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Abstract— The problem of controlling the congestion front in
a single link road section is considered in this paper. For this
purpose, we introduce a new variable-length two-cell lumped
model composed of; one congested cell, and another in free
flow. This model has the advantage of having few states while
preserving the vehicle conservation property. This model is
used as a basis to design a simple “best-effort” controller
that regulates (at its best) the congestion front to some pre-
specified value. The control law can be implemented using only
information about the congestion front position.

I. INTRODUCTION

The front congestion control problem consists at regulating

the front congestion to some pre-specified value in order to

avoid that the congestion overspread upstream blocking other

exit ramps (producing even largest congestion conditions),

or/and reaching critical safety sections (i.e. tunnels, intersec-

tions, etc.).

In the traffic control literature, the control can be formu-

lated either by ramp metering regulation [4], [5], [7], [8],

[9], or by variable speed limit control [6], [13]. The first

method aims at regulating the inflow on some (or several)

input ramps of the road. This control setup is highly effective

in regulating flows and densities on the main lane, at the

price of reallocate the vehicles distribution into other parts of

the network (usually at upstream location of the considered

network where demands are lowers). A complete overview

on ramp metering strategies can be found in [15]. The

second method consists in regulating the speed limits. By

this mean, the maximum capacity of the regulated section

can be modified. Lowering the speed limits will results in a

reduction of the road maximum capacity. This will reduce

the grown rate of the congestion front spreading, but it

will increase the traveling time along the free section. It is

also possible to envision the combination of both control

strategies, as reported in recent results [1], [14], [16].

In this paper we consider the problem of controlling the

congestion front in a single link highway section using

variable speed control. To this aim, we propose a new

variable-length two-cell lumped model, composed of one

congested cell and another in free flow. Compared to existing

multi-cell models with constant dimension, this model has

the advantage of having only few states (3 in total including:

2 density states for the congested and the free cells, and

one more for the evolution of the congestion front) The

model is build such that the cells are variable in length while

preserving the vehicle conservation property.

*Director of reearch at the CNRS, GIPSA-Lab. NeCS team, Grenoble,
France. carlos.canudas-de-wit@gipsa-lab.inpg.fr

The variable-length two-cell lumped model model is used

as a basis to design a simple “best-effort” controller that reg-

ulates (at its best) the congestion front to some pre-specified

value. The control is designed under constraints concerning

magnitude step changes, and dwell-time. The control law

discrete-time implementation only needs information on the

congestion front position. This information can be estimated

directly from camera sensors networks, or indirectly by

building a density observed based on the proposed variable-

length model. This issues will not be treated in this paper,

and are under current investigation.

The paper first recall the derivation grounds of the LWR

model with constant and multiple cells, then we introduce

our new two-cell variable-length model. The subsequent

sections presents the best-effort control design, and report

some simulations.
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Fig. 1. Variation of the fundamental diagram as a function of the speed
limit v; the maximum capacity ϕm = ϕ(vmax) is reach for the maximum
available velocity vmax , at the critical density ρ∗(vmax). The capacity of
the section will decrease to ϕm = ϕ(vmin) when the speed limit is set to its
minimum vmin . Nevertheless the critical density is increased substantially
ρ∗(vmin)

II. MULTIPLE-CELLS, CONSTANT-LENGTH LWR MODEL

The traffic dynamics models are based on the vehicle

conservation principle. The simplest continuous macroscopic

traffic model, involving only the density ρ, is the LWR

cell transmission model introduced in [11], [17]. It is also

known under the name of cell transmission model, and it

has been shown to be consistent with hydrodynamic theory

[2]. Validation tests with real data have been reported in

[12]. The constitutive assumption of this model, motivated

by experimental data, is that the vehicles tend to travel at an

equilibrium speed v = v(ρ), where ρ represents the density

of a specific section at a specific time.

2011 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC)
Orlando, FL, USA, December 12-15, 2011

978-1-61284-799-3/11/$26.00 ©2011 IEEE 5959



In variable speed limit control the velocity, v, in the

decongested cell, becomes the main control input that can

be actuated (under the assumption that drivers will respect–

in average–the suggested speed limits) using variable sign

panels located at the road side.

The equilibrium speed depends implicitly on the location

and on the time. Since the flow is defined as ϕ(ρ) = ρv(ρ),
one can depict an equilibrium flow function ϕ = ϕ(ρ)
called the fundamental diagram. As shown in Fig. 1, the

fundamental diagram can be defined, in its simplest form, as

a triangle with its maximum at ϕm = ϕ(ρ∗) describing the

maximum capacity of the road. The critical density ρ∗ defines

the boundary between the decongested and the congested

zones. ρm is the maximum density that the road can support.

The slope −w defines the speed at which congestion will

travel upstream.

If the speed limits are changed during operation, the

fundamental diagram will be affected as show Fig. 1: a

decrease in v will reduce the maximum road capacity ϕm

but will increase the critical density ρ∗. The net effect

of this action will be that congestions grown rate will be

reduced. If a great portion of the road is congested then the

total traveling time may be also improved. Inversely, if the

majority of the road is decongested, then the traveling time

may be increased. In cases (not studied here) when an exit

ramp is block due to the congestion arrival, further potential

improvements may be expected.

The evolution of the number of vehicles within any spatial

section (0, L), is given by the following car conservation law

in term of the number of vehicles, N , in the cell1:

d

dt
N = ϕin − ϕout, N =

∫ L

0

ρ(x, t)dx (2)

where ϕin and ϕout are the input (at x = L) and output (at

x = 0) flows at the boundaries of the road section.

Consider now that the road section is divided in n-cells

of constant length li. Let us denote by ρi density of the ith

cell of the section. Then, the number of vehicles per cell is

noted as Ni = ρili.

As conservation laws generate irregular flows, they cannot

be integrated numerically using standard methods (see [10],

[2]). An efficient first-order numerical method to treat such

conservation laws is the Godunov scheme [3] which is a

first order scheme that reproduce correctly the propagation

of the shock waves avoiding oscillating behavior and having

a physical interpretation. Using the Godunov mathematical

formalism, the conservation law (2) takes the following

discrete representation

1Equation (1) can be rewritten (see [11]) as a hyperbolic equation
involving only the density:

∂tρ+ ∂xϕ(ρ) = 0 (1)

The macroscopic continuous density dynamics is then given by the LWR
Cauchy problem described by (1) with the initial condition ρ(x, 0) = ρ0(x).

Free cell Congested cell

Fig. 2. Schematic diagram of the two-cell variable-length model.

ρi(k + 1) = ρi(k) +
T

li

(

ϕi(k)− ϕi+1(k)
)

(3)

where k is the time index, T is the discrete time interval2,

and ϕi is the interface flow between the cells i − 1 and i
given as:

ϕi = min{Di−1, Si} (4)

with

Di−1 = min{vi−1ρi−1, ϕm,i−1},

Si = min{ϕm,i, wi(ρm,i − ρi)}

where the demand Di−1 is the flow that can be delivered

by the cell i − 1 to the cell i while the supply Si is the

flow that can be received by the cell i from the cell i − 1.

ϕm,i is the maximum flow allowed by the capacity of cell i,
ρm,i is the jam density (i.e. the maximum density that can

be reached), vi corresponds to the free flow speed and wi is

the congestion wave speed in cell i. All these parameters can

be the same for all the cells or allowed to vary for each cell.

In variable speed control, the value of vi may be modified

for each cell, or for a group of them.

III. A NEW TWO-CELL VARIABLE-LENGTH MODEL

For purposes of controlling the congestion front of a road

section, we consider a section split into two cells of variable

length; a congested downstream cell of length l = l(t), and

an decongested (free flow) one of length L − l, where L is

the total length of the considered section, see Fig. 1.

A. Vehicle conservation law

Let introduce the number of vehicles in the free (Nf ) and

in the congested (Nc) cells as lumped quantities

Nf = (L− l)ρf

Nc = lρc

being ρf , and ρc the associated (lumped) densities. Following

the conservation law (2), and using the flows boundaries as

2The condition vT < l, with v the free-flow speed, is a sufficient
condition for (3) to converge.
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indicated by the Godunov formalism, we get the following

model

Ṅf = min{ϕin, Sf} −min{Df , Sc} (5)

Ṅc = min{Df , Sc} −min{Dc, ϕout} (6)

where the demand and supply functions for the free flow cell

is given as

Df = min{vfρf , ϕm(vf )},

Sf = min{ϕm(vf ), wf (ρm − ρf )}

while the demand and supply function for the congested cell

are give by

Dc = min{vcρc, ϕm(vc)},

Sc = min{ϕm(vc), wc(ρm − ρc)}

ϕin, and ϕout are the input and output flows respectively.

Note that in this formulation, the maximal capacity ϕm(·),
is a function of the free flow velocity v that will play the

role of the control input in the subsequent formulation.

As mentioned before, it is assumed that the downstream

cell is congested while the upstream cell is free. This implies

that:

0 ≤ ρf ≤ ρ∗

ρ∗ < ρc ≤ ρm

From the these equations, and assuming that the input and

output flows are below the maximum admissible ones, i.e.

ϕin ≤ ϕm(vf ), ϕout ≤ ϕm(vc), then we have:

min{ϕin, Sf} = ϕin

min{Dc, ϕout} = ϕout

Therefore model (5)-(6) simplifies to:

Ṅf = ϕin − ϕn(v) (7)

Ṅc = ϕn(v)− ϕout (8)

where

ϕn(v) = ϕn(vf , vc) = min{Df , Sc}

with n = 1, 2, i.e.

ϕ1(v)
ϕ2(v)

=

{

min{vfρf , ϕm(vf )} if, Df < Sc

min{ϕm(vc), wc(ρm − ρc)} else

The model has then operational modes. When n = 1 the

model is say to be in the “absorption” phase as in this

condition, Df < Sc, the congested cell is able to absorb the

arriving flow making the congestion to decrease. Inversely,

the when n = 2, there is an surplus of arriving flow at the

congestion front,Df ≥ Sc. The model is then say to be at the

“expansion” phase, as the congestion will tends to expand

upstream. The difference between Df , and Sc will be used

as a basis to build a dynamics of the congestion front.

B. Dynamics of the congestion front

Note that at this point, the control variable v does not

explicitly appear in the vehicle conservation model above.

This will happen when the variable N will be replaced by its

relation with the density and associated length. To this aim,

the conservation model above needs to be completed with

another equation describing the evolution of the congestion

position l.
The proposed variation law for l is

l̇ = c
(

ϕ−
c − ϕ+

c

)

= c (Df − Sc)

= c (min{vfρf , ϕm(vf )}−

−min{ϕm(vc), wc(ρm − ρc)}) (9)

where c [m/Vehicle] is a constant describing the mean spatial

occupance per vehicle on the section. It can be approximated

from the maximum density as c ≈ 1/ρm. The equation

describe the growing rate of the congestion as the product

between the difference between left (ϕ−
c = ϕf ) and right

(ϕ+
c = ϕc) flows at the congestion line, and the constant c.
Congestion will increase when the flow at the free cell is

greater than the flow at the congested one, i.e. ϕ−
c > ϕ+

c ,

and it will decrease otherwise.

Remark 1 A parallel with physical law can be made by

understanding equation (9) as a force law produced as a

consequence of the (integral of) the differential pressure

(stress) between neighborhood cells. The constant c can be

seen as the stiffness of the diaphragm supporting this stress.

Remark 2 In the context of traffic engineering, the equation

(9) can be seen as a simplification of the Rankine-Hugoniot

condition, that specify that the shock speed can be written

as

ṡ =
ϕ(ρ+)− ϕ(ρ−)

ρ+ − ρ−
=

1

ρ+ − ρ−

∫ ρ+

ρ−

ϕ′(ψ)dψ

in the context of distributed PDEs models, where ρ+, ρ− are

the right/left densities at the from congestion line, respec-

tively. Equation (9) is intended for a lumped model that will

be used for control synthesis, as show latter in the paper.

C. Implicit and explicit full model forms

The following hypothesis are adopted:

H1) The whole section has the same fundamental diagram.

That is; v = vc = vf , and w = wc = wf , where v =
v(t) is time-varying but w is assumed to be constant.

H2) The critical density ρ∗(v), and its associated road max-

imum capacity ϕm(v), are both functions of v,

ρ∗ = ρ∗(v) =
wρm
v + w

, ϕm(v) = vρ∗ = v
wρm
v + w

but the maximum density ρm is independent of v, see

Figure 1.

Noticing that N = ρ · l, we have that

Ṅc = lρ̇c + l̇ρc, Ṅf = (L − l)ρ̇f − l̇ρf
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the implicit form of model (2)-(9) writes as:

ρ̇f =
1

L− l

(

ϕin − ϕn(v) + l̇ρf

)

(10)

ρ̇c =
1

l

(

ϕn(v)− ϕout − l̇ρc

)

(11)

l̇ = c (min{vρf , ϕm(v)}−

−min{ϕm(v), wc(ρm − ρc)}) (12)

where ϕin, ϕout are exogenous inputs, (ρf , ρc, l) are the

state variables, and v is the control input. It should be

noted that this is a lumped and highly nonlinear model. The

model implicitly assume a separation between the free and

congested cell, i.e. ρf ∈ [0, ρ∗(v)], ρc ∈ [ρ∗(v), ρm].
The explicit version of this model including explicit sat-

uration functions can be introducing in the model by using

the relation Sata0(x) = min{a, x}, ∀, a > 0, x ≥ 0,

ρ̇f =
1

L− l

(

ϕin − ϕ̄n(v) + l̇ρf

)

ρ̇c =
1

l

(

ϕ̄n(v) − ϕout − l̇ρc

)

l̇ = c
(

Sat
ϕm(v)
0 {vρf},−Sat

ϕm(v)
0 {w(ρm − ρc)}

)

with

ϕ̄n(v) =

{

Sat
ϕm(v)
0 {vρf} if, n = 1

Sat
ϕm(v)
0 {w(ρm − ρc)} if, n = 2

this version of the model makes explicitly the role of the

control law v in the model; its change road maximum

capacity ϕm(v), and the slope of the demand function of

the free cell.

IV. FRONT-CONGESTION REGULATION VIA VARIABLE

SPEED-LIMIT CONTROL

The problem of front-congestion regulation control via

variable speed-limit consists in finding a control law for v,

function of the model states, such that the front congestion

l can be regulated around the reference value lr.

In this section we present several options for this design.

A. Best effort control

Let l̃ = l − lr, then using V = l̃2/2, a Lyapunov-like

control law for v can be derived as the one that set

Df (v)− Sc +
k

c
l̃ = 0 (13)

leading to V̇ = −kl̃2.

Nevertheless if the speed limits are constrained to live in

the set U = {vmax, vmin}, then the best-effort constrained

control with respect to the metric V , will be

v∗ = min
v∈U

|Df (v)− Sc +
k

c
l̃| (14)

This problem can be solved graphically as shown in Fig. 3,

and leads to the solution

v∗ = Satvmax

vmin

(

1

ρf

[

−wρc + wρm −
k

c
l̃

])

(15)

j(r)

rf

a

rrc

V*

V*

V*

b

c

Fig. 3. Illustration of the optimal solution given by Equation (15).
Three cases are considered for illustration: a) the point a corresponds to

the case where Sc − k
c
l̃ ≥ supv maxρ{ϕ(ρ)}, the optimal solution is

projected on the upper boundaries of the admissible set of solutions U,

b) the point b corresponds case where infv minρ{ϕ(ρ)} < Sc − k
c
l̃ <

supv maxρ{ϕ(ρ)}, the optimal solution is 1

ρf

[

−wρc +wρm − k
c
l̃
]

, c)

the point c corresponds to the case where Sc − k
c
l̃ ≤ infv minρ{ϕ(ρ)},

the optimal solution is projected on the lower boundaries of the admissible
set of solutions U.

B. Best-effort control under dynamics and magnitude con-

straints

An alternative to the previous continuous-time state feed-

back law, is to derive a variation law for v with a prescribed

Dwell-time Ts, and a maximum steep variation ∆v. This

requirement is motivated by constraints in the actuated

variable speed signal (variable speed limit actuation is more

likely to change by steps of several Km/h). This implies

that the variation of the control v should be constraint to

change as,

∇v(k) = v(k + 1)− v(k) ∈ V

where V is the finite 3-valued set defined as

V = {−∆v, 0,∆v}

Let now V (k) = l̃2(k), and l̇ be approximated as:

l(k + 1) = l(k) + cTs (Df (v(k))− Sc(k))

The constrained best-effort law can be derived by observing,

with γ(v(k), k) = cTs (Df (v(k))− Sc(k)), that

V (k + 1)− V (k) = l̃2(k + 1)− l̃2(k)

= 2l̃γ(v(k), k) + γ2(v(k), k)

As the rate of change of v(k) is constrained to only 3-values

in V, the magnitude of the demand Df (v(k)), and hence the

magnitude of γ(v(k), k), cannot be arbitrarily set to make

V (k) to decrease uniformly. In this context, the best effort

control is

v∗ = min
v∈U,∇v∈V

{

2l̃γ(v(k), k) + γ2(v(k), k)
}
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Cases sign(γ(v(k), k)) sign(l̃(k)) ∇v(k)

a) 1 -1 0

b) 1 1 -∆v

c) -1 1 0
d) -1 -1 ∆v

TABLE I

SET OF BEST POSSIBLE SOLUTIONS OF THE CONTROL LAW (16)

which is indeed an optimization problem having constraints

implying past values of the decision variable v(k). Due

above described limitations on the admissible values for

v(k), and hence for γ, a relaxation of this problem is possible

by making the minimization problem γ-size insensitive, i.e.

making the best possible choice for v(k) so as sign of γ be,

when possible, opposed to the one of l̃,

min
v∈U,∇v∈V

∣

∣

∣
sign(l̃) + sign(γ(v(k), k))

∣

∣

∣

an approximated solution of this problem results in

v(k + 1) = Sat
vmax
vmin

(

v(k)−
∆v

2

[

sign(γ(v(k), k)) + sign(l̃)
]

)

(16)

the rationality of this solution can be explained by looking

the Table I, where four cases can be identified:

The first two cases (a)−(b) correspond to situations where

the demand in the free cell is greater than the supply at the

congested cell, implying a grow in the congestion-front, i.e.

l̇ > 0 as show Eq.-(12). In this case, the ”best control action”

is:

a) to keep the speed limits constant, (∇v = 0) when the

front congestion is below the reference value (l < lr),

and

b) to take a corrective action by reducing the speed limit

velocity by an amount ∆v during a time period Ts,

when the front congestion is above the reference value

(l > lr).

The last two cases (c)− (d) concerns situations where the

congestion front is likely to decrease i.e. l̇ < 0. In this case,

the ”best control action” is:

c) to keep the speed limits constant (∇v = 0), if the

congestion front is already larger than its reference

(l > lr), and

d) to increase the speed limits (∇v = ∆v) if the congestion

front is below its reference value (l < lr).

C. Implementation issues

It is worth to note that the implementation of this controller

requires the measure of the sign of the error distance l̃, and

the sign of γ. From Eq.(12) we see that sign(γ) = sign(l̇),
therefore, the control law (16) has the following alternative

representation,which simplify its implementation

v(k + 1) = Satvmax

vmin
(v(k)− (17)

−
∆v

2

[

sign(l(k + 1)− l(k)) + sign(l̃(k))
]

)

Then, by measuring only l(k), and the above control can

be implemented.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
50

60

70

80

90

100

110

120

130
Time evolution of the speed limits

 v
 [

K
m

/h
]

Time [h]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4
Time evolution of the front congestion

 f
ro

n
t 

c
o

n
g

e
s
ti
o

n
 l
 [

K
m

]

Time [h]

Without speed regulation

With Speed Regulation

Fig. 4. Congestion front regulation via variable speed limit. The upper
figure shows the time-evolution of the control v. The lower figures compares
the line front l obtained using variable-speed limit control (continuous line),
to the one obtained without regulation (dashed lines).

V. SIMULATION RESULTS

The simulated example concerns a road section of length

L = 8 [Km], with input/output flows (ϕin, ϕout). The

characteristic curve is represented by the constant values;

(w = 16 [Km/h], ρm = 200 [veh/Km]),while the section

capacity and its associated critical density, ϕm(v), ρ∗(v),
are function of the selected speed limit v. The relaxation

constant is c = 0.008 [Km/veh]. The control parameters

are: the Dwell time Ts = 2[min], the variable speed limit set

U = {vmax = 110, vmin = 70} [Km/h], and its associated

steep change ∆v = 10 [Km/h].
The input flow is selected as ϕin = 1800 + 200 cos(15t),

and ϕout = 1800. In this example there are phases where

the input flow is larger than than output flow causing a

congestion increase. There are also other phases when the

congestion will tends to decrease. The objective here is to

regulate the congestion front, as best as possible, to the value

of lr = 1 [Km]. Simulation are shown in Fig. 4. The upper

figure show the speed regulation values as produced by the

control law. The lower curve shows the time-evolution of the
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congestion front when this controller is used, and compares

the case when non speed limit regulation are used, and the

regulation speed limit are fixed to v = 110 [Km/h]. It can

be observed that the case with variable speed limits preserve

the congestion close to the desired reference value.

VI. CONCLUSIONS

In this paper we treated the problem of front congestions

control. For this, we have introduced a new traffic lumped

model with only two cells (one free, and another congested)

the cells have variable length, and a variation law for the front

congestion completes the 3-dimensional model. In opposition

to fixed-length cell models that are commonly represented

by a set of linear state-dependent switching systems, our

model results in a lower dimensional nonlinear system which

solutions are continuous.

Based on this model, we have designed a “best-effort”

control strategy using variable speed limits. The notion of

best effort control is here linked to the physical variable

speed limit constraints which limits its size and as well as

its rate variation. This results in a relative simple control

in closed-form that can be implemented by using only

information about the front congestion location.
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