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Abstract— Employing the framework of integral input-to-
state stability (iISS), this paper studies the problem of verifying
stability of dynamical networks. The iISS we impose on the
subsystems encompasses a wider variety of nonlinearities than
input-to-state stability (ISS) which has been studied extensively
in the literature. To go beyond the ISS results, this paper
investigates a simultaneous small-gain criterion, a topological
separation criterion and a spectral radius formula in view of
necessity and suffiency for the stability of the iISS network,
and they are related to each other. This work aims at unifying
conceivable stability criteria into a single methodology in the
iISS formulation which includes ISS as a special case. For
illustration, this paper examines the dynamics of network
computing for resource utilization. Based on a fluid flow model,
the proposed iISS methodology provides us with qualitative and
quantitative information on the computing speed, the commu-
nication overhead, the number of nodes and the interconnection
structure for achieving successful workload distribution across
multiple computers.

I. INTRODUCTION

The control-theoretic study of large-scale dynamical sys-

tems (dynamical networks) has a long history [22], [20],

and the topic has received substantial attention in resent

years due to the increased complexity in size and integration

of our targets. The concept of input-to-state stability (ISS)

has accelerated the utilization of nonlinear gains in analysis

and design of interconnected systems [23]. In particular,

the tool referred to as the ISS small-gain theorem or the

nonlinear small-gain theorem has become popular [16], [26].

Recently, the ISS small-gain theorem has been extended to

large-scale systems allowing any number of subsystems and

any interconnection structure, and small-gain-type conditions

have become available in various forms[5], [6], [17], [18],

[19]. The notion of integral input-to-state stability (iISS)

accommodates systems which do not have finite ISS gain

[24]. Covering iISS systems in the small-gain framework had

been considered to be too hard until the recent breakthrough

[8], [14]. In fact, an attempt to tackle iISS networks was

made in [21], and it has demonstrated that a new technique

is required for guaranteeing stability of networks involving

non-ISS subsystems. Such a new technique developed in [14]

for two subsystems has been extended to iISS networks in

the cycle and the cactus graph structures [10]. The structural

assumption has been removed in the most recent result [15].

This paper continues this line of developments for iISS

systems in two directions. One is to pose several conditions
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similar to the ISS case and demonstrate their necessity or

the sufficiency for the stability of iISS networks. This paper

employs the dissipative characterization of subsystems to

unify the treatment of iISS and ISS networks. This general

formulation, however, has been hampering the extension of

the existing techniques focusing on ISS subsystems [4]. This

paper makes the full use of [14], [11], [15] as tools to

accomplish the goals of this paper. The other direction is

to relate these conditions to each other. It is stressed that

most of the problems solved in this paper have not been

answered even for ISS systems so far. For an illustration

by example, this paper analyzes the dynamics of network

computing which utilizes resources by workload distribution

across multiple computers. In a form of grid computing, the

distribution is supposed to be autonomous and require no

additional physical infrastructure. Everyone can participate

in the grid as long as protocol software is installed. Based

on a fluid flow model, it is demonstrated that the presented

theory gives qualitative and quantitative information about

the adequate balance between individual computing powers,

communication overhead and the size and structure of the

network to maintain the stability of the workload distribution.

Notation: Let R+ denote the interval [0,∞) in the space

of real numbers R. A continuous function ω : R+ → R+

is said to be positive definite and denoted by ω ∈ P if it

satisfies ω(0) = 0 and ω(s) > 0 holds for all s > 0. A

function ω ∈ P is said to be of class K and written as

ω ∈ K if it is strictly increasing. A function ω ∈ K is of

class K∞ if lims→∞ ω(s) = ∞. The symbol Id denotes the

identity map. For a positive definite function h : R+ → R+,

we write h ∈ O(> L) with a non-negative real number

L if there exists a positive real number K > L such that

lim sups→0+ h(s)/sK < ∞. We write h ∈ O(L) when K =
L. Note that O(L) ⊂ O(S) holds for L > S. The symbols ∨
and ∧ denote logical sum and logical product, respectively.

For vectors a, b ∈ R
n the relation a ≥ b is defined by ai ≥ bi

for all i = 1, . . . , n. The relations >,≤, < for vectors are

defined in the same manner. The negation of a ≥ b is denoted

by a 6≥ b and this means that there exists an i ∈ {1, . . . , n}
such that ai < bi. All the detailed proofs are omitted due to

the space limitation. A sketch and a key lemma are included

in the Appendix.

II. NETWORK OF iISS SYSTEMS

Consider the dynamical network described by

Σ : ẋ = f(x, r), (1)
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where f = [fT
1 , . . . , fT

n ]T : R
N → R

N . The state vector of

Σ is x = [xT
1 , . . . , xT

n ]T ∈ R
N , where N :=

∑n

i=1 Ni. The

vector r = [rT
1 , . . . , rT

n ]T ∈ R
K represents the disturbance,

where K :=
∑n

i=1 Ki. Define the following set:

Definition 1: Given αi ∈ K, σij ∈ K ∪ {0}, κi ∈ K∞,

and positive integers n, Ni, Ki for i, j = 1, 2, ..., n, j 6=
i, let S(n,N∗,K∗, α∗, σ∗,∗, κ∗) be the set of networks Σ
consisting of subsystems Σi, i=1, 2, ..., n, in the form of

ẋi = fi(x1, . . . , xn, ri), xi∈R
Ni , ri∈R

Ki , (2)

fi(0, ..., 0, 0) = 0, fi is locally Lipschitz (3)

for which there exist positive definite and radially unbounded

C1 functions Vi: R
Ni → R+ such that

∂Vi

∂xi

fi ≤ −αi(Vi(xi)) +

n
∑

j=1

j 6=i

σij(Vj(xj)) + κi(|ri|)
(4)

holds for all xj ∈ R
Nj and rj ∈ R

Kj , j = 1, 2, ..., n.

The Lipschitzness imposed on fi is only for guaranteeing

the existence of a unique maximal solution of the network Σ.

The network Σ is said to be 0-GAS if the equilibrium x = 0
is globally asymptotically stable for r(t) ≡ 0. The inequality

(4) is called a dissipation inequality. For brevity, we write S
instead of S(n,N∗,K∗, α∗, σ∗,∗, κ∗) in the rest of this paper.

All the developments in this paper hold true even if Ni and

Ki are not given a priori in defining S. Indeed, stability

criteria presented in this paper are independent of Ni’s and

Ki’s. The purpose of allowing Ni and Ki to be prescribed

in defining S is to demonstrate that the stability criteria are

tight by proving their necessity for such a narrowly specified

set S.

The dissipation inequality (4) implies that each subsystem

Σi with the inputs xj , j 6= i and ri is iISS, and that Vi is an

iISS Lyapunov function for the disconnected subsystem Σi

[3]. Under a stronger assumption αi ∈ K∞, the subsystem

Σi is guaranteed to be ISS, and the function Vi is an ISS

Lyapunov function [25]. By definition [24], an ISS system

is iISS. An iISS system is 0-GAS. Note that the function

Vi is qualified as an iISS Lyapunov function even when

αi is merely positive definite [3]. Nevertheless, this paper

employs αi ∈ K to allow subsystems Σi to form loops. It is

known that a loop (cycle) of subsystems Σi defined with the

dissipation inequality (4) can be guaranteed to be 0-GAS

only if αi ∈ K holds for all participating subsystems [9].

In this paper, we are interested in investigating criteria for

0-GAS, iISS and ISS of the network Σ ∈ S. In order to

demonstrate necessity of the stability criteria within the set

S, we assume the following throughout this paper:

Assumption 1: αi ∈ O(1) and σij ∈ O(> 0) ∪ {0} hold

for i, j = 1, 2, ..., n, j 6= i,
We define a directed graph G associated with the network

Σ using the vertex set V(G) and the arc set A(G) as follows:

Elements of V(G) are subsystems Σi, i = 1, 2, ..., n. Each

element of A(G) is an ordered pair (i, j) which is directed

away from the j-th vertex and directed toward the i-th vertex.

The pair (i, j) is an element of A(G) if and only if σi,j 6= 0.

Let C(G) denote the set of all directed cycles contained

in the directed graph G. Let P(G) denote the set of all

directed paths contained in the directed graph G. Given a

directed path or a directed cycle U of length k, we employ

the following notation:

|U | = k, U = (u(1), u(2), ..., u(k), u(k + 1)),

where u(i)’s listed in the above are “all” the vertices

comprising U and they are listed in the “reversed” order

of appearance. If U is a directed cycle, we have u(1) =
u(k + 1). The starting vertex of the directed path U is

u(k + 1), and the ending vertex is u(1). Let I(G) denote

the set of all isolated vertices contained in the directed

graph G, and we write |U | = 0 for U ∈ I(G). Define

B(G) = P(G) ∪ I(G). In the rest of this paper, the term

“directed” is omitted in referring to graphs.

III. TOPOLOGICAL SEPARATION: NECESSITY

Define a mapping M0 : R
n
+ → R

n by

M0(s) := −A(s) + Γ(s) (5)

where A,Γ: s ∈ R
n
+ 7→ z ∈ R

n
+ are

z = A(s) = [α1(s1), α2(s2), . . . , αn(sn)]
T

,

z = Γ(s)=

[

∑

j 6=1

σ1j(sj),
∑

j 6=2

σ2j(sj), . . . ,
∑

j 6=n

σn,j(sj)

]T

.

The following can be proved.

Theorem 1: If the network Σ is 0-GAS for all Σ ∈ S, it

holds that

M0(s) 6≥ 0, ∀s ∈ R
n
+ \ {0}. (6)

In this paper, the condition (6) is referred to as a topo-

logical separation condition in view of its geometric inter-

pretation given in [21], [13]. Theorems 1 and 2 of [11] are

straightforward consequences of the above Theorem 1 by

taking limiting values toward si → ∞, i.e.,

Γ(∞) 6> A(∞), (7)

where A(∞) := limτ→∞ A(s)|s1=...=sn=τ and Γ(∞) :=
limτ→∞ Γ(s)|s1=...=sn=τ . It is not difficult to see that the

property (6) is necessary for the comparison system to be 0-

GAS without making any connection to the original network

defined with the vectors xi ∈ R
ni , i = 1, 2, ..., n [21]. This

paper not only associates the necessity with networks defined

on the original space as in Theorem 1, but also establishes

the necessity in the presence of inputs (Theorems 4 and 5).

Define M0〈i1, i2, ..., im〉 corresponding to the induced

subgraph of Σ consisting of vertices {i1, i2, ..., im} by

M0〈i1, i2, ..., im〉(ŝ) =














−αi1,i1(ŝi1) +
∑

k∈{i1,i2,...,im}\{i1}

σi1,k(ŝk)

...

−αim,im
(ŝim

) +
∑

k∈{i1,i2,...,im}\{im}

σim,k(ŝk)















,
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where 1 ≤ m ≤ n and ŝ = [ŝl1 , ŝl2 , ..., ŝlm ]T ∈ R
m
+ . The

following lemma demonstrates that the necessary condition

(6) for the 0-GAS holds true even if the network is decom-

posed into several blocks.

Theorem 2: If (6) is satisfied, then

M0〈i1, i2, ..., im〉(ŝ) 6≥ 0, ∀ŝ ∈ R
m
+ \ {0}. (8)

holds for any integer m ∈ {2, 3, ..., n − 1} and any non-

repeated sequence {i1, i2, ..., im} in the set {1, 2, ..., n}.

This theorem answers the question of how many non-ISS

subsystems are allowed in a stable network as follows:

Theorem 3: Suppose that the network Σ is 0-GAS for all

Σ ∈ S. If there exists i ∈ {1, 2, ..., n} such that

lim
s→∞

αi(s) < min
k∈{1,2,...,n}\{i}

lim
s→∞

σik(s) (9)

is satisfied, then either lims→∞ αj(s) = ∞ or

lim
s→∞

αj(s) ≥ min
k∈{1,2,...,n}\{j}

lim
s→∞

σjk(s) (10)

holds for each j ∈ {1, 2, ..., n} \ {i}.

This theorem implies that the number of subsystems which

are not ISS with respect to any single coupling channel

cannot be more than one. Notice that (10) holds if there

exists a subsystem Σk which does not feed xk into Σj , i.e.,

σjk = 0. Hence, for sets S which do not form complete

graphs, the network Σ can be 0-GAS for all Σ ∈ S even if

we have more than one subsystem which is not ISS respect to

each coupling channel. Such an example is a cycle network

given in Remark 1 of [11].

We next sharpen the necessary condition given in Theorem

3 by considering stability with respect to external signals.

Since we have assumed κ1, .., κn ∈ K∞ which allows

unlimited influence of the external signal r in magnitude

on individual subsystems, the following holds true:

Theorem 4: If the network Σ is ISS with respect to input

r for all Σ ∈ S, then

lim
s→∞

αi(s) = ∞, i = 1, 2, ..., n. (11)

Using the mappings M,D : R
n
+ → R

n in the form of

M(s) := −D−1 ◦ A(s) + Γ(s) (12)

D(s) :=











s1 + β1(s1)
s2 + β2(s2)

...

sn + βn(sn)











(13)

Theorem 1 can be generalized to address the stability with

respect to the external input.

Theorem 5: If the network Σ is ISS with respect to input

r for all Σ ∈ S, there exist k ∈ {1, 2, ..., n} and βk ∈ K∞,

βj ∈ P , j ∈ {1, 2, ..., n} \ {k} such that

M(s) 6> 0, ∀s ∈ R
n
+ (14)

Id + βi ∈ K∞, i = 1, 2, ..., n. (15)

Under the assumption that all subsystems are ISS defined

with αi ∈ K∞ and σij ∈ K∞ ∪ {0}, and that the graph G

is strongly connected, it was proved that the network Σ is

0-GAS if (6) holds [21]. Under the same assumption, the

network Σ is guaranteed to be ISS if there exist βi ∈ K∞,

i = 1, 2, ..., n, such that (14) holds [6]. Except for n = 2 in

[12], no results allowing for non-ISS subsystems in such a

form of sufficient stability criteria have been available. Very

recently a sufficient condition [15] has been derived for the

stability of networks allowing non-ISS subsystems in a form

which differs from the topological separation (6) and (14).

This is reviewed in the next section.

Remark 1: In view of the existence of βi, i = 1, 2, ..., n,

the condition (14) is equivalent to

M(s) 6≥ 0, ∀s ∈ R
n
+ \ {0}. (16)

Obviously, the fulfillment of (16) implies (14) for the same

βi’s. The converse holds if βi’s are divided by two. Notice

that, due to s+0.5βi(s) = 0.5(s+βi(s))+0.5s, the property

Id + βi ∈ K∞ yields Id + 0.5βi ∈ K∞.

Remark 2: If the network Σ forms a cycle, it is verified

that the statement of Theorem 5 can be strengthen with βi ∈
K∞, i = 1, 2, ..., n. In fact, if (14) and (15) are satisfied by

βk∈K∞ and βi∈P , i 6= k, then we can always pick another

set of βi∈K∞ , i=1, 2, ..., n, achieving (14) and (15).

IV. SIMULTANEOUS SMALL-GAIN: SUFFICIENCY

We can always choose JU , di, di,j ∈ R+ satisfying

1 = di

∑

U∈{W∈C(G)∪B(G):V(W )∋i}

JU , ∀i ∈ V(G) (17)

1 = di,j

∑

U∈{W∈C(G)∪B(G):A(W )∋(i,j)}

JU , ∀(i, j) ∈ A(G).

(18)

The set of non-zero JU ’s fulfilling (17) and (18) defines

a covering of the graph G by cycles, paths and isolated

vertices. A subgraph U is adopted to cover a part of G if and

only if JU 6= 0. Multiple subgraphs U adopted can overlap

each other. Although the set of subgraphs U covering G
is not unique, there always exists such a set of subgraphs.

For arbitrary real numbers JU > 0 chosen for that set of

subgraphs, there always exist di, di,j > 0 fulfilling (17) and

(18). We define α̂i ∈ K and σ̂ij ∈ K \ {0} as

α̂i(s) = diαi(s) (19)

σ̂ij(s) = di,jσij(s). (20)

using the weights di, di,j >0 of the covering. We employ

η̂i(s) =

{

α̂−1
i (s) if lim

τ→∞
α̂i(τ) > s

∞ otherwise
(21)

which is a slightly abused notation of inverse operation

on α̂i. Its benefit is discussed in [11] and [15]. The next

theorem can be proved as in [15] through the construction

of a Lyapunov function for Σ although this paper employs

a slightly different formulation of (17), (18). (19) and (20).

Theorem 6: Assume that
{

lim
s→∞

αj(s)=∞ ∨ lim
s→∞

n
∑

i=1

σi,j(s)<∞

}

,

j =1, 2, ..., n (22)
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holds. If there exist βi ∈ K∞ and JU , di, di,j ∈ R+ for

U ∈ C(G) ∪ B(G) and i, j = 1, 2, ..., n fulfilling (17) and

(18) such that

η̂w(1)◦ (Id + βw(1)) ◦ σ̂w(1),w(2)◦

η̂w(2)◦ (Id + βw(2)) ◦ σ̂w(2),w(3) ◦ · · · ◦

η̂w(k)◦ (Id + βw(k)) ◦ σ̂w(k),w(k+1)(s) ≤ s, ∀s∈R+

(23)

holds for all cycles W ∈ C(G), where k = |W |, then the

network Σ is iISS with respect to input r for all Σ ∈ S.

Furthermore, it is ISS if αi ∈ K∞, i = 1, 2, ..., n.

The inequality (23) is referred to as a small-gain condition.

Note that (22) is implied by (11) which is a necessary

condition for guaranteeing the network Σ to be ISS for all

Σ ∈ S. In the case of n = 2, there is only a single element

U in C(G), and the properties (17) and (18) hold if

di = di,j =
1

JU

> 0, ∀(i, j) ∈ A(U).

Hence, we can easily verify that (23) is equivalent to (14). In

the same way, this remark holds true for general n ≥ 2 if the

network is a cycle. No answers to the equivalence problem

for networks of general structure have been known. The next

section investigates the problem.

Remark 3: The condition (23) cannot be replaced by

η̂w(1)◦ σ̂w(1),w(2)◦

η̂w(2)◦ σ̂w(2),w(3) ◦ · · · ◦

η̂w(k)◦ σ̂w(k),w(k+1)(s) < s, ∀s∈R+ \ {0} (24)

even for 0-GAS of Σ in general. In the case where η̂w(i)◦
σ̂w(i),w(i+1) is linear, i.e., α̂−1

w(i)◦ σ̂w(i),w(i+1) is linear for all

W ∈C(G) and i, there are no differences between (23) and

(24) in terms of the existence of βi’s.

Remark 4: Based on ISS gains of subsystems, the cyclic

formulation of small-gain conditions which do not involve

the decomposition parameters di and dij is developed in

[5], [6], [17], [18], [19]. Their criteria are applicable only

to ISS subsystems [12]. In contrast, the criteria (23) and

(24) starting with (4) and the graph decomposition (19)-(20)

allow subsystems to be non-ISS.

V. SPECTRAL RADIUS: CONNECTION

This section deals with supply rates given in the form of

αi(s) = aigi(s), i ∈ {1, 2, ..., n} (25)

σi,j(s) = bi,jgj(s), i 6= j ∈ {1, 2, ..., n} (26)

where ai > 0 and bij ≥ 0, i, j = 1, . . . , n are real numbers

and bj,j = 0. These functions αi and σi,j fulfill (22) when

gi ∈ K. In the case of merely positive definite gi’s, assuming

the existence of lims→∞ gi(s) ensures (22). In contrast to

the previous sections, this section does not always assume

gi ∈ K corresponding to αi ∈ K and σi,j ∈ K ∪ {0}. Such

an assumption is stated when needed in this section. Define

the following matrices on R
n×n
+ :

Ã = diag[a1, a2, ..., an], Γ̃ = [bi,j ]i,j=1,2,...,n. (27)

Let ρ(·) denotes the spectral radius of a square matrix.

Combining the developments in Section III and a result in

[4] via simple computation, we obtain the following:

Theorem 7: Suppose that there exist positive definite

functions gi and constants ai > 0 and bij ≥ 0, i, j =
1, . . . , n such that (25) and (26) hold. Then the following

are equivalent:

i) The property (6) holds.

ii) There exist βi ∈ K∞, i = 1, 2, ..., n, such that (14)

holds.

iii) ρ(Ã−1Γ̃) < 1 holds.

iv) The network Σ is iISS with respect to input r for all

Σ ∈ S.

Furthermore, Item iv) is replaced by ISS if gi ∈ K∞ for

i = 1, 2, ..., n.

The following lemma clarifies that the loop gains for (25)

and (26) can be evaluated in the form of linear maps.

Lemma 1: Suppose that there exist gi ∈ K and constants

ai > 0 and bij ≥ 0, i, j = 1, . . . , n such that (25) and (26)

hold. Let JU , di, di,j ∈ R+ be parameters satisfying (17)

and (18) for U ∈ C(G) ∪ B(G) and i, j = 1, 2, ..., n. Pick a

cycle W ∈ C(G) arbitrarily. Then there exist βw(j) ∈ K∞,

j = 1, 2, ..., |W |, such that (23) holds if and only if

LW :=

|W |
∏

i=1

dw(i),w(i+1)bw(i),w(i+1)

dw(i)aw(i)
< 1 (28)

Moreover, the above is equivalent to (24).

It is stressed that dw(i) > 0 holds in (28) since w(i) ∈
V(G). For general networks, the small-gain property for all

cycles implies the topological separation due to Theorem

6 and Theorem 1 (or 5). The next lemma establishes its

converse for the special supply rates (25)-(26).

Lemma 2: Suppose that there exist gi ∈ K and constants

ai > 0 and bij ≥ 0, i, j = 1, . . . , n, such that (25) and (26)

hold. If (6) is satisfied, then there exist JU , di, di,j ∈ R+

for U ∈ C(G)∪B(G) and i, j = 1, 2, ..., n fulfilling (17) and

(18) such that (28) holds for all cycles W ∈C(G).
Combining Lemma 2 and Theorem 7 yields the main result

of this section.

Theorem 8: Suppose that there exist gi ∈ K and constants

ai > 0 and bij ≥ 0, i, j = 1, . . . , n, such that (25) and (26)

hold. Then each of Items i), ii), iii) and iv) in Theorem 7

and the following are equivalent to each other:

v) There exist JU , di, di,j ∈ R+ for U ∈ C(G) ∪ B(G)
and i, j = 1, 2, ..., n fulfilling (17) and (18) such that

(28) holds for all cycles W ∈C(G).

Furthermore, Item iv) is replaced by ISS if gi ∈ K∞ for

i = 1, 2, ..., n.

Without resorting to (25) and (26), the equivalence be-

tween Item i) and Item v) can be verified for cycle networks

of n ≥ 2 by using the results in [14], [12], [11], [15]. For

general networks, the equivalence in the form of Theorem 8

has not been established without (25) and (26).

Remark 5: Unless we assume αi ∈ K, the inverse α−1
i (s)

is not guaranteed to exist even for small value of s. Thus,

the small-gain condition (23) cannot be posed. Indeed, we

6075



have assumed g ∈ K in Lemmas 1, 2 and Theorem 8. The

increasing property of αi is crucial for the sufficiency of

the topological separation conditions (6) and (14) as well.

It is known that cascades consisting of non-ISS subsystems

can fail to be 0-GAS unless αi ∈ K [9]. Note that a

cascade (a path graph) always satisfies (6) and (14) without

αi ∈ K. Thus, the topological separation conditions cannot

be sufficient for 0-GAS of the network unless we impose

more than the positive definiteness on αi. The pair (25) and

(26) is an example of a constraint ensuring that (6) becomes

sufficient for the 0-GAS.

VI. AN ILLUSTRATIVE EXAMPLE: NETWORK

COMPUTING

Network computing distributes workload across multiple

computers for resource utilization. In the spirit of grid

computing, we consider autonomous load distribution which

requires no additional physical infrastructure but little over-

head incurred by communication interfaces on individual

computers. To analyzes it in a macroscopic scale, let xi(t) ∈
R+ denote the queue of tasks to be processed at the i-th
node. Consider the following fluid flow model [7], [1], [27]:

ẋi = −ai(xi) −
∑

j 6=i

hij(xi) +
∑

j 6=i

hji(xj) + ri, (29)

i = 1, 2, ..., n,

where ai ∈ K \ K∞ denotes the processing speed of the

i-th node and ri(t) ∈ R+ is the queue of tasks requested

at the i-th node. A reasonable choice of ai is a step-like

function, where αi(∞) := lims→∞ αi(s) is the computing

power. The functions hij ∈ K∪{0}\K∞, i 6= j, decide how

much percentage of tasks at the i-th node is split between the

other nodes, while the function hji ∈ K∪{0} \K∞ denotes

the amount of workload assigned by the j-th node. Due to

the communication overhead for distribution, we have

hij(s) < hij(s), ∀s ∈ (0,∞) (30)

lim
s→∞

hij(s) < lim
s→∞

hij(s) (31)

if hij(s) 6≡ 0. The upper bound of hij and hij corresponds

to the link capacity of the communication or the intentional

upper bound of the load distribution. The solutions x(t) of

(29) for x(0) ∈ R
n
+ remain in R

n
+. The situation of x = 0

indicates that all tasks have been processed. The “little”

overhead (30) puts some energies into the network and can

lead to an unstable network. No such issue arises if the

computers are decoupled, i.e., hij = hij = 0 for all i, j.

The iISS small-gain methodology developed in this paper

provides us with the following observations:

i) If the maximum distribution rates are made large

independently of the computing power, the number of

nodes and the interconnection structure, the network

becomes unstable. · · · Theorems 1 and 3

ii) Queues grow unboundedly if requested tasks are per-

sistently too large. · · · Theorem 4

iii) The larger the number of nodes is, the faster the

processing speed of individual nodes need to be for

reducing the queue lengths. · · · Theorems 5

iv) Processing speed of one node can be slow if that of

other nodes is sufficiently fast. · · · Theorem 6

The iISS property of (29) with respect to the total load r
implies that the queues converge to zero if r = 0, and that,

in the presence of r, the queue lengths are finite for finite

time (forward complete). In addition, the queue lengths are

bounded if the total load energy is bounded (Bounded Energy

Frequently Bounded State) [2]. The theory developed in this

paper applies to

αi(s) = ai(xi) +
∑

j 6=i

hij(xi), σij(s) = hji(s).

Notice that (29) is a dissipation inequality of the subsystem

Σi with a storage function Vi = xi since xi(t) is guaranteed

to be non-negative. It is stressed that the individual subsys-

tems Σi are not guaranteed to be ISS although they are iISS.

Consider the homogenous distribution defined as

hji = h, hji = kh, ∀i 6= j (32)

for a constant k > 1 and a function h ∈ K \ K∞. Then the

conditions (14) and (23) are satisfied if

n
∑

i=1

ai(si) > (k − 1)

n
∑

i=1

∑

j 6=i

h(sj), ∀s ∈ (0,∞]n (33)

is met. Note that the fulfillment of ai(∞) > (k − 1)(n −
1)h(∞), i = 1, 2, ..., n, is neither necessary nor sufficient

either for 0-GAS or for iISS of the network. The inequality

(33) shows that the stability is achievable by decreasing

load sharing and increasing processing speed, or by reducing

the overhead and the number of nodes. The iISS small-

gain approach not only justifies the intuitive constraint (33),

but also suggests that achieving (33) is not necessary. The

condition (14) (or (23)) allows a small ai to be compensated

by larger aj’s. This philosophy also applies to the general

case of heterogeneous distribution and overhead which do

not meet the simplifying assumption (32).

Figures 1 and 2 show numerical simulations for

ai(s)=
Ais

0.01 + s
, hij =

4.5s

0.2 + s
, hij(s)=1.1hij(s)

xi(0) = 0.5, i = 1, 2, ..., n

ri(t)=

{

1.2, i = 1, 2, ..., n, 0 ≤ t < 4
0, i = 1, 2, ..., n, 4 ≤ t

.

The set of Ai’s used in Fig.2(a) yields −A(s) +
Γ(s) = [0.258, 0.248, 0.504, 0.056, 0.185, 0.096]T for s =
[1.1, 1.5, 2, 5, 6, 9]T , so that (6) and (14) are violated. Indeed,

the queue lengths plotted in Fig.2(a) grow unboundedly. In

contrast, the parameters yielding the bounded convergent

response in Fig.2(b) fulfill (14) although the simplest suf-

ficient condition (33) is not satisfied. Due to s/(0.01 + s) ≥
s/(0.2 + s), Theorem 8 establishes that ρ(Ã−1Γ̃) < 1 guar-

antees the iISS of the network, where Ã = diag[αi(∞)] ∈
R

n×n
+ and Γ̃ = [σij(∞)] ∈ R

n×n
+ . The spectral radius

computed for Fig.2(b) is 0.985. Figure 3 depicts the response
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Fig. 1. Queue length at n = 4 nodes.
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(a) With Ai’s violating the stability condition
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(b) With Ai’s satisfying the stability condition

Fig. 2. Queue length at n = 6 nodes.

for connection and disconnection of nodes with

ri(t)=







1.70, i = 1, 5, 0 ≤ t < 5
1.23, i = 2, 3, 4, 6, 0 ≤ t < 5
0, i = 1, 2, ..., 6, 5 ≤ t

.

The response exhibits a typical iISS property guaranteed.

Remark 6: If the participation in the computing power

sharing is completely free, the iISS of the network can be

ensured by applying the small-gain condition to the complete

graph. The network remains iISS even if some nodes are dis-

connected. Note that disconnection always implies decrease

(to zero) of loop gains of cycles.

Remark 7: The model (29) is defined with a scalar non-

negative xi(t). The necessity of the small-gain criterion for

such a network can be proved without invoking technique of

constructing artificial destabilizers via Lemma 1 in [11] .

VII. CONCLUSIONS

In this paper, stability and robustness of nonlinear dynami-

cal networks in arbitrary interconnection graph structure have
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Fig. 3. Queue length at n = 6 nodes:

Connecting A5 = 3.5 and A6 = 2.5 at t = 1;
Disconnecting A1 = 4.0 and A2 = 3.0 at t = 4.

been investigated. This paper allows subsystems to be iISS

which is much more general than ISS which has been studied

extensively in the literature. Although the dissipative charac-

terization of subsystems can unify the treatment of iISS and

ISS properties, the general formulation has been hampering

the extension of the existing ISS results [4], [21]. This paper

has been focused on the validity of the topological separation,

the simultaneous small-gain criterion and the spectral radius

condition in the iISS setup. Some relationships between them

have been established. The equivalence between those con-

ditions has been demonstrated for matched supply rates. The

author is currently investigating the possibility of extending

the equivalence to the case of general supply rates.

This paper has illustrated the usefulness of the proposed

methodology for iISS networks through the analysis of a

network computing dynamics. Due to the limitation of com-

puting power, subsystems can never be ISS with respect to

arbitrarily large task request. Based on a fluid flow model, the

stability conditions give qualitative and quantitative informa-

tion on the computing speed, the communication overhead,

the number of nodes and the interconnection structure for

maintaining the stability of the load distribution.
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APPENDIX

A. Sketch of the proof of Theorem 5

Theorem 4 yields (11). In order to prove the claim by

contradiction, assume that (14) is violated whatever βk ∈
K∞ we select for any choice of k ∈ {1, 2, ..., n}. Since

ISS implies 0-GAS, Theorem 1 implies M0(ℓ) 6≥ 0 for all

ℓ ∈ R
n
+ \ {0}, i.e, (6). This leads to

lim
s→∞

αi(s) = lim
s→∞

∑

j 6=i

σij(s) = ∞, i = 1, 2, ..., n. (34)

Pick l ∈ (0,∞). there exist constants Ri ∈ [0,∞), i =
1, 2, ..., n, which is independent of l1, such that

∃l2, l3, ..., ln ∈ (0,∞) s.t.






αi(li) ≤
∑

j 6=i

σij(lj) + Ri, , i = 1, 2, ..., n







6077



holds for each l1∈ [l,∞). Thus, for each l1∈ [l,∞) we have

αi(li) ≤
∑

j 6=i

σij(lj) + κi(|ri|), i = 1, 2, ..., n (35)

for the constant signal |ri(t)| = κ−1
i (Ri) which is indepen-

dent of l1. Lemma 1 in [11] guarantees the existence of a

time-invariant system Σ ∈ S and positive definite radially

unbounded functions Vi, i = 1, 2, ..., n, such that

αi(Vi(xi)) ≤
∑

j 6=i

σij(Vj(xj)) + κi(|ri|) ⇒
∂Vi

∂xi

fi ≥ 0

is achieved as long as Vi(xi) ≥ l, i = 1, 2, ..., n. By virtue

of (35), the set

U(ℓ) = {x∈R
N : Vi(xi)≥ li, i=1, 2, ..., n} (36)

defined with ℓ = [l1, l2, ..., ln]T is forward invariant for

the selected Σ ∈ S with the fixed |ri(t)| = κ−1
i (Ri),

i = 1, 2, ..., n, no matter how large lk is. Therefore, the

network is not ISS with respect to input r.

B. Sketch of the proof of Lemma 2

Lemma 3: Assume that there exist gi ∈ K and constants

ai > 0 and bij ≥ 0, i, j = 1, . . . , n, such that (25) and (26)

are satisfied, and that the graph G is strongly connected. If,

for each choice of JU , di, di,j ∈ R+ for U ∈ C(G) ∪ B(G)
and i, j = 1, 2, ..., n fulfilling (17) and (18), there exists a

cycle W ∈C(G) such that

|W |
∏

i=1

dw(i),w(i+1)bw(i),w(i+1)

dw(i)aw(i)
≥ 1 (37)

holds, then there exists ℓ ∈ R
n
+ \ {0} such that M0(ℓ) ≥ 0

holds.

The above proves Lemma 2 by contradiction when G is

strongly connected. If the graph G is not strongly connected,

then the graph can be decomposed into strongly connected

subgraphs which are connected so that no cycles of the

subgraphs are formed. In other words, the adjacency matrix

of G can be brought in upper block triangular form via

a permutation of the vertices. Decreasing JU of the arcs

connecting the strongly connected subgraphs to which the

argument of Lemma 3 is applicable, we can prove Lemma

2 by contradiction without assuming the strong connectivity.

As regards Lemma 3, altering the weights JU in the covering

of the graph G needs to investigated. Addressing the capa-

bility and limitation of such a modification of the weights

appropriately, we can arrive at Lemma 3.
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