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Abstract— This paper deals with the active collision avoid-
ance maneuver for the chaser along the specified trajectory, and
presents a maneuver approach with constant thrust. Using the
3D stereo vision measurement, The relative position parameters
of the target spacecraft for analyzing the collision possibility
are obtained by using the vision measurement and the target
maneuver positions are calculated through the equidistance
interpolation method. The working times of thrusters in three
axes can be respectively computed by the time series analysis
method. In particular, the perturbation and fuel consumption
are addressed during the computation of working time. Fur-
thermore, the acceleration sequences and the corresponding
working time series can be employed to determine a switch-
ing control law for the active collision avoidance maneuver.
The simulation results show that the switch control law can
effectively guarantee the chaser moving along the specified
trajectory.

Index Terms— Constant thrust; Vision measurement; Switch
control law; The specified trajectory; Equidistance interpola-
tion.

I. INTRODUCTION

The problem of collision avoidance impulsive maneuvers

in the process of rendezvous and docking has been under

intensive investigation for several decades. In actual practice,

however, maneuvers during rendezvous and docking opera-

tions cannot normally be considered as impulsive maneuvers

because there exist long thrust arcs. Therefore, the impulse

assumption does not hold any more. To overcome this

problem, a novel active collision avoidance maneuver under

constant thrust is proposed in this work.

The most common method to deal with the collision

avoidance between two spacecrafts is to calculate the prob-

ability of collision firstly, then carry out active collision

avoidance maneuver if there is the possibility of collision

[1], [2]. However, due to the relative velocity is small in the

rendezvous and docking stage, the calculation of collision
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probability is difficult to be linearized. Therefore, active

collision avoidance maneuver in this paper is carried out

according to the possibility of collision which is calculated

based on the relative position and the relative velocity

between the chaser and the target spacecraft.

Various types of safeties have been considered in the

design of collision avoidance spacecraft trajectories [2]–

[9]. Richards et al studied collision and plume avoidance

to deal with spacecraft trajectory planning by using mixed

integer linear programming [2]. Jacobsen et al presented a

method for planning of safe Kinematic trajectories for free

flying robots approaching an uncontrolled spinning satellite

[6]. Methods proposed in Ref. [6] develop the safety circle

method in which a nearby orbit with a relative invariant

trajectory is established that allows safe long-term obser-

vation before docking. However, this approach is not fuel

optimized and does not propose a specific collision avoidance

maneuvers route.

The purpose of this paper is to analyze the collision

possibility between the chaser and target spacecraft and to

enact active collision avoidance constant thrust maneuver

along the specified trajectory. The specified trajectory is

given according to the initial relative position and the ter-

minal target position of the chaser, at the same time the

size and the direction of the initial relative velocity and the

acceleration are also taken into account. First of all, the

relative position parameters of the spacecrafts are obtained

by using vision measurement. Next, the definition of the

spherical security zones and the criterions of the collision

possibility are presented. Then, to ensure the chaser moving

along the specified trajectory, the equidistance interpolation

method is used by dividing the entire process of the active

collision avoidance maneuver into equidistance arcs. At last,

the actual working times of the thrusters in three axes can

be respectively computed by using the time series analysis

method. Moveover, the switch control laws in the three axes

for active collision avoidance constant thrust maneuvers are

designed based on the actual working time series and the

corresponding accelerations. The simulation results show that

the constant thrust maneuver can effectively guarantee the

chaser maneuvering along the specified trajectory.

II. VISION ALGORITHM FOR POSITION DETERMINATION

Two cameras C1 and C2 which have the same focal

lengths and the internal parameters are installed in the chaser.

Camera coordinate system is established as shown in Figure

1. Oc1
and Oc2

are the optical centers of the cameras C1

and C2, respectively. Xc1
and Xc2

are the optical axes of the

cameras C1 and C2, respectively. Xc1
is parallel to Xc2

, and
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Yc1
coincides with Yc2

, where The optical parallax between

Oc1
and Oc2

is L. P is any point on the target spacecraft,

P1 and P2 are the projection points of the P on the image

planes of the cameras C1 and C2, respectively. therefore, P
is the intersection of Oc1

P and Oc2
P .
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Figure 1. Model of binocular vision.

Further assume that the cameras have been calibrated and

their projection matrices are M1 and M2 [10]. The following

results can be obtained by coordinate transformation

Xci





x1

y1

1



 = Mi









X
Y
Z
1









(1)

Mi =





mi
11 mi

12 mi
13 mi

14

mi
21 mi

22 mi
23 mi

24

mi
31 mi

32 mi
33 mi

34



 , i = 1, 2 (2)

where (x1, y1, 1)T and (x2, y2, 1)T are homogeneous coordi-

nates of P1 and P2 in the cameras C1 and C2, respectively.

(X, Y, Z, 1)T is the homogeneous coordinate of P in the

reference coordinate system, that is to say, X, Y and Z are

the 3D position coordinates of the real point P . Therefore,

Xc1
and Xc2

can be removed by combining (1) and (2),

A(X, Y, Z)T = B (3)

A =









x1m
1
31 − m1

11 x1m
1
32 − m1

12 x1m
1
33 − m1

13

y1m
1
31 − m1

21 y1m
1
32 − m1

22 y1m
1
33 − m1

23

x2m
2
31 − m2

11 x2m
2
32 − m2

12 x2m
2
33 − m2

13

y2m
2
31 − m2

21 y2m
2
32 − m2

22 y2m
2
33 − m2

23









(4)

B =









m1
14 − x1m

1
34

m1
24 − y1m

1
34

m2
14 − x2m

2
34

m2
24 − y2m

2
34









(5)

The least-square solution of P in the reference coordinate

system as follow [11].

(X, Y, Z)T = (AT A)−1AT B (6)

Assume that the virtual optical center of the cameras

C1 and C2 is the midpoint of the line segment OC1
OC2

and defined as OC , and the virtual optical axis is parallel

to Oci
Xci

(i = 1, 2), the other two axes are coincide

with Oci
Yci

(i = 1, 2) and parallel to Oci
Zci

(i = 1, 2),

respectively. According to the definition of the coordinate

system (Geller, 2006),

X =
fL

(x2 − x1)dy
, Y =

x1 − x0

(x2 − x1)
L, Z =

(y1 − y0)dz

(x1 − x2)dy
L.

(7)

where f is the focal length of the camera, (x0, y0) is the

projection point of the P on the image plane from the virtual

optical center OC . Therefore, the following results can be

obtained according to vision measurement errors

dX =
∂X

∂x1
dx1 +

∂X

∂x2
dx2

=
fL

(x2 − x1)2dy
dx1 −

fL

(x2 − x1)2dy
dx2 (8)

dY =
∂Y

∂x1
dx1 +

∂Y

∂x2
dx2

=
(x2 − x0)L

(x2 − x1)2
dx1 −

(x1 − x0)L

(x2 − x1)2
dx2 (9)

dZ =
∂Z

∂x1
dx1 +

∂Z

∂x2
dx2 +

∂Z

∂x2
dy1

=
(y1 − y0)L

(x2 − x1)2
dx1 −

(y1 − y0)L

(x2 − x1)2
dx2 +

L

x2 − x1
dy1

(10)

where the independent parameters dx1, dx2, dy1, dy2 are the

pixel position measurement errors of the cameras C1 and C2

III. THE CRITERION FOR JUDGING COLLISION

POSSIBILITY

The chaser’s spherical security zone SC and target space-

craft’s security zone ST as shown in Figure 2. The security

zone SC is defined by the following steps.
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Figure 2. Security zones of the chaser and the target.

Step 1: The center of spherical security zone OC is the

middle point of OC1
and OC2

. The maximum distance from

all points within the cone-shaped range of vision to OC is

recorded as R1. The first layer spherical security zone is

defined as SC1 whose radius is R1. Step 2: The second layer

spherical security zone of the chaser is SC2 whose radius is

R2 which is the maximum distance from all points in the

chaser to OC .

The security zone ST is given by the following steps. Step

1: The center point of spherical security zone is defined

as OT which is the center point of the target spacecraft.

The distance from OT to OC at the ith target positions
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marked Ri
t(i = 1, 2, ...N). The longest line segments from

all edge points of the target spacecraft to OC at the N target

maneuver positions are recorded as HiOC , i ∈ {1, 2, ...N}.

The angles between HiOC and OT OC are recorded as

θi, i ∈ {1, 2, ...N}. Step 2: The radius Rt of the spherical

security zone ST by using law of cosines as follows.

ri = [(Ri
t)

2
+ (HiOC)2 − 2Ri

t(HiOC) cos θi]
1

2 (11)

The angle between OCOT and the direction of relative

velocity is recorded as α. When α = 0, safe distance and

the corresponding minimum time are defined as di1 and ti1.

If the distance |OCOT | and the relative velocity vi1 meet the

following conditions:

|OCOT | − ri − R2 > di1 (12)

|OCOT | − ri − R2 ≫ Vi1ti1 (13)

there is no possibility of collision. If the distance |OCOT |
and the relative velocity vi1 meet the following conditions

|OCOT | − ri − R2 < di1 < |OCOT | − R − R1 (14)

|OCOT | − ri − R1 > vi1ti1 (15)

the chaser should carry out active collision avoidance ma-

neuver within the time
|OCOT |−ri−R1

vi1
− ti1.

In case of α 6= 0, the minimum safe distance and the

corresponding minimum time are defined as di2 and ti2. If

the distance |OCOT | and the relative velocity vi2 meet the

following conditions

|OCOT | − ri − R2 ≫ d2 (16)

|OCOT | sinα − ri − R2 ≫ d2 (17)

there is no possibility of collision. If the distance Ri
t and the

relative velocity Vi2 meet the following conditions, there is

a possibility of collision,

Ri
t sinαi − ri − R2 < di2 < Ri

t sinαi − ri − R1 (18)

Ri
t cos αi − [(ri + di2 + R2)

2 − (Ri
t)

2 sin2 αi]
1

2 > Viti2
(19)

the chaser should carry out active collision avoidance ma-

neuver to arrive at one point outside of the hemispherical

with radius ri + di1 + R2.

IV. SWITCHING CONTROL LAWS FOR COLLISION

AVOIDANCE MANEUVER

The target spacecraft is assumed as a rigid body and in

circular orbits. The relative motion can be described by

Clohessy-Wiltshire equations. The origin of coordinate is

OT , the x − axis is along the opposite direction of target

velocity, the y − axis is along the radius direction from the

centroid of earth to the centroid of target spacecraft and the

z − axis satisfies the right-handed coordinate system.

ẍ − 2ωẏ = ax + ap
x (20)

ÿ + 2ωẋ − 3ω2y = ay + ap
y (21)

z̈ + ω2z = az + ap
z (22)

where ω represents the mean angular velocity of the target

spacecraft. ax, ay and az represent the thrust accelerations of

the chaser. ap
x, ap

y and ap
z represent the sums of perturbation,

and nonlinear factors. Suppose ap
x, ap

y and ap
z satisfy the

conditions:

ap
x ≈ ηxax, ap

y ≈ ηyay, ap
z ≈ ηzaz (23)

ηx, ηy, ηz change very little during active collision avoidance

maneuver. Therefore, ax, ay, az can be seen as only relevant

to the thrusts and the mass of the chaser.

ai =
Fi

[m0 − (ṁxtx + ṁyty + ṁztz)]
. i = x, y, z (24)

where Fx, Fy, Fz represent the vacuum thrusts of the chaser

in three axes. m0 represents the initial mass of the chaser

at the beginning of maneuver. ṁx, ṁy, ṁz represent fuel

consumption per second of the thrusters. tx, ty, tz represent

the working times of thrusters in their directions. Polynomial

approximate expression of the Eq.(24) as follows:

ai = Fi

n
∑

j=0

λjt
j . i = x, y, z (25)

where λj are polynomial coefficients, t is the actual running

time of the chaser and ti ≤ t (i=x, y, z). Then the original

system can be transformed into the form as follows.

ẍ − 2ωẏ = (1 + ηx)Fx

n
∑

j=0

λjt
j (26)

ÿ + 2ωẋ − 3ω2y = (1 + ηy)Fy

n
∑

j=0

λjt
j (27)

z̈ + ω2z = (1 + ηz)Fz

n
∑

j=0

λjt
j (28)

The specified trajectory for active collision avoidance

maneuver as shown in Figure 3.

[]

\
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Figure 3: The specified trajectory.

{

f(x, y, z) = 0
g(x, y, z) = 0

(29)

It is obvious that the specified trajectory is just in a cube

∆x × ∆y × ∆z and can be divided into N equidistance

arcs sequences in three axes, respectively. The length of

equidistance arcs in three axes are ∆xi, ∆yi and ∆zi, i ∈
{1, 2, ...N}. The current maneuver position and the next

target maneuver position are in different side of surfaces
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(f(x, y, z) = 0, g(x, y, z) = 0). Therefore, the differential

variables δf , δg and f(x, y, z), g(x, y, z) should have oppo-

site algebraic signs.
{

f(x, y, z) · δf ≤ 0
g(x, y, z) · δg ≤ 0

(30)

δf = gradf · (Ki
x∆xi,Ki

y∆yi, Ki
z∆zi) (31)

δg = gradg · (Ki
x∆xi,Ki

y∆yi, Ki
z∆zi) (32)

|Ki
x| + |Ki

y| + |Ki
z| ≥ 1 (33)

The equidistance arcs should parallel to the tangent of the

specified trajectory to the maximum extent

{(τ i
x, τ i

y, τ i
z) · (K

i
x∆xi,Ki

y∆yi, Ki
z∆zi)} (34)

where (τ i
x, τ i

z, τ
i
z) is the tangent of the specified trajectory in

the ith target maneuver position. According to Eqs.(30)(34)

all the target maneuver positions can be obtained. The next

maneuver target position is the current position add on

increment of coordinate (Ki
x∆xi,Ki

y∆yi, Ki
z∆zi).

Taking the working time of thruster in the ith arc in the

x − axis as an illustration: T i
x is the maneuver time and

tix is the thruster working time. Na
xi is the number of the

accelerating time intervals (tiax)j , N c
xi is the number of the

decelerating time intervals (ticx)j , N b
xi is the number of the

zero-thrust time intervals (tibx)j as shown in Figure 4.

[

]

\
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Figure 4: The change of time intervals in three axes.

T i
m =

Na
mi

∑

j=1

(tiam)j +

Nb
mi

∑

j=1

(tiam)j +

Nc
mi

∑

j=1

(ticm)j (35)

tim =

Na
mi

∑

j=1

(tiam)j +

Nc
mi

∑

j=1

(ticm)j ,m ∈ {x, y, z} (36)

The working time time intervals of thrusters in the ith arc

are calculated in two steps as follows.

(1) According to Eqs.(20)(21) the following results can be

obtained.

xi + Ki
x∆xi = −2(vy0i − β1) cos ωT i

x +
6

∑

j=2

[2ω
1

j
βj−1

+ (1 + ηx)Fx

1

(j − 1)j
λi

j−2](T
i
x)j + (vx0 − 2y0iω)T i

x

+ x0i + 2vy0i − 2β1 + 2y0i sinωT i
x (37)

vx = 2ω(vy0i − β1) sin ωT i
x + 2ωyoi cos ωT i

x +
5

∑

j=1

[2ωβj

+ j(1 + ηx)Fxλj−1](T
i
x)j + vx0i − 2ωy0i (38)

yi + Ki
y∆yi = y0icosωT i

y +
(vy0i − β1)

ω
sinωT i

y

+
5

∑

j=1

βj(T
i
y)j (39)

vy = (vy0i − β1) cos ωT i
y − ωy0i sinωT i

y

+
4

∑

j=0

(j + 1)βj+1(T
i
y)j (40)

β1i = −
2(1 + ηx)Fx

ω
λ0i +

(1 + ηy)Fy

ω2
λ1i +

4(1 + ηx)Fx

ω3
λ2i

−
6(1 + ηy)Fy

ω4
λ3i −

48(1 + ηx)Fx

ω5
λ4i (41)

β2i = −
(1 + ηx)Fx

ω
λ1i +

(1 + ηy)Fy

ω2
λ2i +

6(1 + ηx)Fx

ω3
λ3i

−
12(1 + ηy)Fy

ω4
λ4i (42)

where β1i, ..., β2i are polynomial coefficients in the ith thrust

arc. (x0i, y0i) and (vx0i, vy0i) are the initial relative position

and the initial relative velocity of the chaser in the x− axis
and the y − axis at the beginning of the ith thrust arc,

respectively. According to Eqs.(41)-(45), β1i, ...β5i can be

expressed by λ1i, ..., λ4i, where λ1i, ..., λ4i are polynomial

coefficients in the ith thrust arc. λ0i = 1
mi

represents the

initial mass of the chaser at the beginning of the ith thrust

arc.

Then consider the maneuver in the direction of the z −
axis, the following results can be obtained the following two

results are obtained according to Eq.(22)

zi + Ki
x∆zi = [

vz0i

ω
− (1 + ηz)(

Fz

ω3
λ1i −

6Fz

ω5
λ3i)] sinωT i

z

+ [z0i − (1 + ηz)(
Fz

ω2
λ0i −

2Fz

ω4
λ2i +

24Fz

ω6
λ4i)] cos ωT i

z

+ (1 + ηz)[(
Fz

ω2
λ0i −

2Fz

ω4
λ2i +

24Fz

ω6
λ4i) + (

Fz

ω2
λ1i

−
6Fz

ω4
λ3i)T

i
z + (

Fz

ω2
λ2i −

12Fz

ω4
λ4i)(T

i
z)

2

+
Fz

ω2
λ3i(T

i
z)

3 +
Fz

ω2
λ4i(T

i
z)

4] (43)

vzi = [vz0i − (1 + ηz)(
Fz

ω2
λ1i −

6Fz

ω4
λ3i)] cos ωT i

z

− [ωz0i − (1 + ηz)(
Fz

ω
λ0i −

2Fz

ω3
λ2i −

2Fz

ω3
λ2i

+
24Fz

ω5
λ4i)] sin ωT i

z + (1 + ηz)[(
Fz

ω2
λ1i −

6Fz

ω4
λ3i)

+ 2(
Fz

ω2
λ2i −

12Fz

ω4
λ4i)T

i
z + 3

Fz

ω2
λ3i(T

i
z)

2

+ 4
Fz

ω2
λ4i(T

i
z)

3] (44)

where z0i and vz0i are the initial relative position and the

initial relative velocity of the chaser in the z − axis at the

beginning of the ith thrust arc. Because the ith target ma-

neuver position (xi, yi, zi) and ith target maneuver velocity
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(vxi, vyi, vzi) are known, so the i + 1th target maneuver

position is (xi + Ki
x∆xi, yi + Ki

y∆yi, zi + Ki
z∆zi). There-

fore, polynomial coefficients λ1i, ..., λ4i can be obtained

according to Eqs.(37)-(40),(46),(47).

(2)According to Eq.(25), the thrusters working times

tix, tiy, tiz in the ith arc can be calculated as follows

1

mi − (ṁxtix + ṁytiy + ṁztiz)
=

4
∑

j=0

λji(max{tix, tiy, tiz})
j

(45)

T i
x, T i

y, T i
z are divided into N i

x, N i
y, N i

z equal time intervals

in three axes, respectively. Taking T i
x and tix as an example

T i
x = [T i

x1, ..., T
i
xNi

x
]; tix = [tix1, ..., t

i
xNi

x
] (46)

if tix1 = max{tix1, t
i
y1, t

i
z1}, then

1

mi − (ṁxtix1 + ṁytiy1 + ṁztix1)
=

4
∑

j=0

λji(t
i
x1)

j (47)

tix1, tiy1and tiz1 can be calculated. If T i
x2 meets the following

conditions: tix2 = min{tix2, t
i
y2, t

i
z2} and tix1 + tix2 =

max{tix1 + tix2, t
i
y1 + tiy2, t

i
z1 + tiz2}, then

1

mi − (ṁxtix1 + ṁytiy1 + ṁztiz1) − (ṁxtix2 + ṁytiy2 + ṁztix2)

=
4

∑

j=0

λji(t
i
x1 + tix2)

j (48)

tix2, t
i
y2, t

i
z2 can be calculated. Then {tiy1, t

i
y2, ..., t

i
yNi

y
} and

{tiz1, t
i
z2, ..., t

i
zNi

z
} can be deduced by analogy. If tixk =

0, k ∈ (1, 2, ...N i
x), then tixk belongs to zero-thrust intervals;

If tixk 6= 0, k ∈ (1, 2, ...N i
x) and meets the following

conditions.

|vx(i−1)| < |vxi|, vx(i−1)vxi ≥ 0 (49)

vx(i−1) > 0, then tixk belongs to accelerating intervals and

the direction of Fx is along the positive direction of the x-

axis; vx(i−1) ≤ 0, then tixk belongs to accelerating intervals

but the direction of Fx is along the negative direction of the

x-axis. If tixk 6= 0, k ∈ (1, 2, ...N i
x) and meets the following

conditions.

|vx(i−1)| > |vxi|, vx(i−1)vxi ≥ 0 (50)

vx(i−1) > 0, then tixk belongs to decelerating intervals and

the direction of Fx is along the negative direction of the x-

axis; vx(i−1) ≤ 0, then tixk belongs to accelerating intervals

but the direction of Fx is along the positive direction of the

x-axis. If tixk 6= 0, k ∈ (1, 2, ...N i
x) and meets the following

conditions.

|vx(i−1)| > |vxi|, vx(i−1)vxi < 0 (51)

vx(i−1) > 0, then tixk belongs to accelerating intervals and

the direction of Fx is along the negative direction of the x-

axis; vx(i−1) ≤ 0, then tixk belongs to accelerating intervals

but the direction of Fx is along the positive direction of the

x-axis.

After the three types of time intervals in three axes in the

ith arc are calculated, then the switching control laws can be

given. Takeing the switching control law in the x− axis as

an example

Sx = {xi−1, vx(i−1); (t
i
x1, a

i
x1); ...(t

i
xNi

x
, ai

xNi
x
)} (52)

ai
xk = Fx

4
∑

j=0

λji(t
i
xk)j . k ∈ (1, 2, ...N i

x) (53)

V. SIMULATION RESULTS

Suppose that the height of target spacecraft is 400km

in a circular orbit and the initial mass of the chaser and

the propellant are 300kg and 100kg. The size of thrusts

are 360N, 240N and 320N in the x-axis, y-axis and in

the z-axis, respectively. The mass-flow-rate of propellant

of the chaser’s thrusters are 20g/s, 15g/s and 10g/s in

the x-axis, y-axis and in the z-axis, respectively. Although

ηx, ηy and ηz are variables, but they vary little during active

collision avoidance maneuver, therefore, in order to facilitate

simulation, these coefficients can be seen as constants: ηx =
ηy = ηz = 0.001.

The initial relative position and the initial relative

velocity of the chaser are (500m,−500m, 500m) and

(−6m/s, 6m/s,−6m/s). The initial acceleration is zero and

the expected docking velocity V ∗ = 1m/s. The minimum

safe distance is 700m and the corresponding minimum time

is 60s. Based on the vision measurement, the radius of the

first layer spherical security zone SC1 of the chaser R1 =
60m and the radius of the second layer spherical security

zone R2 = 80m. The distances from OT to OC at the first

target maneuver position is R1
t = 866m. The longest line

segments from all edge points of the target spacecraft to OC

at the first target maneuver position is H1OC = 926.18m.

The angle between H1OC and OT OC is θ1 = 3o. According

to Eq.(18), the radius of the spherical security zone of the

target spacecraft at the first target maneuver position is

r1 = 80m.

According to Eqs. (18),(19), there is a possibility of

collision, the chaser should carry out active collision

avoidance maneuver and the terminal target position is

(300m, 0m, 0m). And the specified trajectory is given as fol-

low. The size of the cube is ∆x = 200m,∆y = 500m,∆z =
500m.

{

2.5 × 10−5(x − 500)2 + 4 × 10−6y2 = 1

y + z = 0
(54)
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Figure 5: The change of x, y, z during active collision

avoidance maneuver.

The results in Figure 5 show the change of x, y, z during

active collision avoidance maneuver. x changes from 500m

to 300m, y changes from -500m to 0m and z changes from

500m to 0m.
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Figure 6: The change of Vx, Vy, Vz during active collision

avoidance maneuver.

The results in Figure 6 show the change of Vx, Vy, Vz

during active collision avoidance maneuver. Vx changes from

-6m/s to 0m/s, Vy changes from 6m/s to 9.8m/s and Vz

changes from -6m/s to -10.8m/s.
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Figure 7: The change of ax, ay, az during active collision

avoidance maneuver.

The results in Figure 7 show the change of ax, ay and

az during active collision avoidance maneuver. ax changes

from 0.9m2/s to −0.9061m2/s. ay changes from 0.6m2/s
to 0.6041m2/s. az changes from −0.8m2/s to 0.8049m2/s.
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Figure 8: The trajectory of the chaser during active

collision avoidance maneuver.

The result in Figure 8 shows the chaser maneuvers along the

specified trajectory. Taking the switching control law in the

x − axis as an example:

Sx = {500m;−6m/s; ([0, 6.33s], (0.9 → 0.9007)m2/s);

...([60, 66.67s], (0.9054 → −0.9061)m2/s} (55)

VI. CONCLUSION

This paper deals with the active collision avoidance

maneuver for the chaser moving along the specified tra-

jectory, and presents a maneuver approach with constant

thrust. Using the 3D stereo vision measurement, the posi-

tion parameters of the target spacecraft are obtained. The

target maneuver positions can be calculated through the

equidistance interpolation method, and the working times of

thrusters in three axes can be respectively computed by the

time series analysis method. Furthermore, the acceleration

sequences and the corresponding working time series can

be employed to determine the switching control laws for

the active collision avoidance maneuver. The simulation

results show that the switching control laws can effectively

guarantee the chaser moving along the specified trajectory.
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