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Abstract— In this paper, first, balanced truncation of linear
systems is revisited. Then, simultaneous balancing of multiple
linear systems is investigated. Necessary and sufficient condi-
tions are introduced to identify the case where simultaneous
balancing is possible. The validity of these conditions is not
limited to a certain type of balancing, and they are applicable
for different types of balancing corresponding to different
equations, like Lyapunov or Riccati equations. The results
obtained are used for model order reduction of switched linear
systems (SLS) by simultaneous balanced truncation. Finally,
we give conditions under which global uniform exponential
stability is preserved after simultaneous balanced truncation
of the original switched linear system.

I. INTRODUCTION

Seeking for simpler descriptions of highly complex or
large scale systems has resulted in the development of
many different model reduction techniques. A simpler model
provides a simpler description, better understanding, and
easier analysis of the system. Two important issues in model
reduction are obtaining a small error bound and preserving
system properties like stability, passivity, or contractivity. To
achieve this, extensive research and many approaches are
reported in the literature regarding model reduction of linear
time-invariant finite-dimensional systems (see [1]). One of
the most well-known techniques is Lyapunov balanced model
reduction, first introduced in [11], and later appearing in
the control system literature in [10]. In this approach, first
the system is transformed into a balanced form, and next
a reduced order model is obtained by truncation. There
are other types of balancing approaches available in the
literature. Instances of those are stochastic and positive
real balancing proposed in [2], and bounded real balancing,
proposed in [12]. In addition, frequency weighted balancing
has been developed to approximate the system over a range
of frequencies. [3], [9], [14] and [15] provide different
schemes for frequency weighted balancing. Another category
of model reduction approaches is Krylov based methods
which are based on moment matching. Among the pioneering
works in this direction, we refer to [4], [5], and [7].

Despite the considerable research effort on model re-
duction of ordinary linear systems, developing methods for
model reduction of more general classes of linear systems,
such as hybrid and switched linear systems (SLS), has only
been studied in very few papers up to now (e.g. [13]). A
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switched linear system, typically, involves switching between
a number of linear systems. Hence, to apply balanced trun-
cation techniques to a switched linear system, we need to
search for a basis of the (common) state space such that
the corresponding linear subsystems are in balanced form.
A natural question that arises here is under what conditions
such a basis exist. In this paper, necessary and sufficient
conditions are derived for the existence of such basis. The
results obtained are not limited to a certain type of balancing,
and are applicable to different types such as Lyapunov,
bounded real, and positive real balancing.

It may happen that some state components are difficult
to reach and observe in some modes yet easy to reach
and observe in other modes. In that case, deciding how to
truncate the state variables and obtain a reduced order model
is not trivial. A solution to this problem is proposed in this
paper. By averaging the diagonal gramians of the individual
modes in the balanced coordinates, a new diagonal matrix
is obtained. This average gramian can be used to obtain a
reduced order model. In the case of Lyapunov balancing, the
average gramian assigns an overall degree of controllability
and observability to each state component. In this way, one
can decide which state components should be eliminated in
order to obtain a reduced order model.

Another interesting issue is that if some information on
the stability of the original SLS is available, how to ensure
that the reduced order model, which is also in the form of an
SLS, retains this stability. It is well-known that the existence
of a common quadratic Lyapunov function (CQLF) is a
sufficient condition for global uniform exponential stability
of the switched linear system, see [8]. In this paper we will
establish conditions under which the reduced order switched
linear system inherits a CQLF form the original switched
linear system, thus preserving global uniform exponential
stability.

This paper is organized as follows. In Section 2, some
preliminaries and basic materials needed in the rest of the
paper are discussed. Balancing transformations for a single
system are discussed in Section 3. Simultaneous balancing
is the subject of Section 4. In Section 5, model reduction
for switched linear systems is discussed. Finally, Section 6
is allocated to conclusions and a summary.

II. PRELIMINARIES

Consider the finite dimensional, linear time-invariant sys-
tem

ẋ = Ax+Bu
y = Cx+Du

(1)
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where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rl×n, and D ∈
Rl×m. Assume that the system is internally stable, i.e., the
matrix A is Hurwitz. We shortly denote this system by
H = (A,B,C,D).

In general, balancing the system H involves finding a
state space transformation that simultaneously diagonalizes
appropriately chosen positive definite matrices P and Q in a
covariant and contravariant manner, respectively. This means
that if we denote the state space transformation by T , then P
transforms to TPTT and Q transforms to T−TQT−1. Some
important concepts of balancing are classical Lyapunov bal-
ancing, bounded real (BR) balancing, and positive real (PR)
balancing. In Lyapunov balancing the matrices P and Q are
the unique solutions of the Lyapunov equations associated
with the system H , while in BR and PR balancing P and
Q are the minimal real symmetric solutions of a pair of
algebraic Riccati equations, see Table 1.

In the first part of the present paper, the exact balancing
concept we use is not relevant, and we will just be dealing
with finding, for a given pair of real symmetric, positive
definite matrices P and Q, a nonsingular matrix T such that
TPTT and T−TQT−1 are diagonal, or diagonal and equal.

We will first introduce some basic terminology that will
be used in the sequel.

Definition 1 Let M ∈ Cn×n have n independent eigenvec-
tors. Then, the nonsingular matrix V ∈ Cn×n is called a
diagonalizing transformation for M if VMV −1 is diagonal.
In this case, we say V diagonalizes M .

Definition 2 Two diagonalizable matrices X , Y ∈ Cn×n
are said to be simultaneously diagonalizable if there exists
a nonsingular matrix V ∈ Cn×n such that V XV −1 and
V Y V −1 are both diagonal.

A necessary and sufficient condition for simultaneous
diagonalizability of two given matrices is stated in the
following lemma [6]

Lemma 3 Let X , Y ∈ Cn×n be diagonalizable matrices.
Then X and Y are simultaneously diagonalizable if and only
if they commute, i.e. XY = Y X .

Remark 4 The generalization of the above Lemma to the
case of three or more matrices is straightforward. In fact, a
finite set of matrices is simultaneously diagonalizable if and
only if each pair in the set commutes.

Let P , Q > 0 be positive definite real symmetric n × n
matrices. Then, the concept of essentially-balancing and
balancing transformations are defined as follows.

Definition 5 Let T ∈ Rn×n be nonsingular. We call T an
essentially-balancing transformation for (P,Q) if TPT T and
T−TQT−1 are diagonal. In this case, we say T essentially
balances (P,Q).

Definition 6 Let T ∈ Rn×n be nonsingular. We call T a bal-
ancing transformation for (P,Q) if TPT T = T−TQT−1 =
Σ, where Σ is a diagonal matrix. In this case, we say T
balances (P,Q).

Remark 7 It is well-known, see for example [16], that for
any pair of real symmetric positive definite matrices (P,Q)
there exists a balancing transformation. It is clear that the
diagonal elements of the matrix Σ in Definition 6 coincide
with the square roots of the eigenvalues of PQ. In the
case of Lyapunov balancing, where P and Q correspond
to the reachability and observability gramians, the diagonal
elements of the corresponding Σ are the nonzero Hankel
Singular Values (HSV) of the system. Similarly, in the case
of bounded real and positive real balancing, the diagonal
elements of Σ are the nonzero bounded real and positive
real characteristic values, respectively.

III. BALANCING TRANSFORMATIONS FOR A PAIR OF
POSITIVE DEFINITE MATRICES

Let P and Q be two real symmetric positive definite
matrices. Throughout this paper, it will be a standing as-
sumption that the eigenvalues of PQ are all distinct. This
assumption will simplify the statement and proofs of the
results in this paper considerably. The generalization of
our results to the case that the eigenvalues of PQ are not
necessarily distinct will be treated in a future, full version of
this paper. Now, let T̃ be a balancing transformation for the
pair (P,Q), and denote the corresponding diagonal matrix
Σ by Σ = diag(σ1, σ2, . . . , σn), where σi 6= σj (i 6= j).
We note that the diagonal elements σi are not necessarily
ordered in a decreasing manner. Clearly we have

T̃PQT̃−1 = Σ2.

Hence, the columns of T̃−1 are the eigenvectors of PQ
corresponding to the distinct eigenvalues σ2

i , i = 1, 2, ..., n.
Since the eigenvalues of PQ are real, there exists V ∈ Rn×n
that diagonalizes PQ. Now, it is easy to observe that T̃
can be written as T̃ = IPD

−1V where D ∈ Rn×n is a
nonsingular diagonal matrix and IP is a permutation matrix.

The following lemma indicates that there is a one-to-one
correspondence between diagonalizing transformations, and
essentially-balancing transformations.

Lemma 8 Let P and Q be real symmetric positive defi-
nite matrices. Assume that the eigenvalues of PQ are all
distinct. The matrix V ∈ Rn×n is an essentially-balancing
transformation for (P,Q) if and only if it is a diagonalizing
transformation for PQ.

Proof: First, assume that V is an essentially-balancing
transformation for (P,Q). Then, by definition, V PV T

and V −TQV −1 are diagonal. Consequently, the product
V PV TV −TQV −1 = V PQV −1 is diagonal. Hence, V is
a diagonalizing transformation for PQ.

Conversely, suppose V is a diagonalizing transformation
for PQ with corresponding diagonal matrix Σ2. Then, there
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TABLE I
COMMON TYPES OF BALANCING

Type Equations

Lyapunov AP + PAT +BBT = 0
ATQ+QA+ CTC = 0

Bounded Real AP + PAT +BBT + (PCT +BDT)(I −DDT)−1(PCT +BDT)T = 0
ATQ+QA+ CTC + (QB + CTD)(I −DTD)−1(QB + CTD)T = 0

Positive Real AP + PAT + (PCT −B)(D +DT)−1(PCT −B)T = 0
ATQ+QA+ (QB − CT)(DT +D)−1(QB − CT)T = 0

exists a nonsingular diagonal matrix D ∈ Rn×n such that
T = D−1V balances (P,Q) with corresponding diagonal
matrix Σ. Hence, by Definition 6, we have

D−1V PV TD−1 = Σ = DV −TQV −1D.

Consequently, V PV T = DΣD and V −TQV −1 =
D−1ΣD−1 are diagonal matrices. This implies that V is an
essentially-balancing transformation for (P,Q). �

Based on the previous discussion and Lemma 8, the
following theorem characterizes balancing transformations
for a given pair of positive definite matrices (P,Q).

Theorem 9 Let P and Q be real symmetric positive definite
matrices. Assume that the eigenvalues of PQ are all distinct.
Let V ∈ Rn×n be a diagonalizing transformation for PQ.
Then T is a balancing transformation for (P,Q) if T =
D−1V where D ∈ Rn×n is a diagonal matrix satisfying

D4 = (V PV T)(V Q−1V T) (2)

Moreover, if T is a balancing transformation for (P,Q),
then any balancing transformation T̃ can be written as
T̃ = IPST where S is a sign matrix (i.e. diagonal matrix
with +1 or −1 on the diagonal), and IP is a permutation
matrix.

Proof: Assume V is a diagonalizing transformation for PQ.
Let D ∈ Rn×n be a diagonal matrix satisfying (2). By (2),
we have

D−2V PV T = D2V −TQV −1. (3)

According to Lemma 8, V is also an essentially-balancing
transformation; hence, V PV T and V −TQV −1 are diagonal.
Therefore, (3) can be written as

D−1V PV TD−1 = DV −TQV −1D. (4)

Since both sides of (4) are diagonal, T = D−1V is a
balancing transformation for (P,Q).

Now, assume T and T̃ are two balancing transformations
for (P,Q). Then, we have TPQT−1 = Σ2 and T̃PQT̃−1 =
IPΣ2ITP for some permutation matrix IP . Clearly, the
columns of T−1 and T̃−1 are the eigenvectors of PQ. Hence,
we have T̃ = IP D̃T for some nonsingular diagonal matrix
D̃. Since T̃ balances (P,Q), we have T̃P T̃ T = IPΣITP .
Hence,

IP D̃TPT
TD̃ITP = IPΣITP . (5)

Since T balances (P,Q), we have TPT T = Σ. Therefore,
(5) implies that D̃2 is the identity matrix. Consequently, T̃
can be written as T̃ = IPST . �

The above theorem provides a straightforward method for
computing balancing transformations. Given positive definite
real symmetric matrices P and Q, we compute, firstly, a di-
agonalizing transformation for PQ. Obviously, this transfor-
mation can be obtained directly from the eigenvectors of PQ.
Then, as stated in the theorem, a balancing transformation
can be obtained by scaling the diagonalizing transformation,
and the scaling matrix can be taken as any nonsingular real
diagonal matrix satisfying (2). Note that computation of D
in (2) is simple and merely requires the multiplication of two
diagonal matrices V PV T and V Q−1V T.

IV. SIMULTANEOUS BALANCING FOR MULTIPLE PAIRS OF
POSITIVE DEFINITE MATRICES

In this section, we will study the question under what
conditions multiple pairs of positive definite real symmetric
matrices can be simultaneously balanced by one and the
same transformation. We will start off by considering the
problem for a pair of positive definite matrices. Let (P1, Q1)
and (P2, Q2) be two given pairs of positive definite real
symmetric matrices. The following theorem gives necessary
and sufficient conditions for the existence of a transformation
T that simultaneously balances (P1, Q1) and (P2, Q2). We
again assume that the eigenvalues of both P1Q1 and P2Q2

are distinct.

Theorem 10 Let (P1, Q1) and (P2, Q2) be two pairs of
real symmetric positive definite matrices. Assume that the
eigenvalues of P1Q1 and P2Q2 are both distinct. Then, there
exists a transformation T that balances both (P1, Q1) and
(P2, Q2) if and only if the following two conditions hold:

1) P1Q1 and P2Q2 commute,
2) P1Q2 = P2Q1.

Proof: Assume T is a balancing transformation for both
(P1, Q1) and (P2, Q2). Clearly, T is a diagonalizing trans-
formation for both P1Q1 and P2Q2. Hence, by Lemma 3,
P1Q1 and P2Q2 commute. In addition, by Definition 6, we
have

TP1T
T = T−TQ1T

−1

TP2T
T = T−TQ2T

−1.
(6)
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Consequently, TP1Q2T
−1 = TP2Q1T

−1 which yields
P1Q2 = P2Q1.

To prove the converse, assume that the conditions i) and
ii) hold. Since P1Q1 and P2Q2 commute, there exists a
nonsingular matrix V that simultaneously diagonalizes P1Q1

and P2Q2. Clearly,

V P1Q2V
−1 = V P2Q1V

−1

which can be rewritten as

(V P1V
T)(V −TQ2V

−1) = (V P2V
T)(V −TQ1V

−1) (7)

By Lemma 8, V is also an essentially-balancing transforma-
tion for both (P1, Q1) and (P2, Q2). Therefore, all four terms
in (7) are diagonal, and can be permuted. Consequently, (7)
results in

(V P1V
T)(V Q−1

1 V T) = (V P2V
T)(V Q−1

2 V T) (8)

Now, take D to be a nonsingular real diagonal matrix such
that

D4 = (V P1V
T)(V Q−1

1 V T).

Then, by Theorem 9, T = D−1V simultaneously balances
(P1, Q1) and (P2, Q2). �

For the sake of simplicity, the above result and conditions
are stated for pairs of matrices (P1, Q1) and (P2, Q2). The
generalization of the results to k pairs of positive definite
matrices, with k ≥ 2 is straightforward, and is stated in the
following corollary.

Corollary 11 Let (P1, Q1), (P2, Q2), ..., (Pk, Qk) be k
pairs of positive definite real symmetric matrices. Assume
for all i = 1, 2, ..., k the eigenvalues of PiQi are distinct.
Then, there exists a transformation T that simultaneously
balances (P1, Q1), (P2, Q2), ..., (Pk, Qk) if and only if the
following conditions hold:

i) PiQi and PjQj commute for all i, j = 1, 2, ..., k.
ii) PiQj = PjQi for all i, j = 1, 2, ..., k.

Again, we note that this result can be generalized to the
case that the product matrices PiQi have repeated eigenval-
ues. The details will be worked out in a future, full version
of this paper.

V. MODEL REDUCTION OF SWITCHED LINEAR SYSTEMS

A. Model reduction by simultaneous balancing

We will now apply our previous results to model reduction
by balanced truncation of switched linear systems. In fact,
in the context of model reduction, the matrices P and Q
can be taken to be the solutions of the Lyapunov equations
or the minimal solutions of Riccati equations in Table 1.
Consequently, the results stated in the previous sections cover
different types of balancing of a single linear system, and,
moreover, indicate the possibility of simultaneous balancing
for multiple linear systems. Simultaneous balancing, if possi-
ble, provides a straightforward approach for model reduction
of some hybrid systems. Note that, except from having the

same state space dimension, no assumption is needed regard-
ing the relation of the individual systems. In this section,
we will apply our results to classical Lyapunov balanced
truncation of switched linear systems. The application to
bounded real or positive real balanced truncation will be
worked out in a future publication.

A typical SLS is described by (see [8]):

ẋ = Aσx+Bσu
y = Cσx+Dσu

(9)

where σ is a piecewise constant function of time, t, taking its
value from the index set K = {1, 2, ..., k}, and Ai ∈ Rn×n,
Bi ∈ Rn×m, Ci ∈ Rm×n, Di ∈ Rm×m for all i ∈ K.
Let Hi = (Ai, Bi, Ci, Di) denote the ith mode of the given
SLS. Assume that Hi is internally stable, controllable, and
observable for every i. Let Pi and Qi be the reachability
and observability gramians of Hi, respectively. Now, if the
conditions of Corollary 11 hold with respect to the pairs of
gramians (P1, Q1), (P2, Q2), ..., (Pk, Qk), then there exists
a state space transformation T that simultaneously balances
all k modes of the given SLS. Consequently, by applying T
to the individual modes of (9) and truncating, reduced order
models can be obtained.

As mentioned in the introduction, it may occur that
some states are relatively difficult to reach and observe in
some subsystems yet easy to reach and observe in other
subsystems. In order to measure the degree of reachability
and observability of each of the state components of the SLS,
we propose to take the average over all subsystems of the
corresponding Hankel singular values. Let Σ1, Σ2, ..., Σk
denote the gramians of the subsystems of (9) in the balanced
basis. Then, we define the average gramian, denoted by Σav ,
as

Σav =
1

k
(Σ1 + Σ2 + ...+ Σk) (10)

Now, the diagonal matrix Σav indicates the important and
negligible states, and can be used to obtain a reduced order
model. In fact, the ith diagonal element of Σav assigns an
overall degree of controllability and observability to the ith

state component of the balanced representation. Hence, a
reduced model of order r can be obtained by maintaining
the state components corresponding to the largest r elements
of Σav and eliminating the remaining n− r ones.

The reduced model can also be represented in the form of
an SLS as

˙̄x = Āσx+ B̄σu
ȳ = C̄σx+ D̄σu

(11)

Let H̄i = (Āi, B̄i, C̄i, D̄i) denote the ith mode of the re-
duced order model. Clearly, the reachability and observability
gramians are diagonal in the balanced basis, and internal
stability of Hi is preserved in H̄i for all i = 1, 2, ..., k.

An infinity norm error bound for Lyapunov balanced
truncation of any of the subsystems is known to be twice
the sum of the neglected Hankel Singular values (i.e. those
corresponding to the eliminated state components)([1], p.
212). Hence, the definition of Σav in (10) is well justifi-
able based on the model reduction errors of the different
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subsystems. In fact, eliminating the states based on Σav
corresponds to minimizing the sum of the error bounds
involved in approximating the individual subsystems. Of
course, it remains an open problem how to measure the error
between the original overall SLS and its reduced rth order
SLS model.

Remark 12 If the subsystems of the given SLS are not of
equal importance or some information regarding the switch-
ing signal is available, the overall gramian can be defined as a
weighted average of the gramians of individual subsystems
in balanced coordinates. Then, one can take into account
the importance of the different subsystems by adjusting the
weighting coefficients.

Remark 13 Although the above results are stated in terms
of classical Lyapunov balancing, they can be adopted for
different types of balancing mentioned in Table 1 as well.
In particular, in positive real and bounded real balancing,
(P,Q) corresponds to the minimal solutions of the Riccati
equations in Table 1 (see [1]). Clearly, depending on the
type of balancing, Hi and H̄i will then share the property
of contractivity or passivity.

B. Stability of the reduced order SLS model under arbitrary
switching

As already observed in the previous subsection, simul-
taneous balanced truncation of the individual modes of a
switched linear system yields a reduced order switched linear
system whose individual modes are internally stable. Of
course, this does not mean that the SLS itself is stable. In
the present subsection we will find conditions under which
simultaneous balanced truncation preserves the stability of
the SLS. The concept of stability that we will use here
is that of global uniform exponential stability. We call the
SLS given by (9) globally uniformly exponentially stable
if there exist positive constants K and α such that the
solution x(t) of ẋ = Aσx for any initial state x(0) and
any switching signal σ satisfies ‖x(t)‖ ≤ Ke−αt‖x(0)‖ for
all t ≥ 0 (see [8]). A sufficient condition for global uniform
exponential stability of an SLS is that the state matrices of
the individual modes share a common quadratic Lyapunov
function (CQLF)[8]. Assuming that the state matrices of
the modes of the given SLS enjoy this property, we seek
for conditions under which this property is preserved in the
reduced order SLS. This leads us to the following theorem.

Theorem 14 Consider the switched linear system (9) with
subsystems Hi = (Ai, Bi, Ci, Di), i = 1, 2, . . . , k. Assume
that there exists X > 0 such that ATi X + XAi < 0 for
all i = 1, 2, ..., k. Let Pi and Qi be the reachability and
observability Gramians, respectively, of the ith subsystem
Hi. Assume that for all i = 1, 2, ..., k, the eigenvalues of
PiQi are distinct. Then there exists a state space trans-
formation that simultaneously balances all subsystems Hi

for i = 1, 2, ..., k, and, moreover, for each positive integer
r ≤ n the rth order truncated SLS given by (11) is globally

uniformly exponentially stable, if the following conditions
hold:

i) PiQi and PjQj commute for all i, j = 1, 2, ..., k.
ii) PiQj = PjQi for all i, j = 1, 2, ..., k.

iii) XPiQi = QiPiX for all i = 1, 2, ..., k.

Proof: Based on Corollary 11, simultaneous balancing is
possible upon satisfaction of the first two conditions. By the
third condition we have

X
1
2PiQiX

−1
2 = X

−1
2 QiPiX

1
2 .

Hence, X
1
2PiQiX

−1
2 is a symmetric matrix. In addition, the

first condition implies that X
1
2PiQiX

−1
2 and X

1
2PjQjX

−1
2

commute for all i, j = 1, 2, ..., k. Therefore, there exists
an orthogonal matrix U which diagonalizes X

1
2PiQiX

−1
2 ,

for all i = 1, 2, ..., k (see [6], p. 103). Hence, UX
1
2 is

a diagonalizing transformation for PiQi, i = 1, 2, ..., k.
Consequently, a simultaneous balancing transformation T
can be obtained as T = D−1UX

1
2 for some nonsingular real

diagonal matrix D. Applying T to the individual subsystems
of the given SLS, the state matrices in the new coordinates
are given by

Ãi = D−1UX
1
2AiX

−1
2 UTD (12)

By our assumption regarding the CQLF, we have ATi X +
XAi < 0 for all i = 1, 2, ..., k. Hence, for all i = 1, 2, ..., k,
we have

DUX
−1
2 (ATi X +XAi)X

−1
2 UTD < 0

which yields

DUX
−1
2 ATi X

1
2UTD +DUX

1
2AiX

−1
2 UTD < 0.

This can be rewritten as

DUX
−1
2 ATi X

1
2UTD−1D2+D2D−1UX

1
2AiX

−1
2 UTD < 0.

which, based on (12), is simplified to

ÃTi D
2 +D2Ãi < 0. (13)

Since D2 is a positive definite diagonal matrix, for any
r ≤ n the state matrices of the reduced model obtained
by balanced truncation of the individual subsystems, share
a CQLF. Consequently, the SLS rth order reduced model is
globally uniformly exponentially stable. �

Note that the first two conditions in Theorem 14 implies
the possibility of simultaneous balancing whereas the third
condition guarantees the existence of a CQLF for the reduced
order model.

VI. CONCLUSION

In this paper, a generalization of the balanced truncation
scheme is investigated for model reduction of subclasses of
hybrid systems, and in particular switched linear systems. A
straightforward formula to compute a balancing transforma-
tion for a single linear system is suggested. Clearly, making
multiple linear systems balanced in general is not possible
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with a single state space transformation. Hence, necessary
and sufficient conditions for simultaneous balancing of mul-
tiple linear systems are derived. These conditions do not
depend on the particular type of balancing, and are in terms
of commutativity of product of positive definite matrices.
The obtained results are applied to balanced truncation of
switched linear systems. Obviously, after truncation, each
individual subsystem of the reduced SLS model inherits
the property of internal stability, contractivity or passivity
depending on the type of balancing. the property of internal
stability. a desired property such as stability, contractivity, or
passivity. Furthermore, we have considered the case where
the stability of a given SLS is verified by the existence of
a CQLF. Consequently, the possibility for preserving this
property in the reduced order model is investigated. As we
observed, this is possible by imposing an additional con-
straint on those already obtained for simultaneous balancing.
It is, however, clear that stability of the reduced order SLS is
a more delicate issue. Starting from the assumption that the
original SLS has a common quadratic Lyapunov function, we
establish a condition under which global uniform exponential
stability of the SLS is preserved after balanced truncation.
Recall that the results reported in this paper are based on the
standing assumption that the eigenvalues of the product of the
gramians are distinct. However, it can be shown that similar
results can be obtained for the case where the eigenvalues
are not distinct. These results will be reported in a future
publication.
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