmetic is analyzed in this

paper. Quantization nonlinearities resulting from quantizing

results of arithmetic operations are modeled. A necessary and

sufficient condition for system stability under floating point

computations is derived. Special consideration is given to the

role internode communication1 plays in the global asymptotic

stability of the sensor network.

B. Outline

The remainder of the paper is organized as follows:

Floating point quantization is briefly discussed in section

II. The Roesser and the FM-II state space models for 3-

D systems are also presented in section II. In section III,

system models for quantized systems are discussed. Stability

of the system under quantization is analyzed in section IV.

An example is provided in section V to illustrate the results.

Concluding remarks are given in section VI.

II. BACKGROUND

In this section floating point representation of numbers

and quantization in floating point arithmetic operations will

be briefly discussed. Roesser and FM-II state space models

for 3-D systems will also be presented.

1Communication of state and input vectors between nodes.
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A. Local State Space Models for 3-D Systems

Method proposed in [13], [14] for distributed signal pro-

cessing in grid sensor networks is based on the Roesser and

FM-II state space models for 3-D systems. In the method

proposed in [13], [14], the system to be implemented is

realized in either Roesser or FM-II local state space models.

Then the state space model is implemented on the sensor

network. Details of implementing Roesser or FM-II state

space models on sensor networks are not discussed in this

paper and the interested reader is referred to [13], [14].

Throughout the paper, the sensor network is assumed to

be a 2-D regular rectangular grid sensor network of finite

size. The Roesser and the FM-II state space models were

originally proposed for 2-dimensional systems , but can be

extended to higher dimensional systems in a straightforward

manner.
1) The Roesser Model For 3-D Systems: The Roesser

model for 3-D systems is given by,




xh(n1 + 1, n2, t)
xv(n1, n2 + 1, t)
xt(n1, n2, t+ 1)



 =





A1 A2 A3

A4 A5 A6

A7 A8 A9









xh(n1, n2, t)
xv(n1, n2, t)
xt(n1, n2, t)





+





B1

B2

B3



u(n1, n2, t)

y(n1, n2, t) =Cx(n1, n2, t) +Du(n1, n2, t) (1)

where

x(n1, n2, t) = (xh
T

(n1, n2, t),x
v
T

(n1, n2, t),x
t
T

(n1, n2, t))
T .

For a sensor network of size N1 × N2, n1 ∈ [1, N1], n2 ∈
[1, N2] and t ∈ [0,∞). Vectors xh ∈ Ra, xv ∈ Rb and

xt ∈ Rc are called the horizontal, vertical and temporal state

vector components respectively. Let the input vector u ∈ Rp

and output vector y ∈ Rq . Then A1 ∈ Ra×a, A2 ∈ Ra×b,

A3 ∈ Ra×c, A4 ∈ Rb×a, A5 ∈ Rb×b, A6 ∈ Rb×c, A7 ∈
Rc×a, A8 ∈ Rc×b, A9 ∈ Rc×c, B1 ∈ Ra×p, B2 ∈ Rb×p,

B3 ∈ Rc×p, C ∈ Rq×(a+b+c) and D ∈ Rq×p. Let

A =





A1 A2 A3

A4 A5 A6

A7 A8 A9





and B = (B1
T ,B2

T ,B3
T )T .

2) The FM-II Model For 3-D Systems: The FM-II model
for 3-D systems is given by:

x(n1, n2, t) = A1x(n1−1, n2, t) + A2x(n1, n2−1, t)

+ Atx(n1, n2, t−1) + B1u(n1−1, n2, t)

+ B2u(n1, n2−1, t) + Btu(n1, n2, t−1)

y(n1, n2, t) = Cx(n1, n2, t) + Du(n1, n2, t) (2)

where x ∈ Rn is the state vector, n1 ∈ [1, N1], n2 ∈
[1, N2] and t ∈ [0,∞). Let the input vector u ∈ Rp and the

output vector y ∈ Rq. Then, C ∈ Rq×n, D ∈ Rq×p, A1 ∈
Rn×n, A2 ∈ Rn×n, At ∈ Rn×n, B1 ∈ Rn×p, B2 ∈ Rn×p

and Bt ∈ Rn×p.

B. Floating Point Representation of Numbers

In floating point base 2 formats a real number x is

represented as x = sgn(x)m(x)2e(x). Here sgn(x) = −1
if x < 0 and sgn(x) = 1 otherwise. Furthermore m(x)
is the mantissa of x and e(x) is the exponent of x. The

mantissa is usually normalized such that 0.5 ≤ m(x) < 1.

Sign of x, sgn(x) can be represented by 1 bit. Mantissa and

exponent are represented using fixed point schemes. Number

of binary digits used to represent mantissa and exponent is

determined based on the relative precision and the range of

numbers required to be represented. For example in the IEEE

754 single precision floating point format the mantissa is

represented by 23 bits and the exponent is represented by 8

bits.
1) Floating Point Multiplication: Let x1 and x2

be the two numbers, represented in floating point,

that are to be multiplied. Their product is given by

sgn(x1x2)m(x1)m(x2)2
e(x1)+e(x2). Three different kinds of

errors can occur in representing the product of x1 and x2

in a floating point format. Overflow and underflow occurs

if the product is larger than the largest or smaller than the

smallest representable numbers respectively. To represent the

mantissa of the product exactly, word length of the mantissa

should be equal to or larger than, the summation of the word

lengths of the mantissas of the two multiplicands. Otherwise

a quantization error is introduced in the multiplication. Let

Nm : R → Sm denote the overall non-linearity introduced

in floating point multiplication. Here Sm denotes the set of

numbers representable with the number format used.
2) Floating Point Addition: Let x1 and x2 be the two

numbers, represented in floating point, that are to be added.

Without loss of generality it can be assumed that x1 ≤ x2. To

add the two numbers, mantissa of the smaller number is de-

normalized such that exponents of the two numbers are equal.

Their summation is given by {sgn(x1)m(x1)2
e(x1)−e(x2) +

sgn(x2)m(x2)}2
e(x2). The mantissa of the summation may

have to be normalized to represent it in a floating point

format. Overflow, underflow and quantization errors can be

introduced in floating point addition. Let Na : R → Sa

denote the overall non-linearity introduced in floating point

addition. Here Sa denotes the set of numbers representable

with the number format used.

III. QUANTIZATION MODELS

Floating point computations introduce nonlinearities to

otherwise linear system models (1) and (2). System models

N [Ax] =













Na[Nm[a11x1] +Na[Nm[a12x2] +Na[Nm[a13x3] + · · ·Na[Nm[a1n−1xn−1] +Nm[a1nxn]]]]]
Na[Nm[a21x1] +Na[Nm[a22x2] +Na[Nm[a23x3] + · · ·Na[Nm[a2n−1xn−1] +Nm[a2nxn]]]]]

· · · · ··
· · · · ··

Na[Nm[an1x1] +Na[Nm[an2x2] +Na[Nm[an3x3] + · · ·Na[Nm[ann−1xn−1] +Nm[annxn]]]]]













(3)
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(1) and (2) are modified to incorporate effects of different

floating point quantization schemes in this section. The

following notation is used to make the presentation of the

quantization models more concise. Let the (i, j)−th element

of matrix A ∈ Rn×n be aij and the i − th element of

vector x ∈ Rn be xi. The product of matrix A with vector

x computed using floating point arithmetic is denoted by

N [Ax], where N [Ax] is of the form given by (3). In (3),

Na and Nm denote nonlinearities caused by floating point

addition and multiplication respectively.

A. Model 1

Let Na
P : R → Sap and Nm

P : R → Smp denote

nonlinearities caused by floating point addition and mul-

tiplication respectively within the node. Here Sap and Smp

denote the sets of numbers representable with the number

formats used by the node to store the results of addition

and multiplication respectively. In a Roesser model based

implementation, computation of state vectors within each

node can be modeled by:




xh(n1 + 1, n2, t)
xv(n1, n2 + 1, t)
xt(n1, n2, t+ 1)



 = Na
P [NP [Ax(n1, n2, t)]

+NP [Bu(n1, n2, t)]] (4)

It is assumed that Ax(n1, n2, t) and Bu(n1, n2, t) are

computed first and then their summation is computed. Non-

linearity introduced in the in node computation2 of a product

of a matrix and a vector is denoted by NP . Nonlinear

operator NP is of the form given by (3). In a FM-II model

based implementation, computation of state vectors within

each node can be modeled by:

x(n1, n2, t) = Na
P [NP [Atx(n1, n2, t−1)]

+Na
P [NP [A2x(n1, n2−1, t)]

+Na
P [NP [A1x(n1−1, n2, t)]

+Na
P [NP [Btu(n1, n2, t−1)]

+Na
P [NP [B2u(n1, n2−1, t)]

+ NP [B1u(n1−1, n2, t)]]]]]] (5)

B. Model 2

Due to bandwidth and power limitations the word length
of numbers communicated between nodes may be shorter
than that for in-node computations. This result in coarser
quantization for state vector components communicated be-
tween nodes. Let NC : R → SC be the quantization operator
used for state vector components communicated between
nodes. Here SC denotes the set of numbers representable
with the number format used for communicated numbers. In
a Roesser model based implementation, computation of state
vectors within each node can be modeled by:
[

xh(n1 + 1, n2, t)
xv(n1, n2 + 1, t)

]

=NC

[

NP

[[

A1 A2 A3

A4 A5 A6

]

x(n1, n2, t)

]

+ NP

[[

B1

B2

]

u(n1, n2, t)

]]

[

xt(n1, n2, t + 1)
]

=Na

P

[

NP

[[

A7 A8 A9

]

x(n1, n2, t)
]

+NP

[[

B3

]

u(n1, n2, t)
]]

(6)

2Computations done by nodes

In (6), it is assumed that communicated state vector compo-

nents are computed using the same floating point scheme as

the temporal state vector component and then quantized to

shorter word lengths for communication. In a FM-II model

based implementation, computation of state vectors within

each node can be modeled by:

x(n1, n2, t) = Na
P [NP [Atx(n1, n2, t−1)]

+Na
P [NP [A2[NC [x(n1, n2−1, t)]]]

+Na
P [NP [A1[NC [x(n1−1, n2, t)]]]

+Na
P [NP [Btu(n1, n2, t−1)]

+Na
P [NP [B2[NC [u(n1, n2−1, t)]]]

+ NP [B1[NC [u(n1−1, n2, t)]]]]]]]] (7)

C. Model 3

If the required precision for the two directions of com-
munication is different, computed values may be quantized
to different precisions in the orthogonal spatial directions.
Possible reasons for this could be the size of the sensor
network is different in the two directions or there is a
preferred direction in which higher precision is required .
In a Roesser model based implementation, computation of
state vectors within each node can be modeled by:
[

xh(n1 + 1, n2, t)
]

=NCh

[

NP

[[

A1 A2 A3

]

x(n1, n2, t)
]

+NP

[[

B1

]

u(n1, n2, t)
]]

[

xv(n1, n2 + 1, t)
]

=NCv

[

NP

[[

A4 A5 A6

]

x(n1, n2, t)
]

+NP

[[

B2

]

u(n1, n2, t)
]]

[

xt(n1, n2, t+ 1)
]

=NP

[

NP

[[

A7 A8 A9

]

x(n1, n2, t)
]

+ NP

[[

B3

]

u(n1, n2, t)
]]

(8)

Here NCh
: R → SCh

and NCv
: R → SCv

denote

quantization operators used for horizontal and vertical state

vector components respectively. Here SCh
and SCv

denote

sets of numbers representable with the number formats

used for horizontal and vertical state vector components

respectively. In (8), it is assumed that communicated state

vector components are computed using the same floating

point scheme as the temporal state vector component and

then quantized to shorter word lengths for communication.

In a FM-II model based implementation each node trans-

mits its state vector to its neighboring nodes. Both the neigh-

boring nodes in the orthogonal spatial directions can receive

the same transmission. Hence quantizing state vectors to

different precisions for the two orthogonal spatial directions

is not required.

IV. STABILITY OF THE SYSTEM

The finite size of the sensor network makes the practical

BIBO stability [17] the most suitable input-output stability

criteria on the system under consideration. Global asymptotic

stability of the quantized system will be considered in this

work, while the input-output stability of the system would

be a subject for future research.

The sensor network is assumed to be of size N1 × N2.

Therefore n1 ∈ [1, N1] and n2 ∈ [1, N2]. Since we are

interested in global asymptotic stability, the input to all the

nodes is assumed to be zero for t ≥ 0.
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Definition The system is said to be GAS3 if:

lim
t→∞

‖ x(n1, n2, t) ‖= 0 ∀(n1, n2) ∈ [1, N1]× [1, N2]

where ‖ · ‖ is any vector norm. It is assumed that

x(−1, n2, t) = 0, x(n1,−1, t) = 0 and the only non-zero

boundary conditions are given by x(n1, n2,−1).

1) Roesser Model Based Implementation: The system (8)

is considered since it is the most general case and results

derived for this case carry over to the other two cases.

Theorem 1 The system (8) is GAS, if and only if the 1-D

system,

x(t+ 1) = NP [A9x(t)] (9)

is GAS. Here x ∈ Rc and NP denotes the nonlinearity

introduced in node computations.

Proof: The proof is similar to the proof of Theorem

(1) in [15].

2) FM-II Model Based Implementation: The system (7)

is considered since it is the most general case and results

derived for this case carry over to the other cases.

Theorem 2 The system (7) is GAS, if and only if the 1-D

system,

x(t+ 1) = NP [Atx(t)] (10)

is GAS. Here x ∈ Rn.

Proof: The proof is similar to the proof of Theorem

(1) in [15].

An important implication of Theorems (1) and (2) is that

the global asymptotic stability of distributed systems imple-

mented on the sensor network is independent of the quan-

tization and overflow operations applied to communicated

state vectors. Global asymptotic stability of the 3-D system

under floating point arithmetic is equivalent to the global

asymptotic stability of a 1-D system under floating point

computations. Asymptotic stability of 1-D systems described

by second order difference equations under floating point

arithmetic is studied in [18]. Asymptotic stability of 1-D

systems described by state space models under floating point

computations is analyzed in [19], [20]. Global asymptotic

stability of distributed 3-D systems implemented on grid

sensor networks under fixed point arithmetic is independent

of the quantization and overflow operations applied to com-

municated state vectors [15]. Furthermore global asymptotic

stability of the 3-D system under fixed point arithmetic is

equivalent to the global asymptotic stability of a 1-D system

under fixed point computations [15]. Therefore conditions

derived in this work for global asymptotic stability of 3-D

systems under floating point arithmetic is analogous to the

3Globally asymptotically stable

conditions derived in [15] for 3-D systems under fixed point

arithmetic. Note that in contrast to fixed point systems, in

floating point systems a linearly stable systems can cause an

unbounded response to a bounded input or a zero input with

non-zero initial conditions.

V. EXAMPLES

Theoretical results are illustrated using an example imple-

mentation of a linear filter on a grid sensor network. Let the

transfer function of the single input single output filter be

given by (13). The sensor network is assumed to be of size

4× 4.

It is assumed that the exponent of the floating point

representation can be any integer. Therefore overflow and

underflow do not occur. In stable linear systems used in

practical applications overflow is unlikely to occur when the

maximum exponent allowed by the floating point represen-

tation is sufficiently large. The effect of underflow on global

asymptotic stability of the system depends on how underflow

is handled. Hence allowing the range of the exponent to be

infinite is justified for the purpose of this example.

Errors are introduced due to quantization of the mantissa.

In this example magnitude truncation is used to quantize the

mantissa in all arithmetic operations.

A. Givone-Roesser Model Based Implementation

The transfer function (13) can be realized using the
Givone-Roesser model:





xh(n1 + 1, n2, t)
xv(n1, n2 + 1, t)
xt(n1, n2, t+ 1)



 =











1

16
0 1

8
0

0 1

16
0 1

4

1

2
0 5

4

5

32

0 1 5

4
0















xh(n1, n2, t)
xv(n1, n2, t)
xt(n1, n2, t)





+







0
0
1
1






u(n1, n2, t)

y(n1, n2, t) =[1 0 0 0]x(n1, n2, t) (11)

where xh ∈ R, xv ∈ R and xt ∈ R2. According to Theorem

1, the system (11) under floating point computation is GAS

if and only if the system,

x(t+ 1) = NP

[[

5

4

5

32

5

4
0

]

x(t)

]

(12)

is GAS. Here x ∈ R2 and NP is the quantization operator

used for in node computations. Global asymptotic stability

of systems of the form (12) has been studied in [19]. It

has been shown that quantization nonlinearities can result in

four fundamental response types if the system is otherwise

GAS. A sufficient condition on the length of the mantissa to

ensure a granular periodic response in the underflow regime

is established in [19]. For the system (12) a mantissa length

H(z1, z2, zt) =
1

8
z1 −

1

128
z1z2 −

5

256
z1zt +

129

4096
z1z2zt

1−

1

16
z1 −

1

16
z2 + 1

256
z1z2 −

5

4
zt +

5

64
z1zt +

5

64
z2zt −

5

1024
z1z2zt +

25

128
z2
t
−

25

2048
z1z

2
t
−

25

2048
z2z

2
t
+ 25

32768
z1z2z

2
t

(13)
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of 11 bits is sufficient to ensure a granular periodic response

in the underflow regime.

The system (11) was simulated on the sensor network

using floating point computations with a mantissa length

of 6 bits. The quantization scheme described by model 1

was used. The only non-zero initial conditions are given by

x(n1, n2, 0) = [0, 0, 5, 14]T for 1 ≤ n1 ≤ 4 and 1 ≤ n2 ≤ 4.

Figure 1 shows plots of the Euclidean norm of state vectors

of nodes (1, 1),(1, 4),(4, 1) and (4, 4) versus time. In this

case states of the nodes reach the origin as time tends to

infinity. Figure 2 illustrates plots of the Euclidean norm of

state vectors of the same nodes versus time when a mantissa

length of 5 is used for computations.
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Fig. 1. Euclidean norm of the state vectors versus t for the Givone-Roesser
model, when computations are done with 6 bit mantissa
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Fig. 2. Euclidean norm of the state vectors versus t for the Givone-Roesser
model, when computations are done with 5 bit mantissa

System (12) is not GAS when computations are done

with 5 bit mantissa. Therefore, when computations are done

with 5 bit mantissa, system (11) is also not GAS according

to Theorem 1. Simulation results are in accordance with the

theoretical findings. Simulation results, for the case when

the quantization scheme described by model 2 was used,

is given in figure 3. State vectors communicated between

nodes were represented using a floating point scheme with

5 bit mantissa. A 6 bit mantissa was used for floating point

computations within the node. Figure 3 shows plots of the

Euclidean norm of state vectors of nodes (1, 1),(1, 4),(4, 1)
and (4, 4) versus time.
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Fig. 3. Euclidean norm of the state vectors versus t for the Givone-Roesser
model, when in node computations are performed with 6 bit mantissa and
communicated state vectors are quantized to 5 bit mantissa.

In this case states of the nodes reach the origin as

time tends to infinity, though a 5 bit mantissa is used for

communicated state vectors. As predicted by Theorem 1 the

quantization scheme used for communicated state vectors

does not affect the asymptotic stability of the system.

B. FM-II Model Based Implementation

The input-output transfer function (13) can be realized
using the FM-II model:
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y(n1, n2, t) =[2 − 1 0 0]x(n1, n2, t) (14)

Here x ∈ R4. According to Theorem 2, the system (14)

under floating point computation is GAS if and only if the

system,

x(t+ 1) = NP
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(15)

is GAS. Here x ∈ R4 and NP is the quantization operator

used for in node computations. It is evident that global

asymptotic stability of system (15) is equivalent to that of

system (12). The system (14) was simulated on the sensor

network using floating point computations with a mantissa

length of 6 bits. The quantization scheme described by model

1 was used. The only non-zero initial conditions are given by

x(n1, n2, 0) = [0, 0, 5, 14]T for 1 ≤ n1 ≤ 4 and 1 ≤ n2 ≤ 4.

Figure 4 shows plots of the Euclidean norm of state vectors
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of nodes (1, 1),(1, 4),(4, 1) and (4, 4) versus time. In this

case states of the nodes reach the origin as time tends to

infinity. Figure 5 illustrates plots of the Euclidean norm of

state vectors of the same nodes versus time when a mantissa

length of 5 is used for computations.
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Fig. 4. Euclidean norm of the state vectors versus t for the FM-II model,
when computations are done with 6 bit mantissa

System (15) is not GAS when computations are done with

5 bit mantissa. Therefore, when computations are done with

5 bit mantissa, system (14) is also not GAS according to

Theorem 2. Simulation results show that system (14) is not

GAS. Simulation results, for the case when the quantization

scheme described by model 2 was used, is given in figure

6. A floating point scheme with 5 bit mantissa was used to

represent state vectors communicated between nodes. A 6 bit

mantissa was used for floating point computations within the

node. Figure 6 shows plots of the Euclidean norm of state

vectors of nodes (1, 1),(1, 4),(4, 1) and (4, 4) versus time.
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Fig. 5. Euclidean norm of the state vectors versus t for the FM-II model,
when computations are done with 5 bit mantissa
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Fig. 6. Euclidean norm of the state vectors versus t for the FM-II
model, when in node computations are performed with 6 bit mantissa and
communicated state vectors are quantized to 5 bit mantissa.

In this case states of the nodes reach the origin as

time tends to infinity, though a 5 bit mantissa is used for

communicated state vectors. As predicted by Theorem 2

quantization scheme used for communicated state vectors

does not affect the asymptotic stability of the system (14).

VI. CONCLUSIONS

Distributed implementation of 3-D systems described by

the Roesser and the FM-II state space models in grid sensor

networks under floating point computations was studied

in this work. Nonlinearities introduced by floating point

computations to otherwise linear systems were modeled. A

necessary and sufficient condition for the global asymptotic

stability of the system was derived. It was shown that global

asymptotic stability of distributed 3-D systems implemented

on grid sensor networks are independent of the quantization

nonlinearities applied to communicated state and input vec-

tors. An example was provided to illustrate the theoretical

results.
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