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Abstract—This paper proposes a novel trajectory generation 

method considering physical system limitations such as 

maximum velocity, acceleration, and jerk. Also, the trajectory 

generation method uses a digital convolution for reducing 

computational load in robotic motion applications. The method 

to be proposed has several advantages; first, a continuously 

differentiable trajectory is simply obtained by applying 

successive convolution operations. Second, a resultant 

trajectory is always generated satisfying the given physical 

system limits. Third, the suggested method has low 

computational load thanks to recursive form of convolution 

operation. The effectiveness of the proposed method is shown 

through numerical simulations. 

I. INTRODUCTION 

HE most important thing in the trajectory generation is to 

make the position trajectory of S-curve shape function 

which is differentiable at least till either acceleration-level or 

jerk-level. Especially, a jerk trajectory bounded within the 

physical jerk limit of the actuator specification will reduce 

damages to the control system from unforeseen vibrations or 

overshoots as well as improve the accuracy or speed when the 

system is under tracking [1]. Also, the smaller the jerk is 

limited, the smoother the trajectory is generated [2]. For a 

special purpose such as surgical robot that makes contact with 

patients, the jerk-level trajectory bounded with an arbitrary 

value must be considered rather than just the bounded 

acceleration-level trajectory. Moreover, the jerk-level is 

required to be kept as small as possible [3, 4]. 

 The actuator has its own physical limits such as maximum 

velocity, acceleration, and jerk. To realize the control system 

with higher performance, the physical system limits should be 

considered when the desired trajectory is generated [2,5,6]. 

The trajectory generated over the physical system limits is not 

only impossible to be followed by the controller, but also 

gives damages to the system due to overload of the actuator. 

If we make use of the trajectory generator without 

considering the system limits, we may spend a lot of time to 

find experimentally a range of the available trajectory. Last 

but not least, the economic cost for realizing the trajectory 

generator is an important element for extending application 

ranges to industrial and household control systems. If the 

control system including the trajectory generator can be 
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implemented in a cheap processor, it is able to reduce the 

economic cost in realizing a real-time control system [7, 8]. 

 Generally, the desired jerk trajectory has been generated 

using higher order polynomial method above third order [9]. 

The polynomial method is very useful because it can establish 

individual functions of velocity, acceleration, jerk, and so 

forth by changing its order. However, the conventional 

polynomial method has a disadvantage that it cannot satisfy 

the given physical system limits. As an alternative, several 

methods have been suggested to satisfy the physical system 

limits by using the polynomial method. The most intuitive 

method makes the desired trajectory divide into many 

segments. For example, the trajectory generation including 

arbitrary jerk limit requires sixteen segments using forth 

order polynomial functions [12]. Also, many other methods 

to remedy this disadvantage have been proposed with the 

purpose of lower computational burden in [11-14]. On the 

other hand, a convolution-based trajectory generation method 

has been suggested in [5, 15], which does not use the 

polynomial any more. The convolution-based method is able 

to generate an S-curve trajectory by applying successive 

convolution operations. Also a recursive form of convolution 

operation can reduce the computational loads drastically. 

However, the conventional convolution-based trajectory 

generation method has been developed under only zero initial 

and terminal conditions. In this paper, we are to extend it to 

more general case including non-zero initial and terminal 

conditions as well as to establish it on the theoretically 

substantial basis. 

II. TRAJECTORY GENERATION METHOD: ZERO STATES 

Before suggesting a novel convolution-based trajectory 

generation method, this section reviews several properties of 

convolution operations. Here we assume that the impulse 

response of the system, ( )h t , is a rectangular function having 

a unit area. Then the output can be obtained as a form of 

smoother function than the input by applying the input to the 

system, only if the input is a piecewise continuous function. 

Using this property, it is possible to generate the smooth 

desired trajectory by applying successive convolution 

operations. 

Suppose that ( )x t  is an arbitrary input function defined in 

time duration of 0 xt t  , ( )h t  is a convoluted rectangular 

function having the unit area defined in time duration of 

0 ht t  , namely, ( ) 1/ hh t t , for 0 ht t  , and ( )y t  is 

an output function produced by the convolution operation on 
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two functions ( )x t  and ( )h t . Here, we should note that two 

functions ( )x t  and ( )h t are zeros outside the defined time 

durations. Also let us denote that mx  and my  are the 

maximum values of ( )x t  and ( )y t , respectively, then the 

convolution operations have several properties as follows;  

Property 1 The output ( )y t  is defined in time duration of 

0 x ht t t   , which is the sum of both time durations of the 

input ( )x t and the convoluted function ( )h t . 

   Property 2 The area of output ( )y t  is always equal to that 

of input ( )x t . 

   Property 3 The maximum absolute value of output my  is 

always smaller than or equal to that of input mx . Especially, 

if ( )x t  maintains mx  constantly for the time duration ht  or 

more, then my  is equal to mx . 

First, it is easy to prove the Property 1 using the formal 

definition of convolution operation as follows: 
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This property comes out from convolution operation itself. 

Extending this property to successive convolution 

applications, we can know that the result function is defined 

in the total sum of time durations of the input and the 

convoluted functions. 

 Second, suppose that ( )X s , ( )H s , and ( )Y s  are the 

Laplace transforms of ( )x t , ( )h t , and ( )y t , respectively, 

then  the area of ( )y t  is denoted by ( )Y s s  and the 

convolution operation on two functions ( )x t  and ( )h t  

implies the multiplication of ( )X s  and ( )H s . Now, the 

Property 2 is proved easily by using the final value theorem as 

follows: 
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where we should note that the Laplace transform of 

( ) 1/ hh t t for 0 ht t   is ( ) (1 ) /( )ht s
hH s e t s


   and 

l'Hôpital's rule was used in Eq. (2). Above equation implies 

that the area of input is always equal to that of output. This 

completes the proof of the Property 2. Moreover, the invariant 

area principle is always true only if the convoluted functions 

have the unit area.  

 Third, let us assume that ( )y t  has the maximum value my  

at any time mt , then we can get the following relation from the 

Eq. (1):  
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where we can know that above inequality is always true 

because we chose the maximum value mx  among all values 

of function ( )x t . Namely, the maximum value of the output 

is smaller than or equal to that of the input. Also, if ( ) mx t x

for 0 h xt t  , then m my x . These complete the proof of the 

Property 3. In other words, the maximum value of the output 

cannot exceed that of the input only if the convoluted 

functions have the unit area.  

A. Zero-initial and Zero-terminal Conditions 

For the sake of simplicity, we will consider a single-axis 

motion control system as a target system. Also, suppose that 

the system has the limits such as the maximum velocity 

denoted by maxv , the maximum acceleration denoted by 

(1)
maxv , and the maximum jerk denoted by (2)

maxv . Without loss 

of generality, the system limit for nth order differentiation of 

velocity function is denoted by ( )
max
nv . Also, assume that the 

system moves given distance, S , then we can make the input 

function 0 ( )y t
 
using the maximum velocity maxv  as 

follows: 

                           0 0
0

, 0
( )

0 ,

v t t
y t

otherwise

 
 


                 (4.a)                                                   

0 max 0
max

S
v sgn(S)v and t

v
             (4.b) 

where  ov
 
and

 0t  imply the signed maximum velocity and 

time duration of the rectangular input function as shown in 

Fig. 1. 

 
Fig. 1.  Convolution-based trajectory generation: zero states. 
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   Now let us define the first convoluted function 1( )h t as the 

rectangular function with the time duration 10 t t  , then we 

can get the trapezoidal function 1( )y t  produced by the 

convolution operation on two rectangular functions 0 ( )y t

and 1( )h t  as shown in Fig. 1. By Property 1, the output 

function 1( )y t  is defined in the time duration 0 10 t t t   . By 

the Property 2, the distance to be moved S  is not changed by 

the convolution. By the Property 3, the maximum absolute 

value 1| |v  of 1( )y t  becomes smaller than or equal to the 

maximum velocity maxv of the given system. From the 

trapezoidal function 1( )y t  of the Fig. 1, we can know that 

each time duration for acceleration and deceleration is 1t , 

respectively, thus the maximum acceleration of 1( )y t  

becomes max 1v t . To make active use of the physical limit 

about maximum acceleration (1)
maxv , let us determine the time 

duration of first convoluted function 1( )h t to be 

(1)
1 max maxt v v . Moreover, if 0 ( )y t  maintains the signed 

maximum 0v  constantly for the time interval 1t  or more, 

namely, if 0 1t t  in the Fig. 1, then 1 0v v  by the Property 

3. 

   Let us apply the convolution operation once more using the 

trapezoidal velocity function 1( )y t  as the input. Similarly we 

define the second convoluted function 2 ( )h t as the rectangular 

function with time duration 20 t t  , then we can get the 

S-curve function 2 ( )y t  produced by the convolution of 1( )y t

and 2 ( )h t  as shown in Fig. 1. By Property 1, the output 

function 2 ( )y t  is defined in time duration 0 1 20 t t t t    . 

By the Property 2, the distance S is also not changed through 

the convolution. By the Property 3, the maximum absolute 

value 2| |v  of 2 ( )y t  becomes smaller than or equal to the 

maximum velocity maxv of the given system. To make active 

use of the physical limit about maximum jerk, we determine 

the time duration to be  (1) (2)
2 max maxt v v . Also, if 1( )y t  

maintains the maximum 1v  constantly for the time duration 

2t  or more, namely, if 0 1 2t t t   and 1 2t t in 1( )y t  of the 

Fig. 1, then 2 1v v  by the Property 3.  

Without loss of generality, we can extend above 

procedures to the smoother S-curve velocity function within 

the allowable physical system limits such as 

   
v

max
(n) , ,v

max
(2) ,v

max
(1)  and maxv . Here, only design parameters 

to be considered are the time durations of the convoluted 

functions, which should be determined as follows: 

                        

   

t
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for k = 0,1,2, ,n                (5) 

where (0)
max maxv v  and ( 1)

max | |v S  . Also, in order to generate 

the efficient trajectory by making active use of all the 

physical system limits such as 
   
v

max
(n) , ,v

max
(2) ,v

max
(1)  and maxv , 

the following inequality conditions as regards the time 

durations should be satisfied: 
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In summary, for given the distance S and the physical 

system limits 
   
v

max
(n) , ,v

max
(2) ,v

max
(1) ,v

max
, if we determine the 

time durations by using Eq. (5), then the S-curve velocity 

function generated by the suggested convolution-based 

method is always within the allowable physical limits or at 

their boundary. As mentioned before, the convolution-based 

trajectory generation method is effective because it satisfies 

automatically the physical system limits, but the 

continuous-time convolution operations require much 

computational burden. As an alternative, a recursive form of 

convolution operation to reduce it drastically will be 

proposed later. 

III. TRAJECTORY GENERATION: NON-ZERO STATES 

A. Non-zero Terminal Condition 

In order to generate desired trajectory with non-zero terminal 

velocity, let us consider the input of stepwise function that is 

composed of the maximum velocity 0v  for 00 t t   and 

terminal velocity 
fv  for 0t t   , where   is a sufficiently 

large time parameter. Actually, the value of   is dependent 

on the number of convolution operations to be applied, which 

is expressed by 
0


n

kk
t ; e.g., if n=2, then 0 1 2  t t t  

and if n=3, then 0 1 2 3   t t t t . If the stepwise input 

0 ( )y t
 
is convoluted with the unit area function 1( )h t , then 

we have the output 1( )y t
 
as shown in Fig. 2. Once more, if we 

perform the convolution operation on two functions of 1( )y t
 

and 2 ( )h t , then the S-curve function is generated as shown in 

Fig. 2. Here, by the Property 3, the maximum velocity of 

output function nv  is smaller than or equal to that of the 

stepwise input 0v . Also, the output  ( )ny t  goes to zero 

 
Fig. 2.  Convolution-based trajectory generation method: non-zero 

terminal condition. 
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passing through 
fv
 
at the time 

0


n

kk
t t  as shown in Fig. 

2. Hence, the trajectory satisfying the non-zero terminal 

condition can be generated by performing the successive 

convolution operations until 
0

n

kk
t t


 . As we can see in 

the Fig. 2, the convolution time duration in the case of 

non-zero terminal condition is equal to that of zero states 

suggested in the previous section. Namely, the time duration 

of the convolution-based trajectory generation method is 

independent of the value of terminal velocity.  

In the case of non-zero terminal condition, the distance to be 

moved becomes different according to the number of 

convolutions. Since the acceleration and deceleration during 

time interval of 0 0

n

kk
t t t


   always are formed 

symmetrically regardless of the number of successive 

convolution operations, the area nS of final velocity function 

( )ny t  with the non-zero terminal condition is obtained as 

follow: 
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where we can see that the Property 2 holds if the terminal 

velocity condition is zero. 

   B. Non-zero Initial Condition 

If the trajectory should have both non-zero initial and 

terminal velocity conditions, then the trajectory can be 

decomposed into a rectangular initial velocity function and 

the non-zero final velocity function as shown in Fig. 3. The 

rectangular function has a value of initial velocity iv  for 

0
0

n

kk
t t


   and the non-zero final velocity function has 

a difference between terminal and initial conditions 
f iv v  

at the terminal time as shown in Fig. 3. Also, its area nS  in the 

case of non-zero initial and terminal conditions can be 

obtained as the sum of areas of two functions, t
nS  and b

nS , as 

following form: 
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where we can see that the Property 2 holds if both initial and 

terminal conditions are zero. In the case of non-zero initial 

and terminal conditions, the distance to be moved becomes 

different according to the number of convolutions. Since the 

area nS

 

of the final velocity function ( )ny t

 

should be equal 

to the given distance S of the system, we are to modify how 

to determine 0v differently from Eq. (4.b). Accompanied by 

the change of 0v , other two parameters 0t and 1t  should be 

also modified. The following part suggests how these three 

parameters ( 0 0 1, ,v t t ) should be changed in order to satisfy the 

given distance, namely, nS S . 

 

For given iv and 
fv , one of four possible trajectories can 

generally be generated according to the distance to be moved 

nS  as shown in Fig. 4, upper two trajectories in the Fig. 4 are 

for the case of 
i fv v and  below ones for the case the of 

i fv v . Also, the maximum velocity of the generated 

trajectory can be either maxnv v  or  maxnv v   according 

 
Fig. 3.  Decomposition of the trajectory with non-zero states into a 

rectangular initial velocity function  and the non-zero final velocity 

function. 
  

 
Fig. 4.  Four possible trajectories according to the given distance, 

initial and terminal conditions. 
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to the given distance. Now, let us introduce a concept of 

criterion distance denoted by *
nS  

, namely, two trajectories 

shown in left ones of the Fig. 4 are generated using maxnv v  

when *
n nS S  and two trajectories shown in right ones of the 

Fig. 4 are generated using maxnv v 
 
when *

n nS S . In order 

to find out the criterion distance  *
nS  , if we approach  0t  to 

zero in the Fig. 2, then we have Fig. 5. The Fig. 5 shows an 

inevitable distance for moving from zero to terminal velocity 

under the case of zero initial velocity. In the case of non-zero 

initial velocity, corresponding decomposition like the Fig. 3 

should be considered. Moreover, since the *
nS  is dependent on 

the value of 1t , we take the value of *
nS  from the minimum *

1t  

determined as a small value between 
(1)
max/n iv v v  and 

(1)
max/n fv v v  . More detail, since nv  can be either maxv  or 

maxv , we have possible eight cases of the minimum *
1t  

according to the relationship between iv  and  fv
 
as shown in 

Table I. Fortunately, the possible eight cases can be expressed 

by one equation as the following form: 

                    

max*
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max

sgn( ) min( , )i f i fv v v v v
t

v


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Once the value of *
1t  is determined, the criterion distance 

can be obtained from Eq. (8) by 
0 0t   as follow: 
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Since the generated final velocity function should be 

bounded as the maximum velocity of the given system, the 

value of 0v  can be either max iv v  when *
n nS S  or 

max iv v   when *
n nS S . Also, the value of 0v  can take any 

value when *
n nS S  because 0t  will be zero in that case. Thus, 

the value of 0v  can be expressed by either 

*
0 maxsgn( )n n iv S S v v    or 0 max*

1

sgn( )
i

n n

v v v
S S

 
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(11) 

If *
n nS S , then  we can see that the value of 1t  should take 

the large value between 
(1)

max max( ) /fv v v  and  

(1)
max max( ) /iv v v  from left two trajectories in the Fig. 4, on 

the other hand, if *
n nS S , then the value of 1t  should take the 

large value between 
(1)

max max( ) /fv v v  and  (1)
max max( ) /iv v v  

from right two trajectories in the Fig. 4. Thus, the value of 1t  

is expressed as following form: 
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where we should note that we take (1)
1 max max2 /t v v when 

*
n nS S  . Finally, the value of 0t  can be obtained by applying 

Eq. (11) to Eq. (8) as follow: 
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Till now, we have suggested how these three parameters 

( 0 1 0, ,t t v ) should be changed for satisfying nS S  in the case 

of non-zero initial and terminal condition.  

   C. Digital Convolution 

The convolution operation can be expressed by two forms 

such as convolution integral in the continuous time domain 

and convolution sum in the discrete time domain. Actually, 

the implementation of convolution integral must be 

inappropriate for the digital motion control systems, 

especially for real-time issue. Thus the convolution sum is 

considered with nth convoluted function having unit area, 

[ ] 1/n nh k m
 
for 0 1nk m   , as follows:   
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In addition, [ 1]ny k  , preceding value of [ ]ny k , is 

expressed as following form: 

 ][][][][ nnnn
n

n mkykyky
m

ky   111 21
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(15)                     

  

Subtracting Eq. (15) from Eq. (14), we arrive at a recursive 

form of the convolution sum as follow: 

            1 1[ ] [ ]
[ ] [ 1]n n n

n n
n

y k y k m
y k y k

m

  
              (16) 

As we can see in the Eq. (16), the recursive form of 

convolution sum is very effective because it requires just two 

additions and one division for the convoluted function having 

 

Fig. 5.  Criterion distance *
nS  obtained as  0 0t   in the Fig. 2, in the 

case of zero initial velocity. 
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unit area. In Eq. (14), (15) and (16), k  and nm  are positive 

integers satisfying [ ]sk t T  and [ ]n n sm t T , 

respectively, with sampling time    and Gauss floor function 

    to denote the largest integer not greater than  . An error 

can be caused by the Gauss floor function according to the 

size of sampling time in the convolution sum. In this paper, 

this error will be neglected by adding the assumption that 

sampling time is enough small. Till now we dealt with several 

properties of the convolution operation, convolution-based 

trajectory generation method under the condition of zero 

states (zero initial and terminal velocities) and non-zero states 

(non-zero initial and terminal velocities), and the recursive 

form of convolution sum for real-time implementation issue. 

The following section will show the effectiveness of the 

proposed method through simulations 

IV. SIMULATION RESULTS AND CONCLUDING REMARKS 

For the simulation of the proposed method, the input 

parameters are given as shown in Table II. Fig. 6 shows the 

simulation results. Both results, (a) and (b) in the Fig.6, show 

that the trajectories are generated within given system limits 

such as the maximum velocity, the maximum acceleration, 

and maximum jerk. Comparing (a) with (b), however, the 

velocity of (b) does not reach to the given maximum velocity, 

while that of (a) reaches to the given maximum velocity. That 

is because, in the case of (b), Eq. (6) is not satisfied. We can 

notice that 0t  takes 0.625 from Eq. (13) and that 1t and 2t  

take 1.75 and 0.25 respectively, so 0t  is smaller than the sum 

of 1t  and 2t . The proposed method could generate the 

trajectory under any input parameters, as this result tells us. 

The novel trajectory generation method making active use 

of physical system limits such as maximum velocity, 

maximum acceleration, and maximum jerk have presented in 

this paper. The proposed method has utilized the recursive 

convolution sum, being required two additions and one 

division per one convolution, for practical use. Through the 

proposed convolution-based trajectory generation method, 

we could get a continuously differentiable trajectory simply 

within the given physical system limits. The suggested 

method was able to be applicable to both zero and non-zero 

initial/terminal conditions. Finally, the effectiveness of the 

suggested method was shown by the numerical simulations. 
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TABLE II 

THE INPUT PARAMETERS FOR SIMULATION; AS SUCH, SYSTEM LIMITS, 

DISTANCE TO BE MOVED, AND INITIAL/TERMINAL CONDITIONS. 

 maxv  (1)
maxv  (2)

maxv  iv  fv  S  

(a) 4[m/s] 4[m/s2] 16[m/s3] 2[m/s] 1[m/s] 8[m] 

(b) 8[m/s] 4[m/s2] 16[m/s3] 2[m/s] 1[m/s] 8[m] 

  

 

 

 
Fig. 6.  Simulation results. 
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