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Abstract— This work presents an unconstrained model pre-
dictive control (MPC) scheme for nonlinear time-delay systems
with guaranteed closed-loop stability using neither terminal
constraints nor terminal weighting terms. Therefore, we do
not require the calculation of control Lyapunov-Krasovskii
functionals for the nonlinear time-delay system and obtain a
computationally more attractive online optimization problem.
Based on similar previous results for discrete-time systems and
finite-dimensional continuous-time systems, an extended asymp-
totic controllability assumption suitable for nonlinear time-
delay systems is introduced. Since the stage cost is not positive
definite in the full state, but only penalizes the instantaneous
state of the system, additional arguments are required in order
to guarantee closed-loop stability. It is particularly interesting to
note that in contrast to essentially all other MPC schemes with
guaranteed stability, the optimal cost is not used as Lyapunov
function(al) of the closed-loop, and indeed the optimal cost can
increase along trajectories of the closed loop due to the influence
of the delayed states.

I. INTRODUCTION

Model predictive control (MPC) has been shown to be
an effective control method to deal with nonlinear systems,
with and without time-delays, subject to input and state
constraints. However, it is well known that MPC does not
guarantee closed-loop stability in general, which caused
significant interest in academic research [1, 2].

There currently exist several MPC schemes for nonlinear
time-delay systems which guarantee closed-loop stability.
These schemes can be roughly categorized into schemes with
terminal constraints [3–7] and unconstrained MPC schemes
which use additional terminal weighting functionals [8–11].
All of these schemes require a control Lyapunov-Krasovskii
functional, used as a terminal cost functional in the MPC
setup, and a positively invariant terminal region. Calculating
a control Lyapunov-Krasovskii functional for nonlinear time-
delay systems is in general a difficult task. Even if a control
Lyapunov-Krasovskii functional is known for the Jacobi
linearization of the system about the origin, which by itself is
not simple, it is a non-trivial problem to obtain an appropriate
terminal cost functional and invariant terminal region for
the nonlinear system, see e.g. [4–7]. All existing schemes
for calculating these stabilizing design parameters either re-
quire restrictive Razumikhin conditions or yield complicated
terminal regions and/or terminal cost functionals, which are
unattractive for an online implementation.
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In this work, we consider MPC with finite horizon cost
functionals containing neither terminal constraints nor ter-
minal penalty terms. The results extend previous results on
unconstrained MPC for (finite-dimensional) continuous-time
systems [12] and discrete-time systems [13–15]. The results
of [14, 15] also hold for infinite-dimensional systems and
have been exemplarily applied to certain classes of partial
differential equations [16, 17]. However, the results cannot be
directly transferred because in our problem setup, as well as
in all other MPC schemes for time-delay systems, the stage
cost is not positive definite in the full state, but only penalizes
the instantaneous state of the system. Hence, additional
arguments are required in order to guarantee to closed-
loop stability. First, we introduce a modified controllability
assumption suitable for time-delay systems. Based on this
assumption, we derive conditions on the prediction horizon
to guarantee stability of the closed-loop. It is particularly
interesting to note that in contrast to essentially all other
MPC schemes with guaranteed stability, the optimal cost is
not used as Lyapunov function(al) of the closed-loop, and
indeed the optimal cost can increase along trajectories of
the closed loop due to the influence of the delayed states.
However, stability is guaranteed because the infinite horizon
cost is bounded by a function of the finite horizon optimal
cost at initial time and the initial state.

The remainder of this paper is organized as follows.
The problem setup considered in this work is described in
Section II. Section III introduces a modified controllability
assumption appropriate for time-delay systems and provides
two intermediate results following from this assumption.
The main result, a condition on the prediction horizon for
guaranteed nominal stability of the closed-loop, is derived
in Section IV and remarks on suboptimality estimates are
given. Section V concludes the work with a brief summary
and an outlook on future research.

Notation: Let R and R+ denote the field of real numbers
and the set of non-negative real numbers, respectively. Rn
denotes the n-dimensional Euclidean space with any norm
| · |. Given τ > 0, let Cτ = C([−τ, 0],Rn) denote the
Banach space of continuous functions mapping the interval
[−τ, 0] ⊂ R into Rn. A segment xt ∈ Cτ is defined by
xt(s) = x(t + s), s ∈ [−τ, 0]. The norm on Cτ is defined
as ‖xt‖τ = supθ∈[−τ,0] |x(t + θ)|. L∞(D,Rn) is the set of
all measurable, essentially bounded functions ϕ : R ⊃ D→
Rn. A function f : R+ → R+ is said to belong to class
K∞ if it is continuous, strictly increasing, f(0) = 0 and
f(s) → ∞ as s → ∞. ceil(s) denotes the smallest integer
larger or equal to s.
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II. PROBLEM SETUP

Consider the nonlinear time-delay system

ẋ(t) = f(x(t), x(t− τ), u(t)) , (1a)
x(θ) = ϕ(θ) , ∀θ ∈ [−τ, 0] , (1b)

in which x(t) ∈ Rn is the instantaneous state at time t,
u(t) ∈ Rm is the control input subject to input constraints
u(t) ∈ U and ϕ ∈ Cτ is the initial function. The time-delay
τ > 0 is constant and assumed to be known. The function
f : Rn×Rn×Rm → Rn is continuously differentiable. The
constraint set U ⊂ Rm is compact and contains the origin in
its interior. Without loss of generality, xt = 0 is assumed to
be an equilibrium of system (1) for u = 0, i.e. f(0, 0, 0) = 0.
The problem of interest is to stabilize the steady state xt = 0
via model predictive control.

With respect to performance, the goal is to minimize the
infinite horizon cost functional

J∞(ϕ, u) =

∞∫
0

F (x(t), u(t)) dt . (2)

The stage cost F : Rn×Rm → R+ is continuous, F (0, 0) =
0 and there is a class K∞ function F̂ : R+ → R+ such that

F (x, u) ≥ F̂ (|x|) for all x ∈ Rn , u ∈ Rm . (3)

The associated optimal cost of this infinite horizon problem
is denoted by J∗∞(ϕ).

Since infinite horizon problems are often computationally
intractable, finite horizon cost functionals combined with a
receding horizon approach are often used instead. The finite
horizon cost functional used in our MPC setup at time ti is
given by

JT (xti , u) =

ti+T∫
ti

F (x(t), u(t)) dt (4)

in which T is the prediction horizon. The open loop finite
horizon optimal control problem is then formulated as

min
ū∈L∞([ti,ti+T ],Rm)

JT (xti , ū) =

min
ū∈L∞([ti,ti+T ],Rm)

ti+T∫
ti

F (x̄(t′; ti), ū(t′)) dt′ (5a)

subject to

˙̄x(t′; t) = f(x̄(t′; ti), x̄(t′ − τ ; ti), ū(t′)) , (5b)
ū(t′) ∈ U , (5c)

x̄(ti + θ; ti) = x(ti + θ) , (5d)

for all t′ ∈ [0, T ] and θ ∈ [−τ, 0]. Moreover, x̄(t′; t) is
the predicted trajectory starting from initial condition xti
and driven by ū(t′) for t′ ∈ [ti, ti + T ]. We assume that
the optimal control which minimizes JT (xti , ū) is given by
u∗T (t′;xti , ti), t′ ∈ [ti, ti+T ]. The associated optimal cost is
denoted by J∗T (xti) and the associated predicted trajectory
is x∗T (t′;xti , ti), t′ ∈ [ti, ti + T ]. For a given sampling time
δ > 0, the control input to the system is defined by the

optimal solution of problem (5) at sampling instants ti =
i δ , i ∈ N0, in the usual receding horizon fashion

uMPC(t) = u∗T (t;xti , ti) , ti ≤ t < ti + δ . (6)

Note that in this work we consider MPC with a finite
horizon optimal control problem containing neither terminal
constraints nor terminal penalty terms in the cost func-
tional. Thus, we do not require to calculate a local control
Lyapunov-Krasovskii functional for the system in a region
around the origin. This is in contrast to all previous work
on MPC for nonlinear time-delay systems [3–11]. Instead
we use a less restrictive controllability assumption along
the lines of the work presented in [13–15] for discrete-time
systems, which has been recently extended to continuous-
time systems in [12].

III. CONTROLLABILITY ASSUMPTION AND
IMPLICATIONS

In the following, we introduce an extended controllability
assumption appropriate for the nonlinear time-delay systems
considered in this work.

Assumption 1 (Asymptotic Controllability) For all ϕ ∈
Cτ , there exists a input trajectory û(·;ϕ) ∈ L∞(R+,Rm)
with û(t;ϕ) ∈ U for all t ≥ 0 and with corresponding state
trajectory x̄û(·;ϕ) such that

F (x̄û(·;ϕ)(t;ϕ), û(t;ϕ))

≤ β(t) ·

F̂ (|ϕ(0)|) +

0∫
−τ

F̂ (|ϕ(t′)|)dt′
 , (7)

for all t ∈ R+ in which β : R+ → R+ is a con-
tinuous, positive, and absolutely integrable function with
limt→∞ β(t) = 0.

Note that Assumption 1 is a natural extension of [14,
Assumption 3.1] and [12, Assumption 2] for nonlinear time-
delay systems and naturally recovers [12, Assumption 2] for
τ = 0. The candidate û has to be feasible in the sense that
it satisfies the input constraints, but it is not required to be
optimal.

Remark 1 Throughout this work, we do not consider state
constraints and use a “global” controllability assumption
for all ϕ ∈ Cτ for a concise presentation. Modifications and
“local” versions using invariant sets containing the initial
state ϕ can be obtained in a straight forward manner.

A typical example for such a function β is an exponential
function β(t) = C e−λ t with some overshoot constant C ≥ 1
and decay rate λ > 0. This example directly corresponds to
the exponential controllability assumption for discrete-time
systems in [14, 15] and for continuous-time systems in [12].

Before deriving two intermediate results based on the
controllability assumption, we have to introduce some no-
tation necessary for a more concise presentation in the
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t′

ti − τ ti ti + δ ti + T ti + T + δ

F̂ (|x(t′)|)

F ∗(t′; ti)

F ∗(t′; ti + δ)

Fig. 1. Sketch for Lemmata 1 and 2. The optimal trajectory calculated at
time ti is depicted by the (green and red) dashed line, the optimal trajectory
calculated at ti + δ is depicted by the (blue) dotted line.

following. With slight abuse of notation, we use the following
abbreviations for the predicted trajectories

F ∗(t; ti) = F (x∗T (t;xti , ti), u
∗
T (t;xti , ti)) ,

F̂ ∗(t; ti) = F̂ (|x∗T (t;xti , ti)|) ,

for t ∈ [ti, ti + T ] and

F ∗(t; ti) = F (x(t), u(t)), F̂ ∗(t; ti) = F̂ (|x(t)|)

for t < ti. Note that F̂ ∗(t; ti) ≤ F ∗(t; ti) trivially due to the
definition of F̂ in (3). Furthermore, we define

B(t) =

t∫
0

β(t′) dt′ , N = ceil
(τ
δ

)
,

and introduce the following assumption.

Assumption 2 The prediction horizon T is chosen such that

T > τ + δ .

Assumption 2 is essentially needed due to technical reasons
in the proof of Lemma 1. In general, this assumption is not
restrictive, in particular for small sampling times. In most
cases, it is desirable to choose the prediction horizon larger
than the time-delay or this might even be required in the case
of using terminal constraints.

We can now state two intermediate results in Lemmata 1
and 2 based upon the controllability assumption. Lemma 1
uses the optimality of J∗T (xti+δ) in addition to the control-
lability assumption in order to derive an upper bound on
J∗T (xti+δ) in terms of the endpiece of the predicted trajectory
calculated at time ti. In Figure 1, this can be interpreted as
giving an upper bound on the cost of the blue dotted line in
terms of the red loosely dashed line. Lemma 2 applies the
principle of optimality, i.e. the trajectory F ∗(t; ti) calculated
at time ti is an optimal endpiece on the interval [ti+δ, ti+T ].
Hence, it is also possible to derive an upper bound based on
the controllability assumption. In Figure 1, the result can be
interpreted as giving an upper bound on the cost of the red
loosely dashed line in terms of the green dashed line and the
orange line, which accounts for the influences of the delayed
states due to the time-delay τ .

Lemma 1 (Calculation of β̄) Consider system (1) and let
Assumptions 1 and 2 be satisfied. Then,

J∗T (xti+δ) ≤
1
β̄

∫ ti+T

ti+δ

F ∗(t′; ti)dt′ (8)

with 1
β̄

= 1 +B(T ) 1+τ
T−τ−δ .

Proof: For any t ∈ [δ, T ] define the feasible control
trajectory ũt as follows

ũt(t′) =
{
u∗T (t′;xti , ti) , t′ ∈ [ti + δ, ti + t]
û(t′ − ti − t;xti+t) , t′ ∈]ti + t, ti + δ + T ]

in which û(·;xti+t) is the input trajectory of Assumption 1
starting from initial state xti+t = x∗T (ti+t;xti , ti). Since ũt
is a feasible, but not necessarily optimal, solution to the finite
horizon optimal control problem (5), we obtain the following

J∗T (xti+δ) ≤ JT (xti+δ, ũt)

≤
ti+t∫
ti+δ

F ∗(t′; ti) dt′ +B(T + δ − t) (9)

×

F̂ ∗(ti + t; ti) +

t∫
t−τ

F̂ ∗(ti + t′; ti) dt′

 .

The last inequality follows from (7) in Assumption 1 and the
definition of B.

Furthermore, for all t ∈ [δ, T ], we directly obtain the
following relations

ti+t∫
ti+δ

F ∗(t′; ti) dt′ ≤
ti+T∫
ti+δ

F ∗(t′; ti) dt′ ,

B(T + δ − t) ≤ B(T ) .

Since (9) holds for all t ∈ [δ, T ], it results

J∗T (xti+δ) ≤
ti+T∫
ti+δ

F ∗(t′; ti) dt′ +B(T ) (10)

× min
t∈[δ,T ]

F̂ ∗(ti + t; ti) +

t∫
t−τ

F̂ ∗(ti + t′; ti) dt′

 .

Using Lemma 4 in the Appendix, it holds that

min
t∈[δ,T ]

F̂ ∗(ti + t; ti) +

t∫
t−τ

F̂ ∗(ti + t′; ti) dt′


≤ min
t∈[δ+τ,T ]

F̂ ∗(ti + t; ti) +

t∫
t−τ

F̂ ∗(ti + t′; ti) dt′


≤ 1 + τ

T − τ − δ

ti+T∫
ti+δ

F ∗(t′; ti) dt′ ,
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and we finally arrive at

J∗T (xti+δ) ≤
(

1 +B(T )
1 + τ

T − τ − δ

)
︸ ︷︷ ︸

= 1
β̄

ti+T∫
ti+δ

F ∗(t′; ti) dt′ .

This completes the proof.
Note that β̄ → 1 for T → ∞. This property will later

be useful to show that given Assumption 1, there always
exists a finite prediction horizon T large enough such that
the closed-loop using the MPC controller is asymptotically
stable.

Lemma 2 (Calculation of γ) Consider system (1) and let
Assumption 1 be satisfied. Then,∫ ti+T

ti+δ

F ∗(t′; ti)dt′

≤ γ

(∫ ti+δ

ti

F ∗(t′; ti) dt′ +
∫ ti

ti−τ
F̂ (|x(t′)|) dt′

)
(11)

with γ = B(T ) 1+τ
δ .

Proof: Let Assumption 1 be satisfied. Then the inequal-
ity ∫ ti+T

ti+t

F ∗(t′; ti)dt′ ≤ B(T − t)

×

F̂ ∗(ti + t; ti) +

t∫
t−τ

F̂ ∗(ti + t′; ti) dt′

 (12)

holds for all t ∈ [0, T ]. This result is similar to [12, Lemma
3] and to the first part in the proof of Lemma 1. It is a
direct consequence of the priniciple of optimality (endpieces
of optimal trajectories are optimal), the Controllability As-
sumption 1 and the definition of B. Furthermore,∫ ti+T

ti+δ

F ∗(t′; ti)dt′ ≤
∫ ti+T

ti+t

F ∗(t′; ti)dt′ (13)

holds for all t ∈ [0, δ], Equation (12) and B(T − t) ≤ B(T )
hold for all t ∈ [0, T ]. Putting all of these intermediate results
together, we obtain∫ ti+T

ti+δ

F ∗(t′; ti)dt′ ≤ B(T )

× min
t∈[0,δ]

F̂ ∗(ti + t; ti) +

t∫
t−τ

F̂ ∗(ti + t′; ti) dt′

 .

Using Lemma 4 in the Appendix, it follows that

min
t∈[0,δ]

F̂ ∗(ti + t; ti) +

t∫
t−τ

F̂ ∗(ti + t′; ti) dt′


≤ 1 + τ

δ

ti+δ∫
ti−τ

F̂ ∗(t′; ti) dt′ ,

and we finally arrive at∫ ti+T

ti+δ

F ∗(t′; ti)dt′ ≤ B(T )
1 + τ

δ︸ ︷︷ ︸
=γ

×

(∫ ti+δ

ti

F ∗(t′; ti) dt′ +
∫ ti

ti−τ
F̂ (|x(t′)|) dt′

)
.

This completes the proof.

IV. ASYMPTOTIC STABILITY AND SUBOPTIMALITY
ESTIMATE

Based on the results of the previous section, we can state
our main result regarding asymptotic stability of the closed-
loop using the unconstrained MPC as follows.

Theorem 3 (Asymptotic Stability) Consider the system (1)
and let Assumptions 1 and 2 be satisfied. Define

α := 1− (N + 1)
(

1
β̄
− 1
)
γ (14)

with β̄ and γ defined in Lemmata 1 and 2, respectively, i.e.

α = 1− (N + 1)
B(T )2 (1 + τ)2

(T − τ − δ) δ
. (15)

If α > 0, then the closed-loop using the MPC controller (6)
is asymptotically stable.

Proof: Consider the optimal cost J∗T at two arbitrary
sampling instants ti and t0, for which ti > t0. Adding zero
and reordering terms yields directly

J∗T (xti)− J∗T (xt0) =
i−1∑
j=0

J∗T (xtj+1)− J∗T (xtj ) . (16)

Using Lemma 1, we obtain

J∗T (xtj+1)− J∗T (xtj ) = J∗T (xtj+δ)− J∗T (xtj )

≤
(

1
β̄
− 1
) ∫ tj+T

tj+δ

F ∗(t′; tj)dt′ −
∫ tj+δ

tj

F ∗(t′; tj)dt′ .

Moreover, it follows from Lemma 2 that

J∗T (xtj+1)− J∗T (xtj )

≤
((

1
β̄
− 1
)
γ − 1

) tj+δ∫
tj

F ∗(t′; tj) dt′

+
(

1
β̄
− 1
)
γ

tj∫
tj−τ

F̂ (|x(t′)|) dt′ (17)

Because we consider no model plant mismatch, the pre-
dicted trajectories and the actual trajectories of the closed-
loop system coincide until the next sampling instant. Thus,
F ∗(t′; tj) = F (x(t′), uMPC(t′)) for t′ ∈ [tj , tj +δ]. Further-
more, F̂ (|x(t′)|) ≤ F (x(t′), uMPC(t′)) by definition of of F̂
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in (3). Careful inspection of the sum in (16) in combination
with (17) then yields

J∗T (xti)− J∗T (xt0)

≤
((

1
β̄
− 1
)
γ − 1

) ti∫
t0

F (x(t′), uMPC(t′)) dt′

+N
(

1
β̄
− 1
)
γ

ti∫
t0

F (x(t′), uMPC(t′)) dt′

+N
(

1
β̄
− 1
)
γ

t0∫
t0−τ

F̂ (|x(t′)|) dt′

=
(

(N + 1)
(

1
β̄
− 1
)
γ − 1

)
︸ ︷︷ ︸

=−α

ti∫
t0

F (x(t′), uMPC(t′)) dt′

+N
(

1
β̄
− 1
)
γ

t0∫
t0−τ

F̂ (|x(t′)|) dt′ .

Since J∗T (xti) > 0 and J∗T (xt0) is finite, it follows for any
arbitrary ti > t0

ti∫
t0

F (x(t′), uMPC(t′)) dt′

≤ 1
α
J∗T (xt0) +N

(
1
β̄
− 1
)
γ

α

t0∫
t0−τ

F̂ (|x(t′)|) dt′ (18)

<∞ .

Asymptotic stability follows directly from standard argu-
ments in optimal control and Barbalat’s Lemma [18]. This
completes the proof.

Remark 2 Equation (18) and J∗T (ϕ) ≤ J∗∞(ϕ) yield for
initial condition ϕ in (1b)

J∗∞(ϕ) ≤ JMPC
∞ (ϕ) =

∞∫
0

F (x(t′), uMPC(t′)) dt′

≤ 1
α
J∗T (ϕ) +N

(
1
β̄
− 1
)
γ

α

0∫
−τ

F̂ (|ϕ(t′)|) dt′

(19a)

≤ 1
α
J∗∞(ϕ) +N

(
1
β̄
− 1
)
γ

α

0∫
−τ

F̂ (|ϕ(t′)|) dt′ .

(19b)

Thus, an upper bound on the infinite horizon performance of
the MPC controller can be given in terms of the finite horizon
optimal cost at initial time J∗T (ϕ) and on an additional term
depending on the initial state ϕ. This second term is not
necessary in the case of delay-free systems as can be directly
seen for τ = 0.

Remark 3 Note that β̄ → 1 for T → ∞, which directly
implies α → 1 for T → ∞. Hence, there always exists a
finite prediction horizon T chosen suitably large such that
the closed-loop using the MPC controller is asymptotically
stable. Furthermore, Equation (19) shows that JMPC

∞ (ϕ)→
J∗∞(ϕ) for T →∞, i.e. infinite horizon optimal performance
is recovered for large enough enough prediction horizon and
the influence of the second term in (19b), which depends on
the initial condition ϕ, vanishes.

Remark 4 Note that α→ −∞ for δ → 0, which means that
asymptotic stability of the closed-loop cannot be guaranteed
for arbitrarily small sampling times. This result is somewhat
counterintuitive and it was shown in [19, 20] that with an
additional condition, the so-called growth condition, this
effect can be avoided. The estimate obtained in [12] satisfies
β̄ → 1 for δ → 0, which allows to cancel the effect of
γ → ∞ for δ → 0 when using the growth condition.
Unfortunately, this is not possible for the results presented
in this work. The estimate for β̄ in Lemma 1 is more
conservative and it is not based on an optimization problem
in contrast to [12, 19, 20], but only uses the estimate based
on Lemma 4. It is simple to see in Lemma 1, that β̄ 9 1
for δ → 0 and independent of B(t). Hence, the growth
condition is not applicable to avoid the poor estimates for
small sampling times.

Remark 5 Stability is not proven by a decrease of the
optimal cost function from one sampling instant to the next
one, but only by a decrease in the long run. The optimal cost
can indeed increase along trajectories of the closed-loop due
to the effect of the delayed states.

Remark 6 Note that for τ = 0, we obtain N = 0 and α =
1−
(

1
β̄
− 1
)
γ. This directly recovers the stability condition

of [12, Theorem 6] for delay-free continuous-time systems.
Furthermore, Equation (18) becomes
∞∫
t0

F (x(t′), uMPC(t′)) dt′ ≤ 1
α
J∗T (xt0) ≤ 1

α
J∗∞(xt0) ,

which recovers the suboptimality estimate of the infinite
horizon performance of the MPC controller.

V. CONCLUSIONS

In this work we considered model predictive control
for nonlinear time-delay systems using neither terminal
constraints nor control Lyapunov-Krasovskii functionals as
terminal weighting terms. First, we proposed an extended
asymptotic controllability assumption, which was necessary
because the stage cost only penalizes the instantaneous state
instead of the full delayed state. Based on this assumption,
we provided conditions on the length of the prediction
horizon to guarantee nominal asymptotic stability of the
closed-loop. In contrast to most other results on stability of
MPC, the optimal cost is not used as Lyapunov function or
Lyapunov Krasovskii functional. The optimal cost can indeed
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increase along trajectories of the closed-loop due to the effect
of the delayed states.

Future research will be dedicated to improving the esti-
mates given in this work. In particular, the estimates for β̄
have to be improved in order to possibly use a certain growth
condition similar to previous results for discrete-time systems
and finite-dimensional continuous-time systems. This might
enable us to avoid the poor estimates for small sampling
times and remove the counterintuitive lack of guaranteed
stability for arbitrary small sampling times.

APPENDIX

Lemma 4 For any t1, t2, τ ∈ R with t1 < t2 and τ > 0, and
for any positive integrable function F : [t1 − τ, t2] → R+,
the following holds

min
t∈[t1,t2]

(
F (t) +

∫ t

t−τ
F (t′) dt′

)
≤ 1 + τ

t2 − t1

∫ t2

t1−τ
F (t′) dt′ .

Proof: Due to fundamental properties of integrals and
positivity of F , it follows that

min
t∈[t1,t2]

(
F (t) +

∫ t

t−τ
F (t′) dt′

)
≤ 1
t2 − t1

∫ t2

t1

(
F (t) +

∫ t

t−τ
F (t′) dt′

)
dt

≤ 1
t2 − t1

t2∫
t1−τ

F (t′) dt′ +
1

t2 − t1

t2∫
t1

t∫
t−τ

F (t′) dt′dt

(∗)
≤ 1

t2 − t1

t2∫
t1−τ

F (t′)dt′ +
1

t2 − t1

t2∫
t1−τ

t′+τ∫
t′

F (t′)dtdt′

=
1

t2 − t1

∫ t2

t1−τ
F (t′) dt′ +

τ

t2 − t1

∫ t2

t1−τ
F (t′)dt′ .

For the interchange of the order of integration and the
enlarged domain of integration in inequality (∗), see Fig-
ure 2. The term

∫ t2
t1

∫ t
t−τ F (t′) dt′dt results from integra-

tion over the domain within the black solid line, whereas∫ t2
t1−τ

∫ t′+τ
t′

F (t′)dtdt′ corresponds to the larger domain
additionally including the areas given by the orange dashed
lines.
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