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Abstract— It has been shown in an earlier work that
impedance-like effects, called retroactivity, are found at the
interconnection of biomolecular systems just as they occur in
several engineering systems. These effects are particularly rele-
vant in signaling cascades that have several downstream targets.
These cascades have been extensively studied to determine how
a stimulus at the top of the cascade is transmitted and amplified
as it propagates toward the bottom of the cascade. In principle,
because of retroactivity, a perturbation at the bottom of the
cascade can propagate upstream. In this paper, we study the
extent to which this propagation occurs by analytically finding
retroactivity gains at each stage of the cascade. These gains
determine whether a perturbation at the bottom of the cascade
is amplified or attenuated as it propagates upstream.

I. INTRODUCTION

A living cell is an intricate system that is composed of
networks of molecules that transmit signals both within the
cell, and between the cell and its environment. An important
part of these networks consists of signaling pathways, which
cover a central role in a cell’s ability to sense and respond to
both external and internal input stimuli [1], [2]. Often, signal-
ing pathways consist of phosphorylation/dephosphorylation
(PD) cycles, wherein a protein is reversibly converted be-
tween an active and an inactive form [3]. Several PD cycles
often appear connected in a cascade fashion and the length of
the cascade has been shown to have prominent effects, for
instance, on signal amplification, signal duration, and sig-
naling time [4]–[7]. Specifically, a wealth of work has been
employing metabolic control analysis (MCA) to determine
the gains across the cascade as a small amplitude stimulus is
applied at the top of the cascade [7]–[9]. No study has been
carried on how and whether perturbations at the bottom of
a cascade propagate toward the top.

Cascades often intersect with each other through common
components, such as protein substrates. Hence, perturbations
at bottom or intermediate stages in a cascade are common
and often lead to unwanted crosstalk between the signaling
stages downstream of the intersection point [10]–[11]. No
attention has been given to crosstalk between the stages
upstream of the intersection point. In fact, several of these
works, modeled a cascade as the modular composition of
PD cycles, that is, unidirectional signal propagation was
implicitly assumed. Theoretical work, however, has shown
that biomolecular systems, among which PD cycles, cannot
always be modularly connected with each other because of
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retroactivity [12]–[15]. Preliminary experimental validation
of the steady state effects of retroactivity have also appeared
[16]–[18]. Retroactivity changes the behavior of an upstream
system upon interconnection to downstream clients. This is
especially relevant in signaling cascades, in which each PD
cycle has several targets. As a result of retroactivity, signaling
cascades allow bidirectional signal propagation, wherein a
perturbation at the bottom of the cascade can propagate
toward the top.

A perturbation at the bottom of the cascade can be due,
for example, to a downstream protein substrate that is shared
with another pathway so that the amount of target/substrate
available to the cascade under study can change. Also, the
introduction of an inhibitor, as in targeted drug design [19],
creates a perturbation at a targeted stage. In this work, we
quantify the effect of such perturbations on the upstream
stages and investigate how the effects of retroactivity propa-
gate upstream. On the one hand, this will reveal the extent by
which aberrant signaling in the upstream stages of a cascade,
as found in diseases such as cancer [20], can be caused by
retroactivity. On the other hand, it will provide tools for
targeted drug design by quantifying possible off-target effects
of inhibitors.

From a synthetic biology perspective, modular design
involves creating biological circuits that behave in isolation
the same as when they are connected with other circuits.
Therefore, by understanding the processes that attenuate
the effects of retroactivity [15], [21], the circuit designer
can design signaling pathways that amplify signals from
upstream to downstream and attenuate signals from down-
stream to upstream, thereby enforcing unidirectional signal
propagation which is crucial in modular design.

In this paper, we consider a PD cascade with a single
phosphorylation cycle per stage and no explicit feedback,
and we incorporate retroactivity explicitly in the PD cycle
model. Our earlier work, [22], considers a similar problem
with the difference that [22] employs a more complicated
and complete model of such cascades. Here, we show
that with a simpler model, qualitatively similar results are
obtained. Specifically, we consider small perturbations at
the bottom of the cascade and explicitly quantify how such
perturbations propagate from downstream to upstream at
steady state. Our main results are as follows. We pro-
vide analytical expressions for the downstream-to-upstream
transmission gains. These establish the extent to which a
perturbation at the bottom of the cascade can propagate
upstream. We then provide several sufficient conditions for
retroactivity attenuation. Furthermore, we highlight some
important structural properties of these cascades. The paper
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Fig. 1. A Phosphorylation/Dephosphorylation (PD) cascade with n stages.

is organized as follows: in Section II, we explain the cascade
model. In Section III, we present our results. In Section IV,
we demonstrate our results using numerical simulations. In
Section V, we conclude with discussions and future work.

II. SYSTEM MODEL

Consider a signaling cascade comprised of n PD cycles
as depicted in Fig. 1. At each stage i, i ∈ {1, . . . , n}, W∗

i−1

denotes the kinase, Ei denotes the phosphatase, Wi denotes
the protein substrate, and W∗

i denotes the phosphorylated
form of Wi. The kinase W∗

i−1 binds to Wi to form the
substrate-kinase complex Xi. This complex is then converted
to W∗

i . The phosphorylated protein W∗
i is itself a kinase for

the next downstream stage and, by binding to downstream
substrates, forms the complex Xi+1. The phosphatase Ei
activates the dephosphorylation of protein W∗

i and converts
W∗
i to Wi. The phosphorylation reaction is given by

Wi + W∗
i−1

ai−⇀↽−
ai

Xi
ki−→W∗

i + W∗
i−1,

where ai, ai, and ki denote rates of reaction.
In this paper, we assume that the dephosphorylation re-

action occurs in one step and no intermediate complex is
formed. This is a good assumption if the catalytic rate
of reaction for dephosphorylation is sufficiently fast. The
dephosphorylation reaction is, thus, given by

W∗
i
biEiT−−−−→Wi,

where EiT is the total amount of phosphatase in stage i and
bi is the rate at which W∗

i binds to the phosphatase. We

assume that protein Wi is conserved at every stage and is in
total amount WiT . Therefore, we have that

Wi +W ∗
i +Xi +Xi+1 = WiT , (1)

in which for a species X, X (italics) denotes its concentration.
We assume that the kinase to the first stage, W∗

0, is produced
at rate k(t) and decays at rate δ, i.e.,

W∗
0

δ−−⇀↽−−
k(t)
∅.

Finally, we assume that the phosphorylated protein of the last
stage, W∗

n, binds to species D downstream of the cascade and
forms the complex Xn+1, that is,

W∗
n + D

an+1−−−⇀↽−−−
an+1

Xn+1 with DT := D +Xn+1.

Species D could model, for instance, a substrate that is
shared with other signaling pathways. It could also model
a signaling molecule or an inhibitor of the active enzyme
W∗
n, as considered in targeted drug design, in which the total

concentration of D could be perturbed by the addition of
more drug. Therefore, the amount of free D plus the amount
of D bound to W∗

n, which we call DT , could be perturbed. In
this study, we consider a perturbation in DT as the input to
the system. Specifically, we assume a small perturbation on
DT and calculate the sensitivity of the steady state response
of W ∗

i , i ∈ {1, . . . , n}.
A standing assumption in this paper is that the length

of the cascade, n, is finite, and for all i ∈ {1, . . . , n}, the
quantities WiT , EiT , ai, ai, ki, bi, δ, an+1, and an+1 are
finite and strictly positive.

Based on the given chemical reactions, the differential
equations that describe the dynamics of the system are

Ẇ ∗
0 = −δW ∗

0 + k(t)− (a1W
∗
0W1 − (a1 + k1)X1)

Ẋi = aiW
∗
i−1Wi − (ai + ki)Xi

Ẇ ∗
i = kiXi − biEiTW ∗

i −
(ai+1W

∗
i Wi+1 − (ai+1 + ki+1)Xi+1)

Ẇ ∗
n = knXn − bnEnTW ∗

n−
(an+1DW

∗
n − an+1Xn+1)

Ẋn+1 = an+1(DT −Xn+1)W ∗
n − an+1Xn+1,

where i ∈ {1, . . . , n}. Noting that the terms in the boxes cor-
respond to Ẋ1, Ẋi+1, and Ẋn+1, respectively, and employing
the conservation law (1), we obtain, for i ∈ {1, . . . , n}, that

Ẇ ∗
0 = −δW ∗

0 + k(t)− Ẋ1

Ẋi = aiW
∗
i−1(WiT −W ∗

i −Xi −Xi+1)−
(ai + ki)Xi

Ẇ ∗
i = kiXi − biEiTW ∗

i − Ẋi+1

Ẋn+1 = an+1(DT −Xn+1)W ∗
n − an+1Xn+1.

(2)
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III. RESULTS

In this section, we assume that the cascade is at the steady
state and explore how a small perturbation in the concentra-
tion DT perturbs the steady state concentrations of each stage
of the cascade. Let 0 < k < ∞ and 0 < DT < ∞ denote
the steady state values of k(t) and DT , respectively. Let the
corresponding equilibrium values of W ∗

0 , W ∗
i , Xi, Wi, for

i ∈ {1, · · · , n}, and Xn+1 be denoted by W
∗
0, W

∗
i , Xi,

W i, for i ∈ {1, · · · , n}, and Xn+1, respectively. Let dT :=
DT −DT represent the perturbation of DT with respect to
its steady state value. The corresponding perturbations of the
states of the cascade about the equilibrium values are denoted
by w∗

0 , w∗
i , xi for i ∈ {1, · · · , n}, and xn+1. Similarly, let

Zi, for i ∈ {1, . . . , n}, denote the concentration of the total
phosphorylated protein at stage i, i.e., Zi := W ∗

i + Xi+1.
This concentration is easy to measure experimentally in the
lab and will thus be also studied here. Let the corresponding
perturbation about the steady state Zi = W

∗
i + Xi+1 be

denoted by zi, which can be written as zi = w∗
i + xi+1 for

all i ∈ {1, . . . , n}. To quantify the effects of retroactivity,
we introduce the following gains, for i ∈ {1, . . . , n− 1}:

Ψi =

∣∣∣∣ w∗
i

w∗
i+1

∣∣∣∣ , Φi =

∣∣∣∣ zizi+1

∣∣∣∣ . (3)

Definition 1. We say that stage i attenuates retroactivity
with respect to the free phosphorylated protein provided
Ψi < 1.

Definition 2. We say that stage i attenuates retroactivity
with respect to the total phosphorylated protein provided
Φi < 1.

To understand how retroactivity propagates from each
stage to the next stage upstream, we quantify Ψi and Φi, for
i ∈ {1, . . . , n−1} as functions of the cascade parameters. To
achieve this, we assume that dT , viewed as the input to the
system, is sufficiently small, and we linearize the dynamics
of system (2) about the equilibrium as follows:

ẇ∗
0 = −δw∗

0 − ẋ1

ẋi = aiW
∗
i−1(−w∗

i − xi − xi+1) + aiW iw
∗
i−1−

(ai + ki)xi

ẇ∗
i = kixi − biEiTw∗

i − ẋi+1

ẋn+1 = an+1Dw
∗
n + an+1W

∗
n(dT − xn+1)−

an+1xn+1,

(4)

in which we have, for i ∈ {1, · · · , n}, that (from setting the
time derivatives in equations (2) to zero)

W
∗
0 =

k

δ
, W i = αi

bi
ki
EiT

W
∗
i

W
∗
i−1

, (5)

where αi := ai+ki
ai

is the Michaelis-Menten constant of
the phosphorylation reaction. Since we are interested in
the steady state of the linearized model, we set the time

Stage i

w∗
i = Ti(W iw

∗
i−1 − W

∗
i−1xi+1)

xi =
bi

ki
EiT w∗

i

w∗
i−1 w∗

i

xi xi+1

Fig. 2. Directionality of signals in stage i. Retroactivity to the output of
stage i is due to the perturbation of the complex Xi+1.

derivatives in system (4) to zero and simplify to obtain

w∗
0 = 0 (6)

xi =
bi
ki
EiTw

∗
i (7)

w∗
i = Ti(W iw

∗
i−1 −W

∗
i−1xi+1) (8)

xn+1 =
Dw∗

n +W
∗
ndT

W
∗
n + an+1

an+1

, (9)

where
Ti =

1

W
∗
i−1 + bi

ki
EiT

(
W

∗
i−1 + αi

) . (10)

Fig. 2 represents equations (7) and (8) as a block diagram,
which highlights the directionality of signal propagation
through each stage of the cascade. Basically, perturbation dT
causes perturbation xn+1, which then propagates to upstream
stages in the cascade through perturbations xi. Hence, in
this steady state response model, retroactivity is due to
perturbations in the concentration of the complexes Xi. We
now provide some structural properties of PD cascades.

Lemma 1: The n-stage cascade defined by (6)–(9) is such
that sign(w∗

i ) = −sign(w∗
i+1) for all i ∈ {1, ..., n− 1}.

Proof: (By induction on the stage number i)
Base case: For i = 1, (6) – (8) yield

w∗
1 = −

(
T1W

∗
0

b2
k2
E2T

)
w∗

2 . (11)

Since T1W
∗
0
b2
k2
E2T ≥ 0, (11) shows that sign(w∗

1) =
−sign(w∗

2).
Induction Step: Assume that sign(w∗

i−1) = −sign(w∗
i ).

We prove that sign(w∗
i ) = −sign(w∗

i+1). Employing equa-
tions (7) and (8), we have that

w∗
i = TiW iw

∗
i−1 − TiW

∗
i−1

bi+1

ki+1
E(i+1)Tw

∗
i+1.

To simplify notation, define G1 := TiW i and G2 :=
TiW

∗
i−1

bi+1

ki+1
E(i+1)T . Then, we have that w∗

i = G1w
∗
i−1 −

G2w
∗
i+1 from which we obtain that

w∗
i+1 =

G1

G2
w∗
i−1 −

1

G2
w∗
i . (12)

In order to proceed, we consider two cases and employ the
fact that G1 ≥ 0 and G2 ≥ 0.

case 1: If w∗
i−1 ≥ 0, then by the induction assumption

w∗
i ≤ 0; hence by (12) we obtain that

w∗
i+1 =

G1

G2
|w∗
i−1|+

1

G2
|w∗
i | ≥ 0.
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case 2: If w∗
i−1 ≤ 0, then by the induction assumption

w∗
i ≥ 0; hence by (12) we obtain that

w∗
i+1 = −G1

G2
|w∗
i−1| −

1

G2
|w∗
i | ≤ 0.

This proves the lemma.
This lemma implies that if the downstream perturbation

dT causes a decrease in the free phosphorylated protein
concentration at one stage, it causes an increase in that of
the next upstream stage. We now quantify Ψi defined in (3):

Theorem 1: The stage gain Ψi, defined in (3), is given by

Ψi =

bi+1

ki+1
E(i+1)T

1 + bi
ki
EiT

(
1 + αi

W
∗
i−1

(
1 +

W
∗
i

W
∗
i−1

Ψi−1

)) (13)

with Ψ0 := 0.

Proof: (By induction on stage number i)
Base case: From equations (6) – (8), we have that

w∗
1 = −T1W

∗
0
b2
k2
E2Tw

∗
2 from which we obtain that |w∗

1 | =
T1W

∗
0
b2
k2
E2T |w∗

2 |. Substituting for T1 from equation (10) and
simplifying gives

|w∗
1 | =

b2
k2
E2T

1 + b1
k1
E1T

(
1 + α1

W
∗
0

) |w∗
2 |.

Thus Ψ1 =
b2
k2
E2T

1+
b1
k1
E1T

(
1+

α1
W∗

0

) and the base case is proven.

Induction step: Assume |w∗
i−1| = Ψi−1|w∗

i |. We prove that
|w∗
i | = Ψi|w∗

i+1|. By Lemma 1, sign(w∗
i ) = −sign(w∗

i−1).
Therefore, the induction assumption becomes w∗

i−1 =
−Ψi−1w

∗
i . Employing equations (7) and (8) as well as the

induction assumption, we obtain that

w∗
i = −TiW iΨi−1w

∗
i − TiW

∗
i−1

bi+1

ki+1
E(i+1)Tw

∗
i+1.

Substituting for W i from equation (5) and simplifying we
obtain that

w∗
i = −

bi+1

ki+1
E(i+1)T

1
TiW

∗
i−1

+ W i

W
∗
i−1

Ψi−1

w∗
i+1

= −
bi+1E(i+1)T

ki+1
w∗
i+1

1 + biEiT
ki

(1 + αi
W

∗
i−1

) + αi
biEiT
ki

W
∗
i

W
∗
i−1

1
W

∗
i−1

Ψi−1

= −
bi+1E(i+1)T

ki+1

1 + biEiT
ki

(
1 + αi

W
∗
i−1

(1 +
W

∗
i

W
∗
i−1

Ψi−1)
)w∗

i+1.

Since
bi+1E(i+1)T

ki+1

1+
biEiT
ki

(
1+

αi
W∗
i−1

(1+
W∗
i

W∗
i−1

Ψi−1)

) = Ψi, with Ψi as

defined in (13), |w∗
i | = Ψi|w∗

i+1|.
The expressions of the gains Ψi are recursive. The follow-

ing proposition provides non-recursive sufficient conditions
for retroactivity attenuation.

Proposition 1: Stage i attenuates retroactivity with respect
to the free phosphorylated protein if any of the following
conditions are satisfied:

bi+1E(i+1)T

ki+1

1 + biEiT
ki

(1 + αi
W

∗
i−1

)
< 1; (14)

bi+1E(i+1)T

ki+1

1 + biEiT
ki

(1 + αi
W(i−1)T

)
< 1; (15)

bi+1E(i+1)T

ki+1
< 1. (16)

Proof: Since all terms in (13) are strictly positive, and
that W

∗
i < WiT from conservation law (1), it follows that Ψi

is less than each of the expressions in the left hand side of
(14)–(16). Therefore, if any of (14)–(16) hold, then Ψi < 1
and stage i attenuates retroactivity with respect to the free
phosphorylated protein.

From (15), it follows that stage i attenuates retroactivity
if W(i−1)T � 1, i.e., sufficiently small total kinase for stage
i, and/or αi � 1, i.e., sufficiently large Michaelis-Menten
constant for phosphorylation in stage i.

In the case of a weakly activated pathway [5], an inter-
esting conclusion can be made. In such pathways W

∗
i−1 �

W(i−1)T . Assuming, in addition, that W
∗
i−1 � αi, left hand

side of (14) can be approximated by bi+1E(i+1)T

ki+1

biEiT
ki

(W ∗
i−1

αi

)
.

If the term inside the first parentheses is not large (i.e., the
rate of dephosphorylation compared to the catalytic rate of
phosphorylation in stage i + 1 is not much larger than that
of stage i), then Ψi � 1 and stage i is a good retroactivity
attenuator.

In [5], it was shown that for weakly activated pathways, in
order to have upstream to downstream signal amplification,
it is necessary that the phosphorylation rate constant be
larger than the dephosphorylation rate constant. For a weakly
activated pathway in which W(i−1)T � αi, the phosphory-
lation rate constant is well approximated by kiWiT /αi [22].
Also, in our model, the dephosphorylation rate constant is
biEiT . Consequently, to have upstream-to-downstream signal
amplification, it is required that

biEiT
kiWiT /αi

< 1,

which, when αi ≥ WiT , implies that biEiT /ki < 1. Based
on the sufficient condition given in (16), this implies that
Ψi−1 < 1. Hence, the downstream perturbation is attenuated
as it propagates from stage i to stage i − 1. Concluding,
in weakly activated pathways in which WiT ≤ αi and
W(i−1)T � αi, upstream to downstream signal amplification
is associated with retroactivity attenuation. This, in turn,
implies unidirectional signal propagation from upstream to
downstream.

We now describe two other important structural properties
of the cascade:
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Theorem 2: The n-stage signaling cascade defined by (6)–
(9) is such that sign(zi) = −sign(zi+1) for all i ∈
{1, ..., n − 1}. Furthermore, Φi, defined in (3), is such that
Φi < 1, i ∈ {1, . . . , n− 1}.

Proof: To simplify notation, define for all i ∈
{1, . . . , n},

Fi :=
biEiT
ki

(
1 +

αi

W
∗
i−1

(1 +
W

∗
i

W
∗
i−1

Ψi−1)

)
, (17)

so that Ψi can be written as

Ψi =
1

1 + Fi

bi+1E(i+1)T

ki+1
. (18)

Now, substituting w∗
i−1 = −Ψi−1w

∗
i in (8) yields

w∗
i = Ti(−W iΨi−1w

∗
i −W

∗
i−1xi+1).

Substituting for W i from (5) and solving for w∗
i yields

w∗
i = − xi+1

1
TiW

∗
i−1

+ W i

W
∗
i−1

Ψi−1

= − xi+1

1 + Fi
,

where Fi is given by (17). Equivalently, xi+1 = −(1+Fi)w
∗
i .

We now express zi in terms of w∗
i as follows:

zi = w∗
i + xi+1 = w∗

i − (1 + Fi)w
∗
i = −Fiw∗

i . (19)

Since Fi > 0, we obtain from (19) that sign(zi) =
−sign(w∗

i ) and, employing Lemma 1, we obtain that
sign(zi) = −sign(zi+1). This proves the first part of the
theorem. To prove the second part, we employ (19) in (3):

Φi =

∣∣∣∣ zizi+1

∣∣∣∣ =

∣∣∣∣ −Fiw∗
i

−Fi+1w∗
i+1

∣∣∣∣ =
Fi
Fi+1

∣∣∣∣ w∗
i

w∗
i+1

∣∣∣∣ =
Fi
Fi+1

Ψi.

Substituting for Ψi from (18), we obtain that

Φi =
Fi
Fi+1

bi+1E(i+1)T

ki+1

1 + Fi
=

Fi
1 + Fi

bi+1E(i+1)T

ki+1

Fi+1
.

Since Fi > 0, we have that Fi
1+Fi

< 1. Furthermore,

bi+1E(i+1)T

ki+1

Fi+1
=

bi+1E(i+1)T

ki+1

bi+1E(i+1)T

ki+1

(
1 + αi+1

W
∗
i

(1 +
W

∗
i+1

W
∗
i

Ψi)
)

=

bi+1E(i+1)T

ki+1

bi+1E(i+1)T

ki+1
+

bi+1E(i+1)T

ki+1

αi+1

W
∗
i

(1 +
W

∗
i+1

W
∗
i

Ψi)
< 1,

since all the terms are strictly positive. Thus, Φi < 1.
The first part of this theorem states that, similar to the case

of free phosphorylated protein as described in Lemma 1, an
increase in Zi+1 implies a decrease in Zi. The second part
of this theorem states that the magnitude of the perturbation
at every stage is always attenuated as it propagates upstream
in the cascade, regardless of the cascade parameters or the
length of the cascade. In other words, every stage attenuates
retroactivity with respect to the total phosphorylated protein.
We now investigate how dT affects w∗

n and zn.
Theorem 3: The n-stage signaling cascade defined by (6)–

(9) is such that |w∗
n| < |dT | and |zn| < |dT |.

Proof: To prove that |w∗
n| < |dT |, we substitute xn+1

from (9) into (8) (with i = n) and use the fact that w∗
n−1 =

−Ψn−1w
∗
n to obtain

w∗
n = Tn(−WnΨn−1w

∗
n −W

∗
n−1

Dw∗
n +W

∗
ndT

W
∗
n + an+1

an+1

). (20)

To simplify notation, let

K1 :=
1

1 + Tn(WnΨn−1 +W
∗
n−1

1

W
∗
n+

an+1
an+1

D)
(21)

K2 := TnW
∗
n−1 =

1

1 + bnEnT
kn

(1 + αn
W

∗
n−1

)
(22)

K3 :=
W

∗
n

W
∗
n + an+1

an+1

. (23)

Therefore, solving (20) for w∗
n, we have that w∗

n =
−K1K2K3dT , i.e., |w∗

n| = K1K2K3|dT |. From (21)–(23),
it follows that 0 < Ki < 1 for i ∈ {1, 2, 3}. Therefore,
|w∗
n| < |dT |. This proves the first part of the theorem. To

prove the second part, we employ w∗
n = −K1K2K3dT and

equation (9) to express zn in terms of dT as follows:

zn = w∗
n + xn+1 = w∗

n +
1

W
∗
n + an+1

an+1

(
Dw∗

n +W
∗
ndT

)
= (1 +

D

W
∗
n + an+1

an+1

)w∗
n +

W
∗
n

W
∗
n + an+1

an+1

dT

=

(
−(1 +

D

W
∗
n + an+1

an+1

)(K1K2K3) +
W

∗
n

W
∗
n + an+1

an+1

)
dT

= K3

(
−(1 +

D

W
∗
n + an+1

an+1

)(K1K2) + 1

)
dT .

Since we have already shown that 0 < K3 < 1, in order to
prove that |zn| < |dT |, it suffices to show that

0 < (1 +
D

W
∗
n + an+1

an+1

)(K1K2) < 1.

Since every term in this expression is strictly positive, the
left hand side inequality follows. To show the right hand side
inequality, we expand K1 and K2 and simplify as follows:

(1 +
D

W
∗
n + an+1

an+1

)(K1K2) =

(1 +
D

W
∗
n + an+1

an+1

)
TnW

∗
n−1

1 + Tn(WnΨn−1 +W
∗
n−1

1

W
∗
n+

an+1
an+1

D)

=

1 + D

W
∗
n+

an+1
an+1

1
TnW

∗
n−1

+ Wn

W
∗
n−1

Ψn−1 + 1

W
∗
n+

an+1
an+1

D

=

(1 + D

W
∗
n+

an+1
an+1

)

(1 + D

W
∗
n+

an+1
an+1

) + ( bnEnTkn
(1 + αn

W
∗
n−1

) + Wn

W
∗
n−1

Ψn−1)
,
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Parameter Value
ki, i = 1, 2, 3 150 (min)−1

ai, i = 1, 2, 3 2.5 (nM min)−1

ai, i = 1, 2, 3 600 (min)−1

bi, i = 1, 2, 3 2.5 (nM min)−1,
E3T 120 nM
E2T 0.3 nM
E1T 0.3 nM
W3T 1200 nM
W2T 1200 nM
W1T 3 nM
W

∗
0 0.3 nM

DT 0 nM.

TABLE I
PARAMETERS USED FOR THE NUMERICAL SIMULATIONS.

which, since all terms are strictly positive, shows that (1 +
D

W
∗
n+

an+1
an+1

)(K1K2) < 1. Therefore, |zn| < |dT |.
This theorem states that perturbation dT induces perturba-

tions w∗
n and zn that are less than dT in magnitude, regardless

of cascade parameters or the size of the cascade. Therefore,
to study the upstream propagation of dT , it suffices to study
Ψi and Φi, as performed in Theorems 1 and 2.

Theorems 2 and 3 imply that |z1| < · · · < |zn| < |dT |,
i.e., retroactivity is attenuated at every stage of the cascade
and also from the disturbance to the last stage. Hence, the
more stages there are in the cascade, the more the overall
retroactivity attenuation from the disturbance to the top of
the cascade. This is an important structural property of such
cascades as it does not depend on specific parameter values.

To summarize, the signaling cascade described by (6)–
(9) is such that sign(w∗

i ) = −sign(w∗
i+1) and sign(zi) =

−sign(zi+1), for all i ∈ {1, ..., n − 1}. Furthermore, the
effects of retroactivity are always attenuated with respect
to the total phosphorylated protein. In the case of free
phosphorylated protein, both attenuation and amplification of
retroactivity are possible. However, attenuation takes place
when W(i−1)T � 1 and/or αi � 1. Finally, in a weakly
activated pathway in which WiT ≤ αi and W(i−1)T � αi, if
stage i attenuates retroactivity, then it amplifies the upstream
signal, enforcing unidirectional signal transmission.

As a final remark, it should be noted that the linearization
considered in this paper is valid only when the perturbation
dT is small enough. Using numerical simulations, presented
in the next section and in [22], we have observed that
the linear approximation is in fact valid, even for large
perturbations (i.e., perturbations that are comparable in size
to the total protein concentration WnT ).

IV. NUMERICAL SIMULATIONS

In this section, we demonstrate our results on a three-
stage PD cascade. All simulations are performed on the full
nonlinear model of Eq. (2) using the ODE23s solver in the
MATLAB computational environment. The parameters used
for simulations are taken from [23] and are provided in Table
1.

Assuming zero initial conditions, i.e., W ∗
i (0) = 0 and

Xi(0) = 0, i = 1, 2, 3, Fig. 3 shows the trajectories of W ∗
1 ,

W ∗
2 , and W ∗

3 as a function of time. We assume that the
total concentration DT is zero for 0 ≤ t ≤ 30 minutes, and
suddenly changes to 1200 nM at t = 30 minutes.

As this figure illustrates, after some transient, the pertur-
bation in DT results in steady state perturbations in W ∗

1 ,
W ∗

2 , and W ∗
3 . Furthermore, the perturbation in W ∗

3 and W ∗
1

are negative, while that in W ∗
2 is positive. This validates

Lemma 1. Finally, the figure shows that the size of the
perturbation decreases as the stage number decreases, which
implies retroactivity attenuation between all stages.

Fig. 4 illustrates the relationship between the perturbation
in DT (denoted by dT ) and the perturbations in W ∗

1 , W ∗
2 , and

W ∗
3 (denoted, respectively, by w∗

1 , w∗
2 , and w∗

3). Surprisingly,
the relationship between w∗

i and dT is approximately linear
even for large perturbations (up to 1200 nM). Hence, the
theoretical results of this paper must hold. Note also that the
values of w∗

1 and w∗
3 are negative while that of w∗

2 is positive.
As before, this validates Lemma 1. The gains Ψi, which can
be computed either from the slope of the lines in Fig. 4 or
from (1), are given by Ψ1 = 8.33 × 10−4 and Ψ2 = 0.3.
Since Ψ1 and Ψ2 are both smaller than 1, the cascade should
attenuate the downstream perturbation at every stage. This
is confirmed by Figures 3 and 4. Since the values of Ψi

are much smaller than 1, this three-stage cascade practically
enforces unidirectional signal propagation from upstream to
downstream.

Finally, the values of the gains Φi are computed to be
Φ1 = 7.33 × 10−4 and Φ2 = 0.25, which are both smaller
than one. This validates Theorem 2.

V. CONCLUSIONS AND FUTURE WORKS

This paper presented a steady state model of PD cascades
in which the phosphorylation reaction takes place in two
steps while the dephosphorylation reaction occurs in one
step. We considered a linearized model and investigated
how a downstream perturbation propagates upstream in the
cascade. In particular, we derived expressions for the gains
between successive stages and explored conditions under
which the gains are smaller than one, implying retroactivity
attenuation. For the case of weakly activated pathways,
it was found that under mild conditions, attenuation of
retroactivity is associated with amplification of upstream
signals. We described some important structural properties
of the cascade such as sign reversal of perturbation at
each stage and attenuation of retroactivity in the case of
total phosphorylated protein. We also explained that with
more stages, more attenuation in the total phosphorylated
protein can be obtained. In [22], it was shown that longer
cascades better attenuate retroactivity with respect to the free
phosphorylated protein as well. Finally, we confirmed our
results using numerical simulations which were based on
biologically relevant parameters.

Future work includes extending the results to transient
response. Transients could become significant if the pertur-
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Fig. 3. Time response of the system to zero initial conditions and parameters given in Table 1. The concentration DT changes suddenly from 0 to 1200
nM at t = 30 min.
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Fig. 4. Attenuation and sign-reversal in the three-stage PD cascade. Simulation is performed on the full nonlinear ODE model given by equation (2).
The parameters of each stage are taken from [23] and are provided in Table 1.

bation downstream is not constant and changes fast enough
compared to the dynamics of the system. Another future
direction is to explore retroactivity in PD cascades with
double phosphorylation, where each stage is composed of
two phosphorylation reactions and two dephosphorylation
reactions. Such cascades are important because they often
arise in natural systems such as the MAPK cascade [4].
Finally, an important future work is experimental validation
of the theory developed, especially for the case of total
phosphorylated protein for which attenuation is independent
of parameter values or cascade size.
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