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Abstract— A broad class of multi-agent systems are leader-
follower systems, in which the states of a set of leader agents
are used to influence the states of the remaining agents. In this
paper, we study the problem of choosing specific agents that
will act as leaders in order to optimize system performance.
We show that for a diverse set of networked multi-agent
systems, including systems with constant and time-varying
topologies, the leader selection problem can be studied using
a submodular optimization framework. We further show that
the problems of choosing a predefined number of leader nodes,
as well as choosing both the number and specific nodes to
satisfy a performance requirement, can be formulated within
the proposed submodular optimization framework. We derive
analytical performance bounds for the proposed solutions for
linear multi-agent systems with static as well as time-varying
network topologies. Numerical illustration is provided for the
proposed approach.

I. INTRODUCTION

A wide variety of processes, including robotic navigation

and tracking [1], formation control of UAVs [2], and dis-

tribution estimation and synchronization in sensor networks

[3], can be modeled as multi-agent systems. Typical multi-

agent systems consist of autonomous agents that are intercon-

nected, with each agent influencing the states and dynamics

of the surrounding agents.

A broad class of multi-agent systems can be further

classified as leader-follower systems, in which a set of leader

nodes are used to control the states of the remaining nodes.

Examples include localization in sensor networks based on

relative distance to GPS-equipped anchor nodes, as well as

unmanned vehicle formations in which some vehicles are

controlled remotely. In such systems, the states of the leader

nodes are treated as inputs, while each follower node’s state

is a weighted average of its neighbors’ states (the linear

agreement protocol) [4]. Through the agreement protocol,

inputs from the leader nodes propagate through the system

and influence the states of the follower nodes.

Propagation of leader input may be disrupted by a number

of factors. First, since the agreement protocol relies on each

node measuring the states of its neighbors, the protocol

can be affected by measurement errors. Such errors may

lead to application-specific failures, such as deviations from

the expected formation or inaccurate distributed estimates.

Secondly, since multi-agent systems may consist of mobile

agents communicating over lossy links, they are prone to

changes in network topology. Topology changes arise from

link failures, in which certain links become unavailable

over time, switching topologies [4], in which the network

switches between predefined topologies, and arbitrary time-

varying topologies, in which the network topology evolves

stochastically over time.

Leader agents are traditionally selected based on majority

voting or node degree-based approaches [5]. However, these

heuristics may not be sufficient to ensure controllability or

optimal performance of the system.

In [6], control-theoretic analysis of leader-follower sys-

tems was introduced. In a control framework, the follower

states are treated as the plant, while the leader states provide

external input. Under this model, the dynamics of the plant

are governed by the graph Laplacian of the subgraph formed

by the follower nodes. In [6], it was shown that, for a

given set of leaders, the follower system is controllable if

and only if the eigenvalues of the Laplacian for the graph

consisting of the followers are distinct. It was also shown

that choosing highly connected nodes as leaders may result

in an uncontrollable system.

In the presence of noisy links, agent states will deviate

from their desired operating points. In [7], the authors derive

the error covariance associated with a given node’s state as

a function of the network topology and the error distribution

of each link. The error covariance of a node’s state is shown

to be related to the graph effective resistance between that

node and the leader nodes. The results of [6], [7] show that

the controllability and noise rejection properties of a system

depend on the choice of leader nodes.

In this paper, we study the problem of optimal leader

selection in linear multi-agent systems with noisy links. We

show that, for both static and time-varying topologies, the

problem of selecting leaders to minimize the total error

covariance of the system can be posed as a submodular

optimization framework.

We make the following contributions:

• We consider the problem of optimal leader selection in

linear multi-agent systems with noisy links and map

the problem to a framework based on submodular

optimization.

• In order to show that the leader selection problem is

submodular, we observe that the effective resistance of

a graph is proportional to the commute time of a random

walk on the graph, which we prove is a supermodular

function. This in turn implies that effective resistance

is supermodular. We then use the known result that the

error covariance of a multi-agent system is equal to its

effective resistance to show that the error covariance is

supermodular.
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• We formulate two types of leader selection problems

within our optimization framework and show that these

problems are dual to one another: (a) when a fixed

number of leader nodes must be chosen to minimize

error, and (b) when the system must achieve a given

error bound using the smallest possible number of

leaders.

• We show that a broad class of system types can be ana-

lyzed under our framework, including (a) networks with

static topologies, (b) networks experiencing random

link outages, (c) networks that switch between a finite,

predefined set of topologies, and (d) networks with

arbitrary time-varying topologies. We present efficient

solution algorithms for each case.

• We derive analytical bounds on the optimality of the

results returned by our algorithms, and also give an

empirical comparison of our scheme with random and

degree-based leader selection algorithms.

This paper is organized as follows. Section II presents as-

sumptions and necessary background. Section III introduces

the submodular optimization framework for the case of a

static network topology. Section IV discusses leader selection

in time-varying multi-agent systems. Section V contains an

experimental evaluation of our approach. Section VI provides

our conclusions and directions for future work.

TABLE I

NOTATION USED IN THIS PAPER

Notation Definition

n Number of nodes

V Set of nodes

E Set of links

m Number of links

N(i) Set of neighbors of node i

A Incidence matrix of graph G = (V, E)

Af Incidence matrix of follower nodes

Al Incidence matrix of leader nodes

xi State of node with index i

S Set of leader nodes

k Number of leader nodes

xl Vector of leader node states

xf Vector of follower node states

ǫij Measurement error for link (i, j)

r Vector of relative measurements between nodes

R(i, j) Variance of link error ǫij

R(S, u) Variance of overall measurement error for node u

when leader set is S

R(S)
∑

u∈V \S R(S, u)

R(S|G)
∑

u∈V \S R(S, u) for topology G

α Maximum tolerated measurement error

II. BACKGROUND AND PRELIMINARIES

In this section, the system model is defined. The con-

nection between the assignment of leader nodes and the

robustness of the network to measurement noise is explored.

Background on submodular functions is also given.

A. System model

A multi-agent system of n agents with graph structure

G = (V,E) is considered, where V = {1, . . . , n} is the set

of the agents. The pair (i, j) is in the link set E if agent i’s
state influences the dynamics of agent j. It is assumed that

links are undirected1. The set N(i) of i’s neighbors consists

of the nodes j with (i, j) ∈ E. Let A denote the incidence

matrix of G, i.e. the n ×m matrix where the e-th column

has a 1 in the i-th row, a −1 in the j-th row, and zeros

elsewhere, when e = (i, j).
It is assumed that a subset S of agents acts as leaders. All

non-leader nodes are followers. The incidence matrix can

therefore be decomposed into Af , consisting of the rows

corresponding to the follower nodes, and Al, consisting of

the rows corresponding to the leader nodes.

B. System dynamics

Each agent with index i has a corresponding state xi. The

follower nodes are assumed to have state dynamics

ẋi =
∑

j∈N(i)

(xi − xj) (1)

referred to as the agreement protocol.

The agreement dynamics defined in (1) rely on agent i
having an accurate measurement of rij = (xi−xj). Suppose

that the measurements rij are corrupted by additive noise ǫij
with known covariance R(i, j), so that

rij = xi − xj + ǫij (2)

The corresponding matrix equation is

r = Ax+ ǫ (3)

where r and ǫ are vectors in R
m describing the relative

measurements and noise, respectively. Letting xf denote the

vector of follower node states and xl denote the vector of

leader node states, and using the decomposition of A into

leader and follower components, (3) becomes

r = Afxf +Alxl + ǫ (4)

It is assumed that the states xl are known and that the

follower nodes rely on a linear estimator to find the correct

values of xf . The following theorem in [7] describes the

error of the resulting estimate in terms of the Laplacian of

the graph.

Theorem 1: Let Lf = AfWAT
f , where W is a diagonal

matrix with the values R(i, j)−1 as entries. Then the covari-

ance of the estimation error for node u is given by (L−1
f )uu.

In this context, we denote the value (L−1
f )uu as R(S, u).

Let R(S) ,
∑

u∈V \S R(S, u). Then R(S) is a measure

of the total estimation error within the system, and hence

also the system’s deviation from its ideal state. Note that

R(S) can be computed by finding the trace of L−1
f , which

can be performed in polynomial time for a given graph. In

what follows, we let R(S|G) denote the value of R(S) for

a specific topology G.

1This assumption comes from the fact that the noise characteristics of
each link are symmetric.
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C. Graph effective resistance

In this section, the connection between the error co-

variance R(S, u) and the effective resistance of a graph

is explored. The following lemmas prove that R(S, u) is

equivalent to the effective resistance of an equivalent circuit.

It is then shown, through a generalization of results in [8]

to sets, that the effective resistance is proportional to the

commute time of a random walk on a graph.

Definition 1: Consider an electrical network with graph

structure G = (V,E), where V is the set of nodes and a

resistance R(i, j) exists across each edge (i, j) ∈ E. Let u
be a node, and let S ⊆ V be a set of nodes with u /∈ S.

Define Ju to be the current exiting node u when the nodes in

S are grounded (i.e. have voltage 0) and node u has voltage

1. Then the effective resistance R̃(S, u) between u and S is

equal to 1/Ju.

The following lemma describes the connection between

the effective resistance of a graph G and the error experi-

enced by the nodes in the multi-agent system.

Lemma 1: The functions R(S, u) and R̃(S, u) are equiv-

alent.

A proof of Lemma 1 can be found in the appendix.

Interpreting R according to Definition 1 allows use of the

probabilistic definition of effective resistance, which is based

on random walks on graphs. In this definition, the probability

of transitioning from node u to node v is equal to

P (u, v) =
C(u, v)

∑

t∈N(u)C(u, t)
(5)

where C(u, v) = R(u, v)−1 is the conductance of link (u, v).
The following lemma establishes the connection between

random walks and effective resistance.

Lemma 2: Let κ(S, u) be the expected time for a random

walk originating at node u to reach a node in S and return

to u. Then R(S, u) = 1
2

(

∑

(i,j)∈E C(i, j)
)−1

κ(S, u).

The proof of Lemma 2 can be found in the appendix.

D. Review of submodular functions

A submodular function is defined as follows.

Definition 2: Let V be a finite set, and let f : 2V → R

be a function that maps subsets of V to real numbers. Then

f is submodular if, for any sets A and B satisfying A ⊆ B
and any element j /∈ B,

f(A ∪ {j})− f(A) ≥ f(B ∪ {j})− f(B) (6)

Eq. (6) states that, if A is a subset of B, then adding an

element j to A results in a larger increase in f than adding j
to B. The following useful fact about submodular functions

appears in [9].

Lemma 3: Let f1, . . . , fr : 2V → R be submodular

functions, and let a1, . . . , ar be nonnegative constants. Then

f(S) =
∑

i aifi(S) is a submodular function.

A function f is supermodular if the function −f is

submodular.

III. PROBLEM FORMULATION – STATIC NETWORK

In this section, the optimal leader selection problem is

formulated for the case where the edge set E is constant in

time. As noted in the introduction, there are two possibilities

for this problem. In the first, due to resource constraints, only

a fixed number of nodes may be selected as leaders. The

problem is to choose the leader set in order to minimize the

total error. In the second, there is a performance requirement,

expressed as a bound on the error, and the problem is to find

a set of nodes of minimum size that meets the requirement.

A. Case I – Choosing a fixed number of leader nodes

The problem of choosing a given fixed number k of

leader nodes in order to minimize the overall error R(S)
is formulated as

minimize R(S) =
∑

u∈V \S R(S, u)

s.t. |S| ≤ k
(7)

Theorem 2: For a fixed element u ∈ V \ S, R(S, u) is a

supermodular function of S.

Proof: By Lemma 2, R(S, u) is proportional to κ(S, u),
which is the expected time for a random walk starting at u to

reach any point in S and then return to u. Thus, by Lemma 3,

proving that R(S, u) is supermodular is equivalent to proving

that κ(S, u) is supermodular. By Definition 2, κ(S, u) is a

supermodular function of S if and only if, for any sets A
and B with A ⊆ B and for any j /∈ B,

κ(A, u)− κ(A ∪ {j}, u) ≥ κ(B, u)− κ(B ∪ {j}, u) (8)

Consider the quantity κ(A, u)− κ(A∪{j}, u). Define A′ =
A∪{j}, and define TAu and TA′u to be the (random) times

for a random walk to reach A (respectively A′) and return

to u. Then by definition, κ(A, u) = E(TAu) and κ(A′, u) =
E(TA′u). This implies κ(A, u)−κ(A′, u) = E(TAu−TA′u).

Let τj(A) denote the event where the random walk reaches

node j before any of the nodes in A. Further, let UjAu be

the expected time for the random walk to travel from j to

A and then to u, while Uju is the expected time to travel

directly from j to u.

κ(A, u)− κ(A′, u) = E(TAu − TA′u|τj(A))Pr(τj(A)) (9)

+E(TAu − TA′u|τj(A)c)Pr(τj(A)
c)

= (UjAu − Uju)Pr(τj(A)) (10)

noting that, if the walk reaches A first, then TAu and TA′u

are equal. Hence (8) becomes

(UjAu − Uju)Pr(τj(A)) ≥ (UjBu − Uju)Pr(τj(B)) (11)

Now, note that if A ⊆ B, then a random walk that reaches set

A automatically reaches set B as well; conversely, if the walk

has not reached set B, then it has not reached A either. This

implies that UjAu ≥ UjBu and Pr(τj(A)) ≥ Pr(τj(B)).
Hence (8) holds, thus proving Theorem 2.

R(S) =
∑

u∈V \S R(S, u) is therefore a sum of super-

modular functions, and so R(S) is supermodular as well by

Lemma 3.
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B. Optimization algorithm

Since R(S) is supermodular, (7) defines a submodular

maximization problem. Although the submodular maximiza-

tion problem is known to be NP-hard [10], there exist

polynomial-time algorithms that find a set S∗ such that

R(S∗) is within a factor of (1− 1/e) of the optimum value,

denoted R∗.

The algorithm for solving (7) is as follows. Let S∗
i denote

the set of leader nodes at the i-th iteration of the algorithm.

S∗
0 is initialized to ∅. At the i-th iteration of the algorithm,

the element s∗i ∈ V is found such that {R(S∗
i−1)−R(S∗

i−1∪
{s∗i })} is maximized. S∗

i is then updated to (S∗
i−1 ∪ {s∗i }).

The algorithm terminates when either R(S∗
i ) = R(S∗

i ∪{j})
for all j, or when i = k (i.e., when the number of leaders

is equal to k), whichever is reached first. A pseudocode

description of the algorithm is given in the figure below.

CHOOSE k LEADER NODES

Input: G = (V,E), covariances R(i, j)
Maximum number of leader nodes k

Output: Set of leader nodes S∗

Initialization: S∗ ← ∅, i← 0 1

while i ≤ k 2

s∗i ← argmaxj∈V \S {R(S∗)−R(S∗ ∪ {j})} 3

if {R(S∗)−R(S∗ ∪ {s∗i })} ≤ 0 4

return S∗; exit 5

else 6

S∗ ← S∗ ∪ {s∗i } 7

i← i+ 1 8

end 9

end 10

return S∗; exit 11

Fig. 1. Algorithm for solving (7).

The following theorem analyzes the computation time and

performance of this algorithm, making use of the fact that

(7) is a submodular maximization problem.

Theorem 3: Define Rmax to be

Rmax , max
i

∑

u∈V

R(i, u) (12)

and let R∗ be the optimal value of (7). Then the following

are true for the algorithm in Figure 1:

(a) The algorithm terminates in polynomial time in k and

n.

(b) S∗ satisfies

R(S∗) ≤
(

1−
(

k − 1

k

)k
)

R∗ +
1

e
Rmax (13)

≈
(

1− 1

e

)

R∗ +
1

e
Rmax (14)

(c) If |S∗| < k, then R(S∗) = R∗, in other words S∗ is

the optimal solution to (7).

Proof: The algorithm in Figure 1 requires O(kn)
computations of the effective resistance, which, as noted

in Section II-B, can be performed in polynomial time.

This establishes (a). (b) follows from rearranging terms in

Proposition 4.3 of [9], and the fact that (1 − 1
k
)k converges

to 1/e as k increases. (c) follows from the fact that, if

R(S∗
i ) = R(S∗

i ∪{j}) for all j, then the effective resistance

cannot be decreased by adding any element j to S∗
i . Hence

S∗
i must be the optimum.

C. Case II – Choosing nodes to achieve an error bound

When the system is required to operate below a given error

bound α, the problem of choosing a minimal set of leaders

that achieves this bound can be stated as

minimize |S|
s.t.

∑

u∈V \S R(S, u) = R(S) ≤ α
(15)

Note that, for any α ≥ 0, there exists at least one S meeting

the condition R(S) ≤ α, namely the set S = V .

The supermodularity of R(S) enables efficient solution of

(15) as well. The algorithm is as follows. The set of leaders

is initialized to S∗
0 = ∅. As with the algorithm in Figure 1,

the node s∗i that maximizes {R(S∗
i−1)−R(S∗

i−1 ∪{s∗i })} is

added at the i-th iteration. The difference is that, instead of

terminating after k iterations, the algorithm will not terminate

until R(S∗) ≤ α. A detailed description of the algorithm can

be found in Figure 2.

CHOOSE LEADER NODES ERROR LIMIT

Input: G = (V,E), covariances R(i, j)
Error at termination α
Output: Set of leader nodes S∗

Initialization: S∗ ← ∅, error ← α+ 1 1

while error > α 2

s∗ ← argmaxj∈V \S {R(S∗)−R(S∗ ∪ {s∗})} 3

if (R(S∗)−R(S∗ ∪ {s∗})) ≤ 0 4

return S∗; exit 5

else 6

S∗ ← S∗ ∪ {s∗} 7

error ← R(S∗) 8

end 9

end 10

return S∗; exit 11

Fig. 2. Algorithm for solving (15).

The following theorem gives bounds on the optimality of

the set S∗ returned by the above algorithm.

Theorem 4: Let k∗ be the optimum value of (15). The

algorithm described above terminates in polynomial time in

n. If the algorithm terminates after step k, so that |S∗| = k,

then
k

k∗
≤ 1 + log

{

Rmax

R(S∗
k−1)

}

(16)

holds, where Rmax is as defined in Theorem 3.

Proof: Optimality follows from supermodularity of R
and Theorem 1 of [11]. In the worst case, the algorithm will

not terminate until S = V , i.e. after n iterations. This will

require O(n2) computations of effective resistance, each of

which is polynomial in n.
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IV. PROBLEM FORMULATION – TIME-VARYING

NETWORK

In this section, leader selection in multi-agent systems with

time-varying topologies is considered, including networks

with random link failures, networks that switch between a set

of predefined topologies, and networks where the topology

varies arbitrarily in time.

A. Case I – Random link failures

The random link failure model captures the fact that, while

the relative positions of nodes may remain the same, the

wireless links between them may become unavailable due to

noise or interference. The random link failure model assumes

uniform, independent link failures, so that at a given time

each link (i, j) ∈ E is available with probability p. In this

case, the resulting optimization problem is

minimize E(R(S))
s.t. |S| ≤ k

(17)

This is also a submodular optimization problem, as shown

by the following lemma.

Lemma 4: E(R(S)) is a supermodular function of S.

Proof: Let G denote the set of possible network

topologies. Then

E(R(S)) =
∑

G∈G

Pr(G)R(S|G) (18)

By Theorem 2, R(S|G) is a supermodular function of S.

Since Pr(G) ≥ 0 for all G, E(R(S)) is a nonnegative

weighted sum of supermodular functions, and so is super-

modular by Lemma 3.

As a result, (17) can be solved using a polynomial number

of computations of E(R(S)). Computing E(R(S)), however,

requires evaluation of the sum in (18), which has a number

of terms exponential in the number of links, requiring Monte

Carlo approximation in the general case. When the number

of link failures is small, so that p ≈ 1, a gradient-based

bound can also be used.

Lemma 5: Recall that R(S) is equal to Tr(L−1
f ), where

Lf is defined in Theorem 1. Let L̃f = Lf − ∆ be the

corresponding matrix for topology G̃, which is obtained by

removing links from G. Note that, since links are bidirec-

tional, ∆ is symmetric. Then, when ||∆||2 ≤ δ,

R(S|G̃) = Tr(L̃−1
f ) ≤ Tr(L−1

f ) +
δ

λmin(Lf )2
(19)

where λmin(Lf ) is the smallest eigenvalue of Lf .

Proof: Letting ∆ represent the deviation from Lf

caused by link failures, R(S) becomes

Tr((Lf −∆)−1) ≈ Tr(L−1
f ) + Tr(L−1

f ∆L−1
f ) (20)

≤ Tr(L−1
f ) + Tr(UΛ−1UT∆UΛ−1UT )

≤ Tr(L−1
f ) + sup

∆
Tr(UΛ−1UT∆UΛ−1UT )

where Lf = UΛUT is the eigen-decomposition of Lf . The

upper bound occurs when ∆ = UΩUT for some positive

semidefinite diagonal matrix Ω. This implies that

Tr((Lf −∆)−1) ≤ Tr(L−1
f ) + Tr(Λ−1ΩΛ−1) (21)

≤ Tr(L−1
f ) +

δ

λ2
min

(22)

as desired.

This upper bound can then be used as a worst-case value

for R(S) in the presence of link failures. Since R(S) repre-

sents the variance of system error, using an upper bound as

an objective function leads to a conservative network design.

Problem (17) can be solved by modifying the algorithm in

Figure 1 so that, at Line 3, {E(R(S))−E(R(S ∪ {j}))} is

maximized instead of {R(S)−R(S ∪ {j})}.

B. Case II – Switching between predefined topologies

Suppose that the system switches between topologies

G1, . . . , Gr. Two leader selection criteria can then be consid-

ered: the average error 1
r

∑

i R(S|Gi), and the worst-case er-

ror maxi R(S|Gi). Since the average error is a weighted sum

of supermodular functions, it is supermodular by Lemma 3,

and so algorithms analogous to those in Figure 1 and 2 can

be used.

For the worst-case error, the function maxi R(S|Gi) is

not supermodular2. Still, it can be shown that the following

problem can be reformulated as a submodular optimization

problem.

minimize |S|
s.t. R(S|Gi) ≤ α, i = 1, . . . , r

(23)

Define the function Fi(S) , max {R(S|Gi), α}.
Lemma 6: Fi(S) is supermodular.

The proof can be found in the appendix.

Lemma 7: Let F (S) = 1
r

∑

i Fi(S). Then F is a super-

modular function of S. Furthermore, F (S) ≤ α if and only

if R(S|Gi) ≤ α for all i.

Proof: The supermodularity of F follows from Lemmas

3 and 6. Since Fi(S) ≥ α for all i, F (S) ≤ α if and only if

Fi(S) = α for all i. This in turn is equivalent to R(S|Gi) ≤
α for all i.

Problem (23) can then be reformulated as

minimize |S|
s.t. F (S) ≤ α

(24)

Figure 2 can be modified to solve this problem by maximiz-

ing over {F (S)− F (S ∪ {j})} in Line 3.

C. Case III – Arbitrarily varying topology

In this section, networks that experience random changes

in topology over time are considered. In such networks,

it may be difficult to choose an appropriate set of leader

nodes in the absence of any information about future network

topologies. Instead, it is assumed that the set of leader nodes

2Algorithms for minimizing such functions have been proposed [12]. Due
to space constraints, they are not discussed here.
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is periodically computed, leading to an online submodular

optimization problem [10] of the form

minimize
∑

t R(St|Gt)
s.t. |St| ≤ k, t = 1, . . . , T

(25)

where Gt is the topology for the t-th time interval.

The method for choosing a set of leader nodes S∗
t for the

t-th time interval is as follows. Consider the algorithm of

Figure 1. Since Gt is unknown and random, the node j that

maximizes {R(S∗
t,i)−R(S∗

t,i ∪ {j})} at the i-th iteration of

the algorithm is also random. Let

πti(l) = Pr(argmax
j
{R(S∗

t,i)− R(S∗
t,i ∪ {j})} = l) (26)

Then for time interval t, instead of selecting s∗t,i deterministi-

cally as in Line 3 of Figure 1, s∗t,i is selected probabilistically

with distribution πti.

In general, the exact values of πti will not be known

during leader selection. To address this, an online learning

technique is used to estimate πti based on observations from

the previous t − 1 time intervals. Under this approach, a

set of weights wt1, . . . ,wtk is maintained, where wti is a

vector in R
n with wti(j) representing the weight assigned

to choosing node j as the i-th leader during interval t. Define

soptt,i , argmax
j
{R(S∗

t,i−1|Gt)−R(S∗
t,i−1 ∪ {j}|Gt)}

(27)

In other words, the best possible choice of s∗t,i for the

topology Gt. Then define the loss lt,i,j associated with

choosing s∗t,i = j to be

lt,i,j , 1− R(S∗
t |Gt)−R(S∗

t ∪ {j}|Gt)

R(S∗
t |Gt)−R(S∗

t ∪ {soptt,i |Gt)}
(28)

At the end of the t-th time interval, the value of wt,i(j) is

updated to

wt+1,i(j) = βlt,i,jwt,i(j) (29)

where β ∈ (0, 1] is a system parameter that can be tuned to

adjust the performance of the learning algorithm. Eq. (29)

penalizes node j for suboptimal performance during interval

t. By increasing the value of β, nodes experiencing higher

losses lt,i,j will be much less likely to be selected during the

(t+ 1)-th time interval. wt+1,i is then normalized to obtain

the estimated distribution πt+1,i. This process is described

in detail in Figure 3.

In analyzing this approach, the total error
∑

t R(St|Gt)
can be compared to the error achievable when all T topolo-

gies are known in advance. The following theorem gives a

bound on the difference between these two.

Theorem 5: Suppose that the algorithm described in Fig-

ure 3 is executed for T rounds, and let G1, . . . , GT be the

topologies during those intervals. Let Rmax be defined as in

Theorem 3. Define the error K to be

K , (1− 1/e)

T
∑

t=1

R(St|Gt)−
(

max
|S|=k

{

T
∑

t=1

R(S|Gt)

})

(30)

Then K ≤ O(
√
RmaxkT logn).

ADAPTIVE LEADER SELECTION

Input: Current weights wt,1, . . . ,wt,k

Gt = (V,Et), covariances Rt(i, j)
Parameter β ∈ (0, 1]
Maximum number of leader nodes k
Current set of leader nodes S∗

t

Output: Updated weights wt+1,1, . . . ,wt+1,k

Set of leader nodes S∗
t+1

Initialization: S∗
t+1 ← ∅ 1

for i = 1, . . . , k 2

s
opt
t,i ← argmaxj {R(S∗

t,i−1)−R(S∗
t,i−1 ∪ {j})} 3

for j = 1, . . . , n 4

lt,i,j ← 1− R(S∗

t,i−1
)−R(S∗

t,i−1
∪{j})

R(S∗

t,i−1
)−R(S∗

t,i−1
∪{sopt

t,i
})

5

wt+1,i(j)← (wt,i(j))β
lt,i,j 6

end 7

πt+1,i ← wt+1,i/1
T
wt+1,i 8

Choose s∗t+1,i randomly with distribution πt+1,i 9

S∗
t+1 ← S∗

t+1 ∪ {s∗t+1,i} 10

end 11

Fig. 3. One iteration of leader selection algorithm for arbitrary time-varying
topology.

Proof: R(S|G1), . . . , R(S|GT ) is a sequence of su-

permodular functions bounded above by Rmax. Then, by

Lemma 4 of [10],

(1− 1/e)

T
∑

t=1

R((S∗
t |Gt)−

(

max
|S|=k

{

T
∑

t=1

R(S|Gt)

})

≤ O(
√

RmaxkT log n) (31)

as desired.

V. EXPERIMENTAL EVALUATION

In this section, experimental evaluation of the leader

selection procedure is provided.

A. Experimental setup

A network of 100 agents was simulated using Matlab.

Agents were assumed to be deployed uniformly over a

region of 1000x1000m. Each agent’s neighbor set consisted

of all agents within 300 meters. It was assumed that link

noise had covariance proportional to the distance between

the nodes comprising the link. The proposed submodular

optimization approach was compared to two other leader

selection algorithms. In the first algorithm, leaders were

chosen at random from the set of nodes. In the second, the

nodes with highest degree were selected as leaders.

B. Simulation Results

Evaluation of minimizing error subject to a constraint on

the number of nodes is shown in Figure 4a. The proposed

submodular optimization approach outperforms both other

heuristics. Furthermore, selecting high-degree nodes as lead-

ers results in higher error then both other schemes. This

is consistent with the fact, observed in previous work [6],
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Fig. 4. Comparison of leader selection schemes. (a) The total error covariance R(S) resulting from selection of a fixed number of leader nodes. Submodular
optimization represents an improvement over random and degree based heuristics. (b) The number of nodes required to achieve a given network performance
under the algorithm in Figure 2. As expected, for networks with high performance requirement β, the submodular approach requires fewer leader nodes.

that multi-agent systems may be uncontrollable when highly-

connected nodes are chosen as leaders.

Figure 4b evaluates the algorithm for minimizing the

number of nodes required to achieve a given error bound.

The values on the horizontal axis are equal to β = (αmax−
α)/αmax, where α ranges from 2 to αmax = 10, so that the

required error bound decreases as β increases. The figure

shows that, for high values of β, corresponding to stringent

conditions on tolerated error, the submodular optimization

approach requires far fewer leader nodes than both the

degree-based and random heuristics. For β = 0.7, for

example, the submodular scheme requires 35 leaders, while

the random and degree-based algorithms require 48 and 66

leaders, respectively.

VI. CONCLUSION

In this paper, the problem of optimal leader selection in

linear multi-agent systems with noisy links was mapped to

a submodular optimization framework. The applicability of

submodular optimization techniques was demonstrated by

first observing that the effective resistance of a graph is

proportional to the commute time of a random walk on the

graph, which we proved to be supermodular. By exploiting

the fact that the total error covariance of the system is equal

to its effective resistance, it was shown that minimizing the

total error covariance is a submodular optimization problem.

Two versions of the optimal leader selection problem were

considered. In the first case, a fixed number of leaders are

chosen to minimize the overall error, while in the second case

a minimum number of leader nodes is chosen to achieve a

performance requirement. These problems can be interpreted

as dual to one another, and it was shown that both problems

can be addressed using our proposed framework.

Moreover, techniques for solving both problems under

different system conditions, including static networks, net-

works with link failures, networks that switch between pre-

defined topologies, and networks with arbitrary time-varying

topologies, were derived using our framework. For each case,

bounds on the performance of the resulting leader selection

were given.

The response of the system to link noise is one criterion for

selecting leader nodes, but other criteria, such as controllabil-

ity, can be used. Our future work will develop a framework

for choosing leader nodes based on their controllability as

well as response to noise.
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APPENDIX

In this appendix, proofs of Lemmas 1 and 2 from Section

II, as well as Lemma 6 from Section IV, are given.

Proof: (Proof of Lemma 1) Let v denote the vector

of node voltages, and let J denote the vector where Ji is

the net current exiting from node i. Further, let matrix L =
AWAT , where A is the incidence matrix of the graph and

W is defined as in Theorem 1. Assume, without loss of

generality, that the first n−|S| entries of v and J correspond

to the followers, while the last |S| entries are the leaders. L
can be decomposed into sub-matrices

L =

(

L11 L12

L21 L22

)

(32)

where L11 has dimension (n − |S|) × (n − |S|). Note that

L11 is equal to the matrix Lf defined in Theorem 1.

Kirchoff’s Laws, together with Ohm’s Law, imply that

Lv = J . Let Jf and vf denote the follower node currents

and voltages, respectively. Then the decomposition of L and

the fact that vj is assumed to be zero for all j ∈ S implies

that Jf = Lfvf . This in turn implies that vf = L−1
f Jf .

Multiplying both sides of this equation on the left by eTu
yields eTu vf = eTuL

−1
f Jf . Since vu = 1, this implies that

(L−1
f )u1J1 + · · ·+ (L−1

f )u(n−|S|)Jn−|S| = 1 (33)

Now, by Kirchoff’s current law, the net current flowing out

of each node i ∈ V \ S, where i 6= u, must be zero.

Hence (33) reduces to (L−1
f )uuJu = 1, implying that J−1

u =

(L−1
f )uu. Since R̃(S, u) = J−1

u and R(S, u) = (L−1
f )uu, this

establishes the lemma.

In order to prove Lemma 2, the following intermediate

result is needed.

Lemma 8: Define φSu(v) to be the voltage of node v
when a unit voltage is applied to node u and a voltage of

0 is applied to the nodes in S, as above. Let φ̃Su(v) be

the probability that a random walk originating at v reaches

u before reaching any node in the set S. Then φSu(v) =
φ̃Su(v).

Proof: (Proof of Lemma 8) Let C(u, v) be defined as

in the problem statement, and let

P (u, v) =
C(u, v)

∑

t∈N(u)C(u, t)
(34)

By definition,

φ̃Su(v) =
∑

t∈N(v)

P (v, t)φ̃Su(t) (35)

Eq. (35) implies that φ̃ is harmonic in P . If it can be shown

that φ is also harmonic in P , then the Uniqueness Principle

[8] implies that φ = φ̃, since they agree on the boundary

points S and u.

By Kirchoff’s Current Law, the net current exiting node

v must be zero for any v outside the boundary. By Ohm’s

Law, this is equivalent to
∑

t∈N(v)

C(v, t)(φSu(t)− φSu(v)) = 0 (36)

Rearranging terms yields

φSu(v) =
∑

t∈N(v)

P (v, t)φSu(t) (37)

In other words, φSu is also harmonic in P . Hence the two

functions must be equivalent.

Proof: (Proof of Lemma 2) The effective resistance is

defined to be the inverse of the total current exiting node u.

By Kirchoff’s Law, this is equal to

R(S, u) =





∑

v∈N(u)

C(u, v)(1− φSu(v))





−1

(38)

At the same time, the probability that a random walk

starting at u reaches S before returning to u is equal to

1 − ∑v∈N(u) φSu(v)P (u, v), where P (u, v) is defined in

Eq. (34). By Proposition 2.3 of [8],

1−
∑

v∈N(u)

φSu(v)P (u, v) =
2
∑

(s,t)∈E C(s, t)

κ(S, u)
∑

v∈N(u) C(u, v)

(39)

Rearranging terms yields

κ(S, u) =
2
∑

(s,t)∈E C(s, t)
∑

v∈N(u) C(u, v)(1 − φSu(v)
(40)

= 2





∑

(s,t)∈E

C(s, t)



R(S, u) (41)

as desired.

Proof: (Proof of Lemma 6) Let f be a supermodular

function satisfying f(A) ≥ f(B) for any A ⊆ B (we call

this the monotonicity property). It is enough to show that for

any α, F (S) , max {f(S), α} is supermodular. The proof

uses of the fact that a function F is supermodular if and only

if ( [9])

F (A) + F (B) ≤ F (A ∩B) + F (A ∪B) (42)

as well as the fact that f(A ∪B) ≤ (f(A), f(B)) ≤ f(A ∩
B). There are four cases.

Case 1: α < f(A ∪B): In this case, (42) follows from the

supermodularity of f .

Case 2: f(A) < α, f(B) > α: Under this case, (42) is

equivalent to f(B) ≤ f(A ∩ B), which follows from the

monotonicity property. The case where f(A) > α and

f(B) < α is similar.

Case 3: f(A) < α, f(B) < α, f(A ∩B) > α: For this

case, (42) is equivalent to f(A ∩ B) ≥ α, which is true by

assumption.

Case 4: f(A ∩B) ≤ α: Eq. (42) is trivially satisfied in this

case.
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