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Abstract— This paper is focused on the problem of event-
triggered filtering which has various applications such as sensor
networks and data sampling/acquisition. An estimator may get
a “sparse” sequence of observations: the observations may
arrive only when some events trigger the sensor. In this paper,
a series of stopping times is used to model the times when the
sensors are triggered. Based on this model, a filtering problem
is formulated as to estimate the true state of the dynamic
system using the information from both the new observations
and their corresponding stopping times. This filtering problem
is numerically solved by a stochastic approximation algorithm
which uses a Markov chain to approximate the evolution of the
system.

I. INTRODUCTION

The theory of stochastic filtering has various applications

in target tracking [1], financial engineering [2], fault detec-

tion and isolation [3], etc. In the “conventional” filtering

theory, the observations are often assumed to be available

at each sampling time. However, this is not the case in

many applications. For example, in many space projects,

e.g., the NASA Phoenix mission [4], the data link resources

between a ground control station and a space probe are very

limited. To transmit observations from a probe back to the

Earth continuously in time may exhaust the bandwidth of

a data link. Thus, to tradeoff the limited communication

resources and estimation accuracy, a better choice is to

send out observations at some “critical” time when some

events happen (see also Figure 1). Other event-triggered

observation/filtering models can be found in [5], [6], [7],

[8].

Event trigger

Estimator
Yt

Space probe Ground control station

Sensor

Xt

Fig. 1. Illustration of triggered observations of a space probe.

This paper presents our initial results in the event-triggered

filtering problem. A mathematical model is proposed in

which new observations are available when a set of sensors

are triggered by some events. The times when the sensors are

triggered are modeled by stopping times. The filtering pro-

blem is to use the information from both the stopping times

and the observations at the stopping times to estimate the

true state of the system. To solve this filtering problem, the
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probability distribution function (pdf) of the system’s state

conditioned on both the stopping times and corresponding

observations needs to be computed. This is done via two

steps:

• Propagation: Between two consecutive stopping times,

the pdf of the system’s state can be propagated given

that the next stopping time has not arrived.

• Correction: When the next stopping time arrives, the

pdf of the system’s state is corrected according to the

stopping time and new observation.

In this paper, the event-triggered filtering problem is

numerically solved by a stochastic approximation algorithm.

The proposed algorithm uses a Markov chain defined on

discretized time and state space to approximates the evolution

of the pdf of the system’s state conditioned on the stopping

times and corresponding observations. Unlike the approach

presented in [9] which approximates the pdf of the system’s

state using a series of eigenfunctions, the stochastic approxi-

mation approach approximates the whole stochastic process

weakly, i.e., the distribution of the Markov chain converges

weakly to the distribution of the system’s state when its grid

size and time step approach zero. Thus, it can be guaranteed

that the pdf approximation error is bounded at each time

and the error is not propagated unboundedly over time. The

proposed algorithm is validated through simulations.

This paper is organized as follows: Section II presents

the mathematical formulation and theoretical solution to the

event-triggered filtering problem; a stochastic approximation

algorithm is presented in Section III to solve the event-

triggered filtering problem numerically; Section IV shows

the simulation results, and conclusions are given in Section

V.

II. MATHEMATICAL FORMULATION AND SOLUTION TO

THE EVENT-TRIGGERED FILTERING PROBLEM

In this section, a mathematical model characterizing the

problem of event-triggered filtering is presented together with

a theoretical solution to this problem.

A. Notations in this paper

Denote by: RM , the M-dimensional Euclidean space; R+,

the positive real numbers; Z, the integers; N, the non-negative

integers; ‖ • ‖, the Euclidean norm; E[•], the (conditional)

expectation; P, the generic probability measure; Pr{•}, the

(conditional) probability of an event; p(•) and π(•), the

(conditional) probability density function (pdf).
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B. Mathematical Formulation

1) System Dynamics: Let Xt = (X
(1)
t X

(2)
t )T ∈ R

2
, (∀t ∈

R
+) is a 2-dimensional Markov stochastic process in which

X
(1)
t is a dynamic process and X

(2)
t is a observation noise

process. The stochastic differential equation (sde) governing

the evolution of Xt is given by:

dXt = f(Xt , t)dt +g(Xt , t)Wt (1)

where f : R2 ×R
+ → R

2 is a drift term; g : R2 ×R
+ →

R
2 ×R

2 is a volatility term; and Wt = (W
(1)

t W
(2)

t )T is the

standard 2-dimensional Brownian motion. Suppose f and g

are bounded and continuous such that the solutions of (1)

exists and is unique [10].

2) Observation Model: The dynamics of X
(1)
t can be

regarded as a particle moving on R on which the sensors are

assumed to be evenly distributed1 with a separation distance

γ > 0. Then, the k-th sensor’s location is kγ,(k ∈ Z). When

the particle X
(1)
t gets close to any sensor, the sensor sends out

its position to a centralized estimator. However, due to un-

certainties, each sensor’s observations are corrupted by some

noise which is characterized by X
(2)
t , an ergodic process with

a small magnitude. To describe this mathematically, define:

Yt := X
(1)
t +X

(2)
t (2)

If Yt = kγ , the k-th sensor sends out its position to a

centralized estimator. Thereby, the centralized estimator has

the noisy information about when the particle passes which

sensor. For k, i ∈ Z, define a series of stopping times and the

corresponding observations:
{

τi := inf{t : Yt = kγ}

Ŷi :=
Yτi
γ

(3)

with






τ0 ≡ 0

τi1 < τi2 ∀i1, i2 ∈ N and i1 < i2
Ŷi1 6= Ŷi2 ∀i1, i2 ∈ N and |i1 − i2|= 1

(4)

0(Ŷ0, Ŷ2) τ0

τ1
τ2 τ3 τ4 τ5

t

Yt

−γ(Ŷ1)

γ(Ŷ3, Ŷ5)

2γ(Ŷ4)

Fig. 2. Illustration of the event-triggered filtering principle.

Example 1: Figure 2 illustrates the definitions of τi and

Ŷi. The curve shown in Figure 2 is a realization of Yt . The

time when Yt crosses a straight line such that Yt = kγ are

characterized as the stopping time τi and the observations

are given by (3) with Ŷ0 = 0,Ŷ1 = −1,Ŷ2 = 0,Ŷ3 = 1,Ŷ4 = 2

1This assumption can be extended to a more general case with arbitrarily
distributed sensors.

and Ŷ5 = 1. Also, Equation (4) states that two consecutive

observations must be different. Hence, although Yt hits the

sensor located at 0 twice in the time interval [τ0,τ1], only

the first hit is recorded.

Define the information generated by {τi} and {Ŷi} upto

the current time t as:

G
γ

t = σ({τi},{Ŷi}) with i = 1, ...,N s.t. τN ≤ t < τN+1 (5)

Thus the event-triggered filtering problem can be generalized

as a computation of the conditional Markov process:

E[X
(1)
t |G

γ
t ] (6)

C. Solution to the Event-triggered Filtering Problem

Let L be the infinitesimal generator of Xt . Its adjoint is

given by:

L
∗ :=−

2

∑
α=1

∂

∂xα
fα(x, t)+

1

2

2

∑
α,β=1

∂ 2

∂xα ∂xβ
gαβ (x, t) (7)

Let pt,t0(x|x0) be the transition probability for any t ≥ t0. The

Fokker-Planck equation governing the evolution of pt,t0(x|x0)
can be written as:

∂

∂ t
pt,t0(x|x0) = L

∗pt,t0(x|x0)

pt0,t0(x|x0) = δ (x−x0)
(8)

where δ (•) is the Dirac δ -function. By the strong Markov

property of Xt , for any bounded and measurable function f

and Ft stopping time τ , we have:

E[ f (Xτ+h)|Fτ ] = E[ f (Xτ+h)|Xτ ] ∀h ∈ R
+ (9)

0

γ

−γ

−γ−2γ γ 2γ

Ω1Ω
−1

Ω0

X
(1)

t

X
(2)

t

Fig. 3. Domains of Ωm.

In Figure 3, we define a series of domain Ωm:

Ωm := {(X
(1)
t ,X

(2)
t ) : |X

(1)
t +X

(2)
t −mγ|< γ} ∀m ∈ Z (10)

Let ∂Ωm be the boundary of Ωm. Define:

Γm := {(X
(1)
t ,X

(2)
t ) : X

(1)
t +X

(2)
t −mγ = 0} ∀m ∈ Z (11)

Thus ∂Ωm = Γm−1 ∪Γm+1.

Using the definitions given by (10) and (11), the filtering

process can be divided into two steps: Propagation and

Correction. Suppose at τi, the pdf of Xt , πτi
(x|G

γ
τi
), has

already been computed in the last iteration of the algorithm.

Thus ∀t ∈ (τi,τi+1), the pdf πt(x|G
γ

t ) can be computed by

propagating the pdf πτi
(x|G

γ
τi
) in the domain ΩŶi

using the

Fokker-Planck equation (8), because the information that the
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next stopping time τi+1 has not arrived can be interpreted

as: ΓŶi−1 < X
(1)
t + X

(2)
t < ΓŶi+1. At time τi+1, the new

observation Ŷi+1 is used to correct the propagated pdf such

that it is reduced to ΓŶi+1
, because X

(1)
τi+1

+X
(2)
τi+1

= Ŷi+1.
The aforementioned filtering algorithm is formally solved

by the following two steps:

• Propagation: By the strong Markov property (9) and

the law of total probability, ∀t ∈ (τi,τi+1), the pdf for Xt

conditioned on the previous observations can be written

as:

πt(x|G
γ

t ) =
∫

y∈ΓŶi

pt,τi
(x|y)πτi

(y|G
γ
τi
)dy (12)

where pt,τi
(x|y) is a solution to the Fokker-Planck

equation (8) within the domain ΩŶi
.

• Correction: At time τi+1, when the new observation

Ŷi+1 arrives, the domain of the pdf πt(x|G
γ

t ) is reduced

to ΓŶi+1
from ΩŶi

. Define a probability flow vector

J(x, t) = [J1 J2]
T ∈ R

2 by [11]:

Jα(x, t)= fα(x, t)πt(x|G
γ

t )−
1

2

2

∑
β=1

∂

∂xβ
gαβ (x, t)πt(x|G

γ
t )

(13)

with α = 1,2. An associated flux operator F̂ is defined

such that

J(x, t) = F̂πt(x|G
γ

t ) (14)

By Gauss’s Law, the pdf pτi+1
(x|G

γ
τi+1

) can be written

as [11], [9]:

πτi+1
(x|G

γ
τi+1

) ∝ n(x) ·J(x,τ−i+1) = n(x) · F̂πt(x|G
γ

t )
(15)

where n(x) is a unit vector oriented at x which is normal

to ΓŶi+1
and pointing outwards ΩŶi

; τ−i+1 is the left limit

of time τi+1.

The proposed algorithm is summarized in Table I:

TABLE I

EVENT-TRIGGERED FILTERING ALGORITHM

1. Initialization:

Initial state pdf: π0(x|G
γ
0 ) and initial observation G

γ
0

2. Iteration:

for (i = 1, · · · ,N) do:
if t ∈ (τi,τi+1) do:

Solve Fokker-Plank equation (8) within the domain ΩŶi
.

Compute the pdf πt(x|G
γ

t ) using (12).
else if t = τi+1 do:

Reduce the pdf πt(x|G
γ

t ) to the boundary ΓŶi+1
using (15).

end if

i = i+1
end for

III. STOCHASTIC APPROXIMATION ALGORITHM

To numerically solve the event-triggered filtering problem

(see also Table I), (8), (12) and (15) need to be compu-

ted numerically. In this section, a stochastic approximation

approach is applied to solve the event-triggered filtering pro-

blem by using a Markov chain to approximate the system’s

evolution.

A. Discretization of the state space

To work with a Markov chain defined on a discrete state

space, the domain of the event-triggered filtering problem

needs to be discretized. Consider a bounded domain D which

is large enough such that the pdf outside D can be ignored.

Suppose that D is discretized into square grids with size

ε > 0. Without loss of generality, assume that γ is a multiple

of ε , i.e., γ/ε ∈Z. Figure 4 shows an example of a discretized

domain with γ/ε = 4. Let Q be the set of coordinates of the

grids within D :

Q := {(n1 n2) : (n1 n2) ∈ Z
2 and (n1ε n2ε) ∈ D}

Thus, Q is the discrete state space of the Markov chain.

∀m ∈ Z, define

Q
Ω
m := {(n1 n2) : (n1 n2) ∈ Z

2 and (n1ε n2ε) ∈ Ωm} ⊂ Z
2

Q
Γ
m := {(n1 n2) : (n1 n2) ∈ Z

2 and (n1ε n2ε) ∈ Γm} ⊂ Z
2

Thus, QΩ
m and QΓ

m represent approximations of Ωm and Γm

in the discrete state space Q. Suppose q := (q1 q2) ∈Q, we

denote the neighborhood of q as:

Nq := {q+( j1 j2) : j1, j2 ∈ {−1,0,1} and ( j1 j2) 6= (0 0)}

Figure 5 illustrates a state and its neighborhood. Let xq be

the coordinate of q in the X
(1)
t −X

(2)
t plane, i.e.,

xq = εq (16)

Let G(q)⊂R
2 be the area covered by a square of size ε and

centered at xq, i.e.,

G(q) := {x : ‖x−xq‖∞ ≤
1

2
ε} (17)

where ‖ • ‖∞ is the ∞-norm. Then we use Ω̂m and Γ̂m to

approximate Ωm and Γm in R
2 with:

Ω̂m :=
⋃

q∈QΩ
m

G(q)⊂ R
2

Γ̂m :=
⋃

q∈QΓ
m

G(q)⊂ R
2

(18)

Figure 4 shows an example in which Γ̂m are marked by the

grey squares.

0

X
(2)

t

X
(1)

t

Γ2 : X
(1)

t +X
(2)

t = 2γ

+X
(2)

t = γ

+X
(2)

t = 0

γ

ε

Fig. 4. Illustration of a discretized domain.
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B. Propagation Based on Markov Chain Approximation

The solution to (1) is a Markov process E[Xt |G
γ

t ]. The

proposed stochastic approximation algorithm uses a Markov

chain to approximate the evolution of E[Xt |G
γ

t ]. By carefully

choosing the transition probabilities of the Markov chain, the

distribution of the Markov chain converges weakly to the

distribution of E[Xt |G
γ

t ] when the grid size and time step

approach to zero. Thus, by simulating the evolution of the

Markov chain, we can approximate the pdf πt(x|G
γ

t ).

q

q + (−1 1) q + (0 1) q + (1 1)

q + (−1 0) q + (1 0)

q + (−1 − 1) q + (0 − 1) q + (1 − 1)

ε

G(q)

Fig. 5. State q and its neighborhood Nq.

For t ∈ (τi,τi+1), define a Markov chain {Qk,k ∈N} with

the state space QΩ
Ŷi

. Our purpose is to use Qk to approximate

the distribution of πt(x|G
γ

t ) for all t ∈ (τi,τi+1). Let ∆ be

the time length between two successive steps of the Markov

chain {Qk,k ≥ 0} such that ∆ = λε2 for some fixed positive

constant λ .

The Markov chain {Qk,k ≥ 0} is designed to have the

following two properties:

• Each state on ∂QΩ
Ŷi

is absorbing:

Pr{Qk+1 = q′|Qk = q}=

{

1, q′ = q

0, otherwise
(19)

• For the state in the interior of QΩ
Ŷi

, the one step transition

probability is given by:

Pr{Qk+1 = q′|Qk = q}=

{

pk
q′
(q), q′ ∈ Nq ∪q

0, otherwise
(20)

where pk
q′
(q) is a transition probability which is a

function of q and k∆

There are many ways to parameterize pk
q′
(q) if only the

following weak convergence theorem of the Markov chain

{Qk,k ≥ 0} is satisfied.Suppose for ε → 0:

1

∆
E[Qk+1 −Qk|Qk = q]→ f(x,k∆)

1

∆
E[(Qk+1 −Qk)(Qk+1 −Qk)

T |Qk = q]→ g(x,k∆)g(x,k∆)T

(21)

∀x ∈ ΩŶi
∩D and q ∈ QΩ

Ŷi
is the point closest to x.

Theorem 1: Suppose a Markov chain {Qk, k ≥ 0} with

the transition probabilities given by (19) and (20) satisfies

Condition (21). Define a continuous time Markov process

{Qt , t ≥ 0} given by Qt = Qk, ∀t ∈ [k∆,(k+1)∆). Suppose

that Qt starts from the same initial distribution π0(x) as Xt .

Then Qt converges weakly to Xt as ε and ∆ approach to

zero.

Proof: The proof of the theorem is a modification of

the proof of Theorem 8.7.1 of [12].

To compute the evolution of Qk, we need the initial

condition πτi
(q|G

γ
τi
) which is defined on the state space of

Qk. Suppose the transition probabilities (19) and (20) satisfy

(21). The Fokker-Planck equation (8) can be approximated

by its discretized version given by the Chepman-Kolmogorov

forward equation which computes the pdf πt(q|G
γ
τi
) iterative-

ly at any time t = τi + k∆ ∈ (τi,τi+1):

πτi+(k+1)∆(q
′|G

γ
τi
)= ∑

q∈QΩ
Ŷi

Pr{Qk+1 = q′|Qk = q}πτi+k∆(q|G
γ
τi
)

(22)

and ∀h ≥ 0 with τi +h < τi+1:

πτi+h(q
′|G

γ
τi
) = πτi+⌊ h

∆ ⌋∆(q
′|G

γ
τi
) (23)

C. Correction of the Discretized Propagation Results

At time τi+1 when a new observation Ŷi+1 arrives, Equati-

on (15) is used to correct πτ−i+1
(x|G

γ

τ−i+1

) to get the corrected

pdf πτi+1
(x|G

γ
τi+1

). Combining (7) and (13) yields:

L
∗ = ∇ ·J (24)

q

Fig. 6. Probability flow defined on the boundary of an octagon contained
in G(q).

Consider an octagon Ĝ(q) contained in G(q) and denote

each side of the boundary of Ĝ(q) by sq′ ,q
′ ∈ Nq (see also

Figure 6 for an illustration). By Gauss’s Law,
∫∫

Ĝq

∇ ·J(x, t)dx =
∫

∂ Ĝq

J(x, t)ds ∝ ∑
q′∈Nq

nq′ ·Jq′(q, t) (25)

where Jq′ is the probability flow through the boundary sq′

which separates q and q′ ∈Nq; nq′ is an outward unit normal

vector of sq′ . In Figure 6, the probability flows defined on

each side of the octagon are shown by bold black arrows.

Suppose at time k we have Pr{Qk = q} = 1. Thus, the

probability flow on boundary sq′ can be computed by:

Jq′ ∝ Pr{Qk+1 = q′|Qk = q} ∀q′ ∈ Nq (26)

Now, the problem of reducing the pdf on Ω̂Ŷi
(QΩ

Ŷi
) to

Γ̂Ŷi+1
(QΓ

Ŷi+1
) at τi can be transformed to the computation

of the probability flow. Specifically at t = τi+1, the last

term in (25) can be written in the following form which

7296



is used to compute the probability defined on Γ̂Ŷi+1
or QΓ

Ŷi+1
,

∀q ∈ QΓ
Ŷi+1

:

n(q) ·J(q,τi+1) ∝ ∑
q′∈QΩ

Ŷi+1
∩Nq

n(q) ·Jq(q
′
,τ−i+1) (27)

The numerical algorithm for the event-triggered filtering

problem is summarized in Table II.

TABLE II

NUMERICAL ALGORITHM FOR EVENT-TRIGGERED FILTERING

1. Initialization:

Design a Markov chain {Qk,k ∈ N} that satisfies properties in (19),
(20) and (21).

Discretize initial state pdf: π0(x|G
γ
0 ) to get a pdf π0(q|G

γ
0 ) defined

on the initial state space: QΩ
Ŷ0

.

2. Iteration:

for (i = 1, · · · ,N) do:
k = 0
for (k∆+ τi < τi+1) do:

Compute the pdf πτi+(k+1)∆(q|G
γ
τi
) using (22) for all q ∈ QΩ

Ŷi
.

k = k+1
end for

Reduce the pdf πt(q|G
γ

t ) to the boundary QΓ
Ŷi+1

using (26)

and (27).
i = i+1

end for

IV. SIMULATIONS

In this section, an example is presented to demonstrate

the performance of the proposed algorithm. Assume that the

dynamics of X
(1)
t is given by a geometric Brownian motion

which is widely used to model the change of a stock price

in a financial market (the Black-Scholes’ model) [13]. The

sde governing the evolution of X
(1)
t is given by:

dX
(1)
t = aX

(1)
t dt +bX

(1)
t dW

(1)
t (28)

where a and b are positive constants indicating the drift and

volatility of a stock price. We assume that γ = 1, i.e., when

X
(1)
t gets close to any integer, the corresponding sensor sends

out a signal to a centralized estimator. The observation noise

can be modeled by a Ornstein-Uhlenbeck (O-U) process

which is an ergodic process. In financial engineering, the O-

U process is often used to model the volatility of exchange

rates of different currencies. The dynamics of the OU process

is given by:

dX
(2)
t =−κX

(2)
t dt +udW

(2)
t (29)

where κ and u are positive constants. Combining (28) and

(29) yields the general form of the sde given in (1). Since

W
(1)

t and W
(2)

t are independent, X
(1)
t and X

(2)
t are decoupled.

In the simulation, we choose a = 0.3, b = 0.1, κ = 1.2 and

u = 1. Figure 7 shows one realization of X
(1)
t , X

(2)
t and Yt .

Note that at time t = 0, X
(2)
t = 0 and X

(1)
t =Yt = 1. The same

realization and boundaries Γ0 −Γ4 are shown in Figure 8 in

the X
(1)
t −X

(2)
t coordinate. In Figure 8, the trajectory of Xt

0 0.5 1 1.5 2 2.5 3
−2

−1

0

1

2

3

4

time (sec)

 

 

X
t

(1)
(Geometric B.M.)

X
t

(2)
(O−U Process)

Y
t

Fig. 7. Realization of X
(1)
t , X

(2)
t and Yt vs. time.

starts from (1,0) which is located in Ω1. The sensor output

Ŷi is plotted in Figure 9. Note that Ŷ0 ≡ 1 and τ0 ≡ 0. Now,

we use the stochastic approximation algorithm proposed in

Section III to solve this event-triggered filtering problem.

Since X
(1)
t and X

(2)
t are independent, we can design two

Markov chains {Q
(1)
k } and {Q

(2)
k } to approximate X

(1)
t and

X
(2)
t respectively. Then, {Q

(1)
k } and {Q

(2)
k } are combined

to get {Q(k)} which approximates Xt conditioned on the

observations. To discretize the time and space, we choose

∆ = 0.01 and ε = 0.2. Suppose a Markov chain {Qk}

Γ0

Γ1

Γ2

Γ3

Γ4

X
(1)
t

X
(2)
t

Fig. 8. Realization of X
(1)
t vs. X

(2)
t

τ1 τ2

Ŷ1

Ŷ2

Ŷ0

Time/sec

Ŷi

Fig. 9. Ŷi vs. time

is constructed such that it satisfies the weak convergence

condition (21). Figure 11 shows the evolution of E[Xt |G
γ

t ]
which is computed by the proposed numerical algorithm

recursively. In this realization, the first hitting time τ1 is

around 1.72s. Thus, during the interval t ∈ (0,τ1), the Mar-

kov chain approximates the solution of the Fokker-Planck

equation in the region Ω̂Ŷ0
, which is illustrated by Figure

10(a). At time τ1, the sensor located at 1 gives an output
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Ŷ1 = 2 (see also Figure 9) and the pdf E[Xt |G
γ

t ] is reduced

to the boundary Γ̂Ŷ1
, which is shown in Figure 10(b). Then,

the Fokker-Plank equation is solved again in region Ω̂Ŷ1

using the aforementioned Markov Chain again during the

time t ∈ (τ1,τ2) (Figure 10(c)). At the time τ2 ≈ 2.21s, the

pdf is reduced to Γ̂Ŷ2
with Ŷ2 = 3 (Figure 10(d)) and after

that time, before new observation arrives, the Fokker-Planck

equation is solved again by the Markov chain in region Ω̂Ŷ2
.

V. CONCLUSIONS

In this paper, we have presented a model of the event-

triggered filtering problem. The event-triggered filtering pro-

blem can be solved in two steps: (1) solving a Fokker-

Planck equation during the interval between two consecu-

tive stopping times when no sensor is triggered; and (2)

reducing the pdf to a boundary when the corresponding

sensor is triggered. A numerical algorithm has been proposed

to compute the pdf of the conditional Markov process by

using a Markov chain to approximate the Markov process in

continuous time. The performance of the proposed algorithm

is validated through numerical simulations.
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Fig. 10. Evolution of the pdf of E[Xt |G
γ

t ]
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