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Abstract— We present a method to improve the
performance of nonlinear model predictive control
(NMPC) by compromising between the time delay
caused by a computational algorithm and the accu-
racy of the resulting control law in order to achieve
best possible closed-loop performance. The main fea-
ture of the method is an a-priori error approximation
derived for the neighboring-extremal update (NEU)
algorithm, a fast NMPC algorithm presented recently
by the authors. The error estimate provides the de-
viation of the current control trajectory from the
(unknown) optimal control trajectory. The a-priori
error estimator is incorporated in an on-line decision
making process which simultaneously decides on the
quality of the computed controls and the computa-
tional delay. In particular, the optimal number of
QP iterations in an SQP strategy is determined on
each horizon prior to the computation of the current
control move.

I. Introduction

Nonlinear model-predictive control (NMPC) is a con-
trol technique where nonlinear optimal control problems
are repeatedly solved on-line on a moving horizon. If the
optimal control problem relies on a large-scale system
model or has to deal with very short sampling times, a
compromise is inevitable to trade off solution accuracy
and computational delay, which refers to the delayed
availability of the updated controls. If the solution ac-
curacy of the updated controls is to be improved for
better control performance, the solution time of the opti-
mal control problem increases. However, long computing
times result in the delayed availability of the updated
controls and thus decrease control performance because
outdated controls are applied as long as the control
update is not available. Thus, a criterion is required
which addresses this trade-off.
If the computational delay τd is ignored during controller
design the closed-loop control performance can decrease
substantially and the stability of the system is endan-
gered [1]. Consequently, any computational algorithm ap-
plied should explicitly consider computational delay even
if it is very efficient and hence diminishes the problem
in many cases. To this end, Findeisen and Allgöwer [1]
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suggested to account for the delay of updated controls
by solving the optimal control problem for the current
sampling time starting at a predicted initial state at the
end of an estimated computing time. Because the control
move of the previous horizon is applied during computing
time, the predicted initial state can be determined by a
forward simulation. In this way, control performance is
improved and closed-loop stability is guaranteed under
well defined conditions for a wider class of problems than
those considered by Chen et. al. [2]. A more involved
strategy reported in [3] explicitly accounts for the trade-
off between solution accuracy and computing time in
a framework monitoring the optimal control updating
time.
In order to safely ignore the computational delay τd in
NMPC design, the ratio η = τd/∆t needs to be much
smaller than 1, i.e. the sampling time ∆t, reflecting
the system’s dominant time constant, has to be much
larger than the computational delay τd. In recent work,
efficient computational schemes have been developed
that aim to decrease η to values close to zero such
that τd can be neglected even for systems with fast
dynamics. These efficient schemes reduce computing time
by either applying suboptimal solutions without iterating
the nonlinear optimization problem to convergence (e.g.
[4], [5]) or by calculating fast sensitivity-based updates
as a function of parametric uncertainties [6]. For both
strategies, good control performance is often achieved,
particularly in case of process disturbances of small mag-
nitude and for mildly nonlinear systems. However, since
a loss in control performance may be observed for large
disturbances (e.g. [7]), different extensions have been
developed. For example, Zavala and Biegler [8] determine
a rigorous solution for a predicted future plant state in
each sampling time and compute a fast sensitivity-based
update once current state measurements are available.
However, if the rigorous solution cannot be determined
during ∆t for a very large-scale problem, the method
might fail. In this case, extensions are still applicable
which do not determine a rigorous solution but improve
the control move of the fast schemes by additional QP
iterations in an SQP strategy. In the context of linear
MPC, Way and Boyd [9] observe good control quality
after few iterations and heuristically set an iteration limit
(3 - 5 iterations). In our own work on NMPC ([7], [10]),
additional QP iterations are conducted until prespecified
feasibility and optimality conditions are fulfilled. These
extensions do not address the trade-off between the
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number of QP iterations and the computational delay
though the condition η << 1 might not hold.
Motivated by the deterioration of control performance
due to computational delay and the shortcomings of
available methods, we present an extended version of
the neighboring-extremal update (NEU) algorithm [7],
particularly suited for problems with non-negligible η,
which explicitly addresses the trade-off between solution
accuracy and computational delay. In this SQP-type
algorithm as well as in the original NEU algorithm,
fast sensitivity-based updates, the so-called NEU, are
computed almost instantaneously and are directly ap-
plied to the process. In contrast to the original NEU
algorithm, which does not account for this trade-off, the
extended NEU algorithm determines the optimal number
of additional QP iterations in a fast pre-optimization
step.
The paper is structured as follows. In Section II, the
receding horizon formulation of the NMPC problem is
outlined and the original NEU algorithm is presented
which provides an on-line approximate solution to the
NMPC problem. Furthermore, an explicit expression is
derived for the NEU in order to allow a straightforward
evaluation of the error induced in the NEU algorithm. In
Section III, an a-priori estimate of the deviation between
the NEU and the (unknown) optimal control move is
provided based on the explicit expression derived in Sec-
tion II. The estimate is then used in the extended NEU
algorithm to decide whether additional QP iterations
improve the control performance. The paper concludes
with an illustrative simulated case study to control a non-
isothermal continuous stirred tank reactor (CSTR) with
a Van de Vusse reaction in Section IV.

II. NEU algorithm for fast NMPC

A. NMPC problem formulation

If we assume that the process model can be described
by a DAE system of index one, the continuous-time
receding horizon formulation of the control problem can
be stated as

min
uj(t),xj(t)

Φ̂ (xj (t) , uj (t)) (1a)

s.t. 0 = f(ẋj(t), xj(t), uj(t), Pj), (1b)

x(t0j ) = x̂0
j , (1c)

0 ≥ h(xj(t), uj(t), Pj), (1d)

0 ≥ e(xj(t
f
j ), uj(t

f
j ), Pj), (1e)

t ∈ Ij := [t0j , t
f
j ], t

f
j := t0j +K∆t, K ∈ N,

(1f)

t0j := t0j−1 + ∆t , (1g)

where uj : Ij → R
nu and xj : Ij → R

nx represent
the control trajectory and the state trajectory on time
horizon Ij , respectively. Pj ∈ R

np is a parameter vector.
The mapping Φ̂(·) represents the objective function of
the optimal control problem which is subject to the

process model (1b) with consistent initial conditions (1c),
input or path constraints (1d) and end point constraints
(1e). At each sampling instant t0j , the optimal control
problem (1) is solved on the horizon Ij with the number
of samples K and the sampling time ∆t. We assume that
a feasible solution exists for the current parameter vector
Pj at each sampling instant t0j . For the sake of simplic-
ity, we consider state feedback, though an extension to
output feedback via state estimation is straightforward.
One of the computationally efficient schemes developed
recently to solve (1) is the NEU algorithm which is
outlined briefly in the next section since this NMPC
algorithm is the basis for the extension in Section III.

B. Neighboring-extremal update algorithm

First, each control uij(t), i = 1...nu, is parameterized

via uij(t) ≈
∑K
l=1 (z(i+nu(l−1)))j(Ωl)j(t) where zj ∈ R

nz

is the parameterized control vector of dimension nz =
nu · K and (Ωl)j(t) represents a piecewise constant B-
spline basis function. Since (1) does not comprise any
disturbances, and since we consider state feedback and
assume that there is no model-plant mismatch within
one sampling time, the optimal control problems (1) of
successive horizons differ by parameters pj = Pj . In
general, pj is an uncertainty vector which also comprises
parameterized process disturbances and the initial con-
ditions resulting from state estimation [7]. In this way,
the optimal control problem (1) is transcribed into the
nonlinear programming problem

min
zj

Φ(zj , pj)

s.t. gk(zj , pj) = 0 ∀ k ∈ E,

gk(zj , pj) ≤ 0 ∀ k ∈ I,

(2)

where gk, k ∈ E, are the equality constraints and gk, k ∈
I, are the inequality constraints resulting after control
parameterization from (1d) and (1e), respectively. For
given pj , (2) is a nonlinear program which has to be
solved on every horizon Ij using, for example, an SQP
strategy. The objective function, the constraints and
their gradients with respect to zj and pj are computed by
simultaneous integration of the model (1b) with initial
conditions (1c) and the associated sensitivity equation
system (see, e.g., [11] for an efficient algorithm).
Assumption 1. Φ(·) and g(·) = {gi(·)|i ∈ (E ∪ I)} are
twice continuously differentiable functions and the linear
independence constraint qualification (LICQ) [12, p. 328]
as well as the strong second-order sufficient conditions
(SSC) of optimality [12, p. 345] are fulfilled.
Under Assumption 1, the following quadratic program
provides a fast NEU zNEUj+1 , which approximates the
solution of (2) in the presence of perturbations ∆pj =
pj+1 − pj [10]:

min
∆zj

φj+1
def
=

1

2
∆zTj Lzz,j∆zj + ∆pTj Lpz,j∆zj + ΦTz∆zj

s.t. gj + gz,j∆zj + gp,j∆pj ≤ 0, (3)
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where ∆zj = zNEUj+1 − zj refers to the control update.
L(zj , pj , λj) = Φ(zj , pj) + λTj g(zj , pj) denotes the La-
grange function and λj ∈ R

ng the Lagrange multipliers.
The notation (·)v and (·)vw represent first and second-

order derivatives ∂(·)
∂v

and ∂2(·)
∂v∂w

. In the NEU algorithm,
feasibility and optimality criteria (FOC) are checked for
each update ∆zj in order to evaluate the performance
of the approximated control move. If the FOC criteria
do not hold additional QP iterations are conducted until
the FOC are fulfilled.
The basic version of the NEU algorithm is as follows

1) set counter j := 0
2) compute the optimal solution z∗0 of (1) on [t01, t

f
1 ] for

nominal parameters p0 and efficiently computable
second-order derivatives Lzz,0 and Lzp,0 (cf. [13])

3) for j = 0, Nj do

a) determine pj+1 and compute ∆pj
b) compute NEU zNEUj+1 using (3) with ∆pj and

set counter qj := 0
c) while (FOC false) do

i) conduct QP iteration
ii) set qj = qj + 1

d) end while;
e) send updated controls zqj to system

f) shift horizon, i.e. t0j+2 = t0j+1 +∆t and tfj+2 =

tfj+1 + ∆t, and compute Lzz,j+1 and Lzp,j+1

g) set j = j + 1

4) end for.

Since (3) approximates the control vector on every
horizon Ij+1, the error propagation occurs from one
horizon to the next. It can be substantial for optimal
control problems with high curvature Lzz,j+1 and Lpz,j+1

as well as for large perturbations ∆pj . We now derive
an explicit formula for the NEU from (3), such that the
deviation of zNEUj+1 from z∗j+1 can be estimated from the
a-priori error approximation derived in Section III-A.

C. Neighboring-extremal update

In this work, we pragmatically state
Assumption 2. The active set does not change from Ij to
Ij+1 and the strict complementarity conditions hold.
The more general case of changing active sets from
horizon to horizon will be treated in future work. The
Lagrange function of (3) is then given by Lj+1 = φj+1 +
λTj+1(gaj + gaz,j∆z + gap,j∆pj), where gaj represents all
constraints which belong to the active set Gaj = E ∪
{k ∈ I|gk,j = 0} with gaj =

{
gk,j |k ∈ G

a
j

}
. The optimal

solution of (3) (∆zT ,∆λT )Tj with ∆λj = (λj+1−λj) can
be computed from the necessary conditions of optimality
(NCO)

L∆z,j+1 = Lzz,j∆zj + Lzp,j∆pj + Φz,j + gaTz,jλj+1 = 0,

gaj + gaz,j∆zj + gap,j∆pj = 0. (4)

Since the error is propagated from horizon to horizon, a
non-optimal control update is computed and the residu-
als of the NCO of (2) are not fulfilled. Introducing the

residual errors EL,j and EG,j , we can write

Lz,j = Φz,j + gaTz,jλj = EL,j ,

gaj = EG,j .
(5)

If Φz,j and gaj in (4) are eliminated by (5), the optimal
solution of (3) can be computed from the linear system
(

∆z
∆λ

)

j

= −M−1
j

(
Lzp
gap

)

j
︸ ︷︷ ︸

d(zT
j
,λT
j

)T

dpj

∆pj −M
−1
j

(
EL
EG

)

j
︸ ︷︷ ︸

(eshift T
j

,∆λshift T
j

)T

, (6)

where M = [Lzz, g
aT
z ; gaz , 0] is the KKT matrix. The

resulting NEU zNEUj+1 = ∆zj + zj is composed of a first-
order term of a truncated Taylor series based on the first-
order sensitivity theorem [14] and an error-induced shift
eshiftj which is independent of pj+1 and equal to zero if
the NCO of (2) hold exactly (cf. [7]). Diehl et. al. [15]
refer to (6) as the approximate tangential predictor.
The NEU algorithm is extended next by a decision
criterion which addresses the trade-off between solution
accuracy and computational delay in order to achieve the
best possible control performance.

III. Computational delay adaptation for NEU

algorithm

In the NEU algorithm, the computational delay is
largely due to the computation of second-order deriva-
tives in step (3f), while the delay for retrieving the NEU
in step (3a) is small becauseM−1, (LTzp, g

aT
p )T and eshiftj

can be computed on the previous horizon. We therefore
state:
Assumption 3. The NEU in step (3a) is instantaneous.
In order to assess the solution accuracy of the successive
NEU for horizon Ij+1, the main feature of the method,
an a-priori error approximation, is derived. To this end,
the deviation between the unknown optimal control tra-
jectory z∗j+1 and the control trajectory computed by the
NEU zNEUj+1 is estimated with respect to the perturbation
∆pj in Section III-A. In Section III-B, the approximated
solution accuracy is used to decide whether more com-
putational delay is acceptable, i.e. whether the control
performance is improved by additional QP iterations.

A. Error approximation for the extended NEU algorithm

According to Bellman’s principle of optimality [18],
the optimal trajectory does not change for the transition
from one horizon to the next for a shrinking horizon
setting, when neither disturbances nor model-plant mis-
match exist. We pragmatically state
Assumption 4. Though Bellman’s principle of optimality
is not valid for a finite moving horizon setting, we neglect
the error induced.
Thus, the total approximation error accumulates from
one horizon to the next due to consecutive approxima-
tions by NEU. We derive this error, epropj+1 = z∗j+1−z

NEU
j+1 ,

by an error propagation starting from the known optimal
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Fig. 1. Error contributions for one z and one p. Solid line - optimal

solution trajectory. Dashed line -
dz∗
j

dpj
. Dash-dotted line -

dzj

dpj
.

solution z∗0 , where eprop0 = 0. The error propagation is
initialized every time a new setpoint z∗0 is determined by
an upper level dynamic economic optimization (cf. [17]).

Fig. 1 illustrates all contributions to epropj+1 for a single
control parameter z with respect to a single parameter
p.
For an optimal control vector zj = z∗j , such as the initial
optimal solution z∗0 , the NEU (6) comprises only the first-
order term of a truncated Taylor series, (∆zT ,∆λT )Tj =
d(zTj ,λ

T
j )T

dpj
∆pj (cf. top of Fig. 1), while the second term

equals zero because the NCO are fulfilled (cf. (6)). Thus,
the only error contribution for the successive horizon
Ij+1 results from the truncation of second and higher-
order terms (h.o.t.)

eTSj = e2ndj + h.o.t. , (7)

where e2ndj = 1
2 ∆pTj

d2zj
dp2
j

∆pj . Note that
d2zj
dp2
j

corresponds

to the optimal second-order derivative, since zj = z∗j
for pj . Once ∆pj is available on horizon Ij+1, e2ndj is
determined instantaneously because the time-consuming

second-order derivative
d2zj
dp2
j

can be computed in advance

on horizon Ij . The total error is given by epropj+1 = eTSj ≈

e2ndj . The optimal control vector can be approximated by
z∗j+1 ≈ z

NEU
j+1 +e2ndj , where zNEUj+1 is the NEU on horizon

Ij+1.

For a non-optimal control vector zqj , several other con-
tributions to the accumulated error have to be considered
(cf. bottom of Fig. 1). To this end, a recursive function
for epropj+1 will be developed.
Current error. The propagated error epropj on the cur-
rent horizon Ij depends on all previous ∆pl, l = 0...j−1,

epropj = z∗j (pj)− z
NEU
j (pj). (8)

This error contribution starts from the initial optimal
solution z∗0 , eprop0 = 0.
Additional QP iterations on horizon Ij . We also
have to consider that additional QP iterations may have

been performed on horizon Ij to reduce the total error:

eSQPj = zqj − z
NEU
j , (9)

where zqj is the current control update retrieved after
qj ≥ 0 additional QP iterations on horizon Ij . This error
contribution can be computed exactly on horizon Ij since
zqj and zNEUj = zj are given.

Error-induced shift. The error-induced shift eshiftj =

zQFj − zqj (cf. (6)) is independent of the perturbation
pj+1 and can exactly be determined in advance because
(ETL , E

T
G)Tj can be computed from (5) on horizon Ij .

In the bottom of Fig. 1, ej denotes the remaining
deviation from the optimal control vector z∗j after the

contributions eSQPj and eshiftj are considered. If pj+1 =

pj , z
NEU
j+1 = zQFj and epropj+1 = ej . If pj+1 6= pj , we have

to consider additional error contributions.
Non-optimal sensitivities. If the sensitivity

dzj
dpj

equals
dz∗j
dpj

, the NEU will be zcorrj+1 and the deviation from the
NEU znomj+1 computed around the optimal solution z∗j will
be znomj+1 − z

corr
j+1 = ej (cf. bottom of Fig. 1). However,

dzj
dpj
6=

dz∗j
dpj

for a general non-optimal zj . Thus, the

bigger ∆pj , the more the control vectors zcorrj+1 (
dz∗j
dpj

) and

zNEUj+1 (
dzj
dpj

) differ. The induced error is

egradj =

(
dz∗j
dpj
−
dzj
dpj

)

∆pj = zcorrj+1 − z
NEU
j+1

≈

(

d(zj + epropj )

dpj
−
dzj
dpj

)

∆pj = e1stj .

(10)

The optimal first-order sensitivity
dz∗j
dpj

is approximated

by
d(zj+e

prop

j
)

dpj
and can already be computed on horizon

Ij .
Truncation of Taylor series. The error eTSj caused by
the truncation of the Taylor series after the first-order
term is given by (7) and estimated by e2ndj . In Fig. 1,
znomj+1 = z∗j+1 − e

TS
j .

Error propagation for successive horizon Ij+1.
Having derived the five error contributions, the total
error epropj+1 on the successive horizon Ij+1 can be now
expressed by the following recursive formulation

epropj+1 = epropj − eSQPj − eshiftj + eTSj + egradj (11)

= ej + z∗j+1 − z
nom
j+1 + zcorrj+1 − z

NEU
j+1 = z∗j+1 − z

NEU
j+1 ,

which can be approximated by

eestj+1 = eestj − e
SQP
j − eshiftj + e2ndj + e1stj ≈ e

prop
j+1 , (12)

where eest0 = 0.
We have derived an error estimator eestj+1 for NEU

algorithms with and without additional QP iterations
which can be computed on horizon Ij and which also
allows us to derive the extended NEU algorithm in
Section III-B.
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B. The extended NEU algorithm

In the extended NEU algorithm, a decision criterion
Kj is introduced which addresses the trade-off between
solution accuracy and computational delay. Kj(qj) :
D ⊂ N0 → R represents the deviation between the
approximated optimal control vector for qj additional
QP iterations on horizon Ij . Since the additional QP
iterations and the second-order derivatives of the suc-
cessive NEU have to be computed within ∆t, D =
{qj |0 ≤ qj ≤ qmax,j} can be determined in advance by
calculating the maximal number of iterations, qmax,j =⌊

(∆t− τ sensd,j )(τQPd,j )−1
⌋

, where τQPd,j represents the com-

puting time for one QP iteration and τ sensd,j the computing
time for the second-order derivatives of the NEU. The
best control performance is achieved if Kj is minimized
with respect to qj in a fast integer pre-optimization:

min
qj∈D

Kj(qj)
def
=
∥
∥z∗j − z

q
j

∥
∥

1
, (13)

where z∗j denotes the optimal but usually unknown
control vector and zqj the control update retrieved after
qj QP iterations. In (13), the 1-norm is used, since
equal weighting of all elements of z∗j − z

q
j is desired.

Though the deviation from the (unknown) optimal ob-
jective function value is often used as a criterion to
assess non-optimality (e.g. [3]), the decision vector of
the extended NEU algorithm is based on the deviation
from the (unknown) optimal control trajectory, since the
optimal control trajectory can be tracked more reliably,
in case the deviation from the optimal objective function
value is small but the control structure differs clearly
from the optimal one.
In order to include the computational delay τd,j =
qj · τ

QP
d,j < ∆t in the decision criterion, the con-

trol vector zj is split into two subvectors, zj =
(σT , κT )Tj . Here, σj is the subvector containing exactly
the first parameterized control of each control variable
uij applied on [t0j , t

0
j + ∆t) (cf. control parameteriza-

tion in Section II-B), whereas κj contains the remain-
ing adjustable elements nz − nu. Thus, (σT , κT )Tj =
((z1, ..., znu), (znu+1, ..., znu·K))Tj . During [t0j , t

0
j + τd,j),

the subvector of the fast NEU σNEUj is applied to the
process until σqj is available at t0j + τd,j . Thus, Kj(qj) =

v1
∥
∥σ∗j − σ

NEU
j

∥
∥

1
+ v2

∥
∥σ∗j − σ

q
j

∥
∥

1
+
∥
∥κ∗j − κ

q
j

∥
∥

1
, where

v1 =
τd,j
∆t and v2 = 1 − v1. A solver efficiency map

Ej is identified on-line in order to describe the change
in the deviation of the adjustable controls from the
optimal trajectory with respect to qj , i.e. v2

∥
∥σ∗j − σ

q
j

∥
∥

1
+

∥
∥κ∗j − κ

q
j

∥
∥

1
= Ej

(

v2
∥
∥σ∗j − σ

NEU
j

∥
∥

1
+
∥
∥κ∗j − κ

NEU
j

∥
∥

1

)

.

Since the solver efficiency cannot be determined be-
fore the actual optimization routine is performed, Ej
is approximated by fitting data from optimizations on
previous horizons to the structure

Ej = (αfj−1 max(0, qj−1 − q
f
j−1) + 1)−1 (14)

as suggested by Alamir [3], where αfj−1 monitors the

speed of convergence and qfj−1 describes the number of
iterations required before the deviation from the optimal
control vector decreases. By definition, Ej is influenced
by the system’s nonlinearity and the number of degrees
of freedom of the optimal control problem. If the param-
eter structure changes severely, no relation between the
current and the previous Ej might exist. However, even
if the optimal number of QP iterations is not determined
correctly, the extended NEU algorithm still improves
the performance in comparison to other schemes, since
computational delay is incorporated into the algorithm.
Including the efficiency map and the error estimator of
Section III-A, the decision criterion is given by

Kj(qj) = v1
∥
∥eestσ j

∥
∥

1
+
(

v2
∥
∥eestσ j

∥
∥

1
+
∥
∥eestκ j

∥
∥

1

)

Ej (15)

with eestσ j = (eest1 , ..., e
est
nu

)Tj and eestκ j =
(eestnu+1, ..., e

est
nu·K

)Tj .

IV. Case study

The performance of the method is demonstrated on a
simulated Van de Vusse CSTR based on [16]:

dx1

dt
= −k1x1 − k2x

2
1 +

(
xin − x1

)
ν1,

dx2

dt
= k1 (x1 − x2) + x2ν1,

dx3

dt
= −

∆H1k1x1 + ∆H2k1x2 + ∆H3k2 x1
2

ρCp
...

+ ν2 + (p− x3) ν1.

x1 and x2 are the species concentrations and x3 is the
reactor temperature. ν1 represents the dilution rate and
ν2 the cooling rate. The rate coefficients are given by ki =
k0,i exp(Ei/(Rx3)). The parameters are p0 = 403.15 K,
xin = 5moll-1, ∆H1 = 4.2kJmol-1, ∆H2 = −11kJmol-1,
∆H3 = −41.85 kJ mol-1, ρCp = 2.812 kJ(l K)-1, k0,1 =
1.287 · 1012 h-1, E1/R = −9758.3 K, k0,2 = 9.043 ·
109 l(mol h)-1 and E2/R = −8560 K. The objective
function is Φ̂ =

∫
w(x2 − 1mol/l)2 + uTQu dt with

w = 10000 l2/mol2, Q = diag(5 · 10−4h4, 5 · 10−3h2/K)
and u = (ν̇1, ν̇2)T . The initial values are x1,0 = 1 mol l-1,
x2,0 = 0.8moll-1, x3,0 = 405K, Φ̂0 = 0, ν1,0 = 19.5218h-1

and ν2,0 = −160.5684 K h-1. No constraints are active
throughout the simulation. The horizon length is 30 min
and ∆t = 3 min. We assume that τQPd = τNEUd = 36 sec.
In the simulation, the uncertain parameter p drops to

98 % on the first horizon, increases to 100 % on the
second horizon and is then held constant. The response
of the closed-loop system is examined for four different
methods: a rigorous SQP method assuming no computa-
tional delay (ND), NEU without additional QP iterations
(NEU) similar to [4] and [6], the original NEU algorithm
(ONEU) and the extended NEU algorithm considering
computational delay (ENEU). Fig. 2 illustrates that the
control performance significantly decreases for NEU. In
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Fig. 2. Control performance of algorithms.

TABLE I

Number of QP iterations on horizons 1 to 10.

1 2 3 4 5 6 7 8 9 10

ONEU 4 4 2 1 1 1 1 0 0 0
ENEU 3 1 2 3 2 2 2 2 2 2

comparison to the ONEU, the ENEU further improves
the control performance since computational delay is
considered. Table I shows the number of QP iterations.

V. Conclusions and future work

In this work, the extended NEU algorithm has been
presented in order to optimize the control performance
by a pre-optimization of the control updating period
based on an a-priori error approximation and the consid-
eration of computational delay. In this way, the extended
NEU algorithm replaces the feasibility and optimality
criteria of [7] and [10], which trigger a re-optimization,
by a rigorous determination of the optimal number of
additional QP iterations such that best possible control
performance is guaranteed for all ratios η computa-
tional delay to sampling time. The application of the
extended NEU algorithm to a case study has shown
that the method presented improves the control perfor-
mance in comparison to NEU algorithms without pre-
optimization.
In a next step, the performance of the extended NEU
algorithm will be further examined for a large-scale
model of an industrial chemical process. For this purpose,
the method presented must be extended because changes
in the active set occur frequently in practice.
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